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Example 2.1.

Given u(a, b) = max(a, b) and c(a) = (1 — a?)"2, determine i such that DeMorgan’s
laws are satisfied. Employing Eq. (2.15), we obtain

i((l, b) —_ (1 —_ llz[(l _ 02)1/2, (1 _ b2)l/2])l/2
= (1 — maxZ[(l - a2)l/2, (1 - bZ)l/Z])l/Z.

Solving Eq. (2.13) for ¢ is more difficult and may result in" more than one
solution. For example, if the standard max and min operatioqs are employed_ for
u and i, respectively, then every involutive complement satisfies the equation.
Hence, max, min, and any of the Sugeno complements (or Yager complements)
defined in Sec. 2.2 satisfy DeMorgan’s laws. ' '

For the sake of simplicity, we have omitted an exarnina.tion.of the propertlejs
of one operation that is important in fuzzy logic—fl}zzy implication, .:>. Thxs
operation can be expressed in terms of fuzzy disjunction, V, fuzzy conjunction,
/\, and negation, ~, by using the equivalences

a>b=aVb or a>b=alb.

By employing the correspondences between logic operations and .set ‘operations
defined in Table 1.5, the equivalences just given can be fully studied in terms of
the functions

u(c(a), b) or c(i(a, c(b)).

Different fuzzy implications are obtained when different fuz'zy complements ¢ and
either different fuzzy unions u or different fuzzy intersections i are used.

2.6 GENERAL AGGREGATION OPERATIONS

Aggregation operations on fuzzy sets are operations by which several fuzzy se’gs
are combined to produce a single set. In general, any aggregation operation is
defined by a function

- h: [0, 11" = [0, 1]

for some n = 2. When applied to n fuzzy sets 4, 45, . . ., A,,.defined onX, h
produces an aggregate fuzzy set A by operating on the membership grades of each
x € X in the aggregated sets. Thus, '

pal® = Aa, (0, pa®), . . . s panx)

for each x € X. _ ‘
In order to qualify as an aggregation function, # must satisfy at least the

-following two axiomatic requirements, which express the essence of the notion

of aggregation:

Axiom hl. h(©, 0, ...,0) = 0and A(1, 1, ..., 1) = 1 (boundary ‘

conditions).
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Axiom h2.  For any pair (a; | i € N,,) and (b, | i € N,), where g; € [0, 1] and
b; € [0, 1], if a; = b, for all i € N,,, then h(a; | i € N,) = h(b; | i € N,), that is, h
is monotonic nondecreasing in all its arguments,

Two additional axioms are usually employed fo characterize aggregation
operations despite the fact that they are not essential:

Axiom h3. /i is a continuous function.

Axiom h4. £ is a symmetric function in all its arguments, that is,
h(af ' S Nll) = h(ap(i) , i€ Nn)

for any permutation p on N,,.

Axiom h3 guarantees that an infinitesimal variation in any argument of A
does not produce a noticeable change in the aggregate. Axiom h4 reflects the
usual assumption that the aggregated sets are equally important. If this assumption
is not warranted in some application context, the symmetry axiom must be
dropped.

We can easily see that fuzzy unions and intersections qualify as aggregation
operations on fuzzy sets. Although they are defined for only two arguments, their
property of associativity guaranteed by Axioms u4 and i4 provides a mechanism
for extending their definition to any number of arguments. Hence, fuzzy unions
and intersections can be viewed as special aggregation operations that are sym-
metric, usually continuous, and required to satisfy some additional boundary con-
ditions. As a result of these additional requirements, fuzzy unions and intersec-
tions can produce only aggregates that are subject to restrictions (2.8) and (2.9).
In particular, they do not produce any aggregates of ay, a,, . . ., a, that produce
values between min(ay, as, . . ., a,) and max(a, as, . . . , a,). Aggregates that
are not restricted in this way are, however, allowed by Axioms hl through h4;
operations that produce them are usually called averaging operations.

Averaging operations are therefore aggregation operations for which

min(ala az, ..., an) = h(al’ az, ..., an) = max(aly dz, ..., an)' (2'16)

In other words, the standard max and min operations represent boundaries be-
tween the averaging operations and the fuzzy unions and intersections,
respectively,

One class of averaging operations that covers the entire interval between

the min and max operations consists of generalized means. These arc defined by
the formula

Vo
at + a% + -+ + af
htx(al9 dz, . .., an) = < ! 2 » > , (2.17)

where o € R (a # 0) is a parameter by which different means are distinguished.

Function h, clearly satisfies Axioms hi through h4 and, consequently, it
renrecente a maramofortirord Ao oo o oot o, B
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erations, It also satisfies the inequalities (2.16) for all « € R, with its lower bound

h~°°(al> az, . . ., an) = min(al, A2y v v oy (1")
and its upper bound
hw(al’ az, . . ., an) = max(al, Az, « ooy an)'

For fixed arguments, function %, is monotonic increasing with a. For o — 0, the
function h, becomes the geometric mean

/’lO(ah azy « . ., a,,) = (al Cdg e a")lln;

furthermore,

h_i(ay, az, ..., a,) =

is the harmonic mean and
1
hi(ay, az, . .., a,) = ay + ax + o+ ay)

is the arithmetic mean.
Since it is not obvious that %, represents the geometric mean for o« — 0, we
use the following theorem.

Theorem 2.15. Let A, be given by Eq. (2.17). Then,

lim h, = (a; - a; + a,)"".

a—0
Proof: First, we determine

. @} o+ ag 4o +a) — 1
lim In A, = lim (af + a5 + *+ dn) on.

a—0 a—0 a

Using I’Hospital’s rule, we now have

atlna; + a8lna, + - + a%lna,
at +a% + - + ay

lim In A, = lim

a—0 a—0

_Ina;+1lna; + - 4+ Ina,
n

= In(a, * az '+ a,)"™.

Hence,

lim hy = (a; * a, ++ a,)'". B

oa—0

When it is desirable to accommodate variations in the importance of individual
aggregated sets, the function s, can be generalized into weighted generalized

|
z
|
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means, as defined by the formula

n 1o
holay, az, . .., Gu; Wi, Wa, o0y Wy) = <2 wm?‘) , (2.18)
i=1
where w; = 0 (i € N,) are weights that express the relative importance of the
aggregated sets; it is required that

n
> owi= 1.
i=1

The weighted means are obviously not symmetric. For fixed arguments and
weights, the function A, given by Eq. (2.18) is monotonic increasing with a.

The full scope of fuzzy aggregation operations is summarized in Fig. 2.5.
Included in this diagram are only the generalized means, which cover the entire
range of averaging operators, and those parameterized classes of fuzzy unions
and intersections given in Table 2.2 that cover the full ranges specified by the
inequalities (2.8) and (2.9). For each class of operators, the range of the respective
parameter is indicated. Given one of these families of operations, the identification
of a suitable operation for a specific application is equivalent to the estimation of
the parameter involved.
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Figure 2.5, The full scope of fuzzy aggregation operations.
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