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CRISP SETS AND Fuzzy SETS 

1.1 INTRODUCTION 

The process and progress of knowledge unfolds into two stages: an attempt to 
know the character of the world and a subsequent attempt to know the character 
of knowledge itself. The second reflective stage arises from the failures of the 
first ; it generates an inquiry into the possibility of knowledge and into the limits 
of that possibility . It is in this second stage of inquiry that we find ourselves today. 
As a result, our concerns with knowledge, perceptions of problems and attempts 
at solutions are of a different order than in the past. We want to know not only 
specific facts or truths but what we can and cannot know, what we do and do 
not know, and how we know at all . Our problems have shifted from questions of 
how to cope with the world (how to provide ourselves with food , shelter, and so 
on) , to questions of how to cope with knowledge (and ignorance) itself. Ours has 
been called an "information society ," and a major portion of our economy is 
devoted to the handling, processing, selecting, storing, disseminating, protecting, 
collecting, analyzing, and sorting of inforqiation , our best tool for this being, of 
course, the computer. 

Our problems are seen in terms of decision, management, and prediction; 
solutions are seen in terms of faster access to more information and of increased 
aid in analyzing, understanding and utilizing the information that is available and 
in coping with the information that is not. These two elements , large amounts of 
information coupled with large amounts of uncertainty , taken together constitute 
the ground of many of our problems today: complexity. As we become aware of 
how much we know and of how much we do not know, as information and un­
certainty themselves become the focus of our concern, we begin to see our prob­
lems as centering around the issue of complexity. 

1 
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The fact that complexity itself includes both the element of how much we 
know, or how well we can describe, and the element of how much we do not 
kn_o~, or how uncertain we are, can be illustrated with the simple example of 
dnvmg a car. We c~n. probably agree that driving a car is (at least relatively) 
complex. Further, dnvmg a standard transmission or stick-shift car is more com­
plex than drivin_g ~ ca~ with an automatic transmission, one index of this being 
that more descnpt10n is needed to cover adequately our knowledge of driving in 
the fo~~er case than in the latter. Thus, because more knowledge is involved in 
the dnvmg of a standard-transmission car (we must know, for instance the rev­
olutions per minute of the engine and how to use the clutch), it is more ~omplex. 
However, the complexity of driving also involves the degree of our uncertainty; 
for ~xample, we do not know precisely when we will have to stop or swerve to 
avoid an ~~stacle. As our uncertainty increases- for instance, in heavy traffic or 
on unfamih_ar ~oads-so does the complexity of the task. Thus, our perception 
of complexity mcreases both when we realize how much we know and when we 
realize how much we do not know. 

How do we manage to cope with complexity as well as we do, and how 
could we manage to cope better? The answer seems to lie in the notion of sim­
plif~ing co~plexity_ by making a satisfactory trade-off or compromise between 
~he I~ormahon available to us and the amount of uncertainty we allow. One option 
is to_ m~rease t~e a~ount of allowable uncertainty by sacrificing some of the 
~rec1se mforma~1~n m favor of a vague but more robust summary. For instance, 
mstead of ?escnbmg the weather today in terms of the exact percentage of cloud 
co~er ~which would b~ much too complex), we could just say that it is sunny, 
which ~s more uncertam and less precise but more useful. In fact, it is important 
to realize that the imprecision or vagueness that is characteristic of natural Jan­
?uage does not necessarily imply a loss of accuracy or meaningfulness. It is, for 
mstance, ge?erally mo~e meaningful to give travel directions in terms of city 
blocks th~n m terms of mches, although the former is much less precise than the 
latter. It 1s also more accurate to say that it is usually warm in the summer than 
to say that it is usually 72° in the summer. In order for a term such as sunny to 
accomplish the desired introduction of vagueness, however, we cannot use it to 
mean precisely 0 percent cloud cover. Its meaning is not totally arbitrary, how­
ever; a cloud cover of 100 percent is not sunny and neither, in fact, is a cloud 
cover of 80 percent. We can accept certain intermediate states, such as IO or 20 
percent cloud cover, as sunny. But where do we draw the line? If, for instance, 
any cloud cover of 25 percent or less is considered sunny, does this mean that a 
cloud cover of 26 percent is not? This is clearly unacceptable since 1 percent of 
cloud cover hardly seems like a distinguishing characteristic between sunny and 
not sunny. We could, therefore, add a qualification that any amount of cloud 
~over 1 percent greater than a cloud cover already considered to be sunny (that 
is, 25 percent or less) will also be labeled as sunny. We can see however that 
this definition eventually leads us to accept all degrees of cloud ~over as s~nny, 
no matter how g!oomy the weather looks! In order to resolve this paradox, the 
term sunny may introduce vagueness by allowing some sort of gradual transition 
from degrees of cloud cover that are considered to be sunny and those that are 
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not. This is, in fact, precisely the basic concept of the fuzzy set, a concept that 
is both simple and intuitively pleasing and that forms, in essence, a generalization 
of the classical or crisp set. 

The crisp set is defined in such a way as to dichotomize the individuals in 
some given universe of discourse into two groups: members (those that certainly 
belong in the set) and nonmembers (those that certainly do not). A sharp, un­
ambiguous distinction exists between the members and nonmembers of the class 
or category represented by the crisp set. Many of the collections and categories 
we commonly employ, however (for instance, in natural language), such as the 
classes of tall people, expensive cars, highly contagious diseases, numbers much 
greater than 1, or sunny days, do not exhibit this characteristic. Instead, their 
boundaries seem vague, and the transition from member to nonmember appears 
gradual rather than abrupt. Thus, the fuzzy set introduces vagueness (with the 
aim of reducing complexity) by eliminating the sharp boundary dividing members 
of the class from nonmembers. A fuzzy set can be defined mathematically by 
assigning to each possible individual in the universe of discourse a value repre­
senting its grade of membership in the fuzzy set. This grade corresponds to the 
degree to which that individual is similar or compatible with the concept repre­
sented by the fuzzy set. Thus, individuals may belong in the fuzzy set to a greater 
or lesser degree as indicated by a larger or smaller membership grade . These 
membership grades are very often represented by real-number values ranging in 
the closed interval between 0 and 1. Thus, a fuzzy set representing our concept 
of sunny might assign a degree of membership of 1 to a cloud cover of 0 percent, 
.8 to a cloud cover of 20 percent, .4 to a cloud cover of 30 percent and 0 to a 
cloud cover of 75 percent. These grades signify the degree to which· each per­
centage of cloud cover approximates our subjective concept of sunny, and the 
set itself models the semantic flexibility inherent in such a common linguistic 
term. Because full membership and full nonmembership in the fuzzy set can still 
be indicated by the values of 1 and 0, respectively, we can consider the crisp set 
to be a restricted case of the more general fuzzy set for which only these two 
grades of membership are allowed. 

Research on the theory of fuzzy sets has been abundant, and in this book 
we present an introduction to the major developments of the theory. There are, 
however, several types of uncertainty other than the type represented by the fuzzy 
set. The classical probability theory, in fact, represents one of these alternative 
and distinct forms of uncertainty. Understanding these various types of uncer­
tainty and their relationships with information and complexity is currently an area 
of active and promising research. Therefore, in addition to offering a thorough 
introduction to the fuzzy set theory, this book provides an overview of the larger 
framework of issues of uncertainty, information, and complexity and places the 
fuzzy set theory within this framework of mathematical explorations. 

In addition to presenting the theoretical foundations of fuzzy set theory and 
associated measures of uncertainty and information, the last chapter of this book 
offers a glimpse at some of the successful applications of this new conceptual 
framework to real-world problems. As general tools for dealing with complexity 
independent of the particular content of concern, the theory of fuzzy sets and the 
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various mathematical representations and measurements of uncertainty and in­
formation have a virtually unrestricted applicability. Indeed, possibilities for ap­
plication include any field that examines how we process or act on information, 
make decisions, recognize patterns, or diagnose problems or any field in which 
the complexity of the necessary knowledge requires some form of simplification. 
Successful applications have , in fact, been made in fields as numerous and diverse 
as engineering , psychology, artificial intelligence, medicine, ecology, decision 
theory , pattern recognition, information retrieval, sociology, and meteorology. 
Few fields remain, in fact, in which conceptions of the major problems and ob­
stacles have not been reformulated in terms of the handling of information and 
uncertainty. While the diversity of successful applications has thus been expand­
ing rapidly, the theory of fuzzy sets in particular and the mathematics of uncer­
tainty and information in general have been achieving a secure identity as valid 
and useful extensions of classical mathematics. They will undoubtedly continue 
to constitute an important framework for further investigations into rigorous rep­
resentations of uncertainty, information, and complexity. 

1.2 CRISP SETS: AN OVERVIEW 

This text is devoted to an examination of fuzzy sets as a broad conceptual frame­
work for dealing with uncertainty and information. The reader's familiarity with 
the basic theory of crisp sets is assumed. Therefore, this section is intended to 
serve simply to refresh the basic concepts of crisp sets and to introduce notation 
and terminology useful for our discussion of fuzzy sets. 

Throughout this book , sets are denoted by capital letters and their members 
by lower-case letters. The letter X denotes the universe of discourse, or universal 
set. This set contains all the possible elements of concern in each particular con­
text or application from which sets can be formed. Unless otherwise stated, Xis 
assumed in this text to contain a finite number of elements . 

To indicate that an individual object x is a member or element of a set A, 
we write 

x EA . 

Whenever x is not an element of a set A , we write 

x f. A . 

A set can be described either by naming all its members (the list method) 
or by specifying some well-defined properties satisfied by the members of the set 
(the rule method). The list method, however, can be used only for finite sets . The 
set A whose members are a 1 , ai, ... , a,, is usually written as 

and the set B whose members satisfy the properties P 1 , Pi , .. . , P,, is usually 
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• • 

Figure I.I. Example of sets in IR 2 that are either convex (A 1-As) or nonconvex 

(A6-A9). 

written as 

5 

x 

B = {b \ b has properties P1, Pi , .. . , P,,}, 

. where the symbol \ denotes the phrase "such that." 
An important and frequently used universal set is the set of all points in the 

n-dimensional Euclidean vector space IW' (i.e ., all n-tuples of real numbers) . Sets 
defined in terms of IR" are often required to possess a property referred to as 
convexity . A set A in IR" is called convex if, for every pair of points* 

r = (r; \ i E N,,) and s = (s; \ i E N,,) 

in A and every real number A. between 0 and I, exclusively , the point 

t = CA.r; + (I - X.)s; \ i E N,,) 

is also in A. In other words, a set A in IR" is convex if, for every pair of points 
rand sin A, all points located on the straight line segment connecting rands are 
also in A . Examples of convex and nonconvex sets in !Ri are given in Fig. I. I. 

• N subscripted by a positive integer is used in this text to denote the set of all integers from 

I through the value of the subscript; that is , N,, = {I, 2, . .. , n} . 
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A set whose elements are themselves sets is often referred to as afamily of 
sets. It can be defined in the form 

{A; I i E /}, 

where i and I are called the set identifier and the identification set, respectively. 
Because the index i is used to reference the sets A;, the family of sets is also 
called an indexed set. 

If every member of set A is also a member of set B-that is, if x EA implies 
x E B-then A is called a subset of B, and this is written as 

A'= B. 

Every set is a subset of itself and every set is a subset of the universal set. If 
A '=Band B '=A , then A and B contain the same members. They are then called 
equal sets; this is denoted by 

A= B. 

To indicate that A and B are not equal, we write 

A ¥B. 

If both A '= B and A ¥ B, then B contains at least one individual that is not a 
member of A. In this case, A is called a proper subset of B, which is denoted by 

A CB. 

The set that contains no members is called the empty set and is denoted by 
0 . The empty set is a subset of every set and is a proper subset of every set 
except itself. 

The process by which individuals from the universal set X are determined 
to be either members or nonmembers of a set can be defined by a characteristic, 
or discrimination, function. For a given set A, this function assigns a value µA(x) 
to every x E X such that 

( ) = { 1 if and only if x E A, 
f.LA x 0 if and only if x f. A. 

Thus, the function maps elements of the universal set to the set containing 0 and 
1. This can be indicated by 

f.LA :X --7 {0, I}. 

The number of elements that belong to a set A is called the cardinality of 
the set and is denoted by I A 1- A set that is defined by the rule method may 
contain an infinite number of elements. 

The family of sets consisting of all the subsets of a particular set A is referred 
to as the power set of A and is indicated by 01(A). It is always the case that 

I 01(A) I = 2IAI. 

The relative complement of a set A with respect to set B is the set containing 
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all the members of B that are not also members of A. This can be written B 
A. Thus, 

B - A = {x I x E B and x f. A}. 

7 

If the set B is the universal set, the complement is absolute and is usually denoted 
by A. Complementation is always involutive; that is, taking the complement of a 
complement yields the original set, or 

A= A. 

The absolute complement of the empty set equals the universal set, and the ab­
solute complement of the universal set equals the empty set. That is , 

0 = x, 

and 

x = 0 . 

The union of sets A and B is the set containing all the elements that belong 
either to set A alone, to set B alone, or to both set A and set B . This is denoted 
by A U B. Thus, 

A U B = {x Ix EA or x E B}. 

The union operation can be generalized for any number of sets . For a family of 
sets {A; I i E /}, this is defined as 

U A; = {x I x E A; for some i E /}. 
iE/ 

The union of any set with the universal set yields the universal set, whereas the 
union of any set with the empty set yields the set itself. We can write this as 

AUX=X 

and 
AU 0 =A. 

Because all the elements of the universal set necessarily belong either to a set A 
or to its absolute complement, A, the union of A and A yields the universal set. 
Thus , 

AUA=X. 

This property is usually called the law of excluded middle. 
The intersection of sets A and B is the set containing all the elements be­

longing to both set A and set B. It is denoted by A n B. Thus, 

A n B = {x I x E A and x E B}. 

The generalization of the intersection for a family of sets {A; I i E /} is defined as 

n A; = {x I x E A; for all i E /}. 
i E/ 
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The intersection of any set with the universal set yields the set itself, and the 
intersection of any set with the empty set yields the empty set. This can be in­
dicated by writing 

AnX=A 

and 

An 0 = 0. 

Since a set and its absolute complement by definition share no elements, their 
intersection yields the empty set. Thus, 

An A= 0. 

This property is usually called the law of contradiction. 
Any two sets A and B are disjoint if they have no elements in common, that 

is, if 

An B = 0. 

It follows directly from the law of contradiction that a set and its absolute com­
plement are always disjoint. 

A collection of pairwise disjoint nonempty subsets of a set A is called a 
partition on A if the union of these subsets yields the original set A. We denote 
a partition on A by the symbol 'IT(A). Formally, 

'IT(A) = {A; I i E /, A; ~ A}, 

where A; #- 0, is a partition on A if and only if 

A; n A1 = 0. 

for each pair i #- j, i, j E /, and 

UA; =A. 
iE/ 

Thus, each element of A belongs to one and only one of the subsets forming the 
partition. 

There are several important properties that are satisfied by the operations 
of union, intersection and complement. Both union and intersection are com­
mutative, that is, the result they yield is not affected by the order of their operands. 
Thus, 

AU B =BU A, 

An B = B n A. 

Union and intersection can also be applied pairwise in any order without 
altering the result. We call this property associativity and express it by the 
equations 

AU BU C = (AU B) UC =AU (BU C), 

An B n c = (An B) n c =An (B n C), 

where the operations in parentheses are performed first. 
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Because the union and intersection of any set with itself yields that same 
set, we say that these two operations are idempotent. Thus, 

AU A= A, 

An A= A. 

The distributive law is also satisfied by union and intersection in the following 
ways: 

An (BU C) 

AU (B n C) 

(A n B) u (A n C), 

(A U B) n (A U C). 

Finally, DeMorgan's law for union, intersection, and complement states that 
the complement of the intersection of any two sets equals the union of their 
complements. Likewise, the complement of the union of two sets equals the in­
tersection of their complements. This can be written as 

An B =Au B, 

Au B =An B. 
These and some additional properties are summarized in Table 1.1. Note 

that all the equations in this table that involve the set union and intersection are 
arranged in pairs. The second equation in each pair can be obtained from the first 
by replacing 0, U, and n with X, n, and U, respectively, and vice ve.rsa. We 

TABLE 1.1. PROPERTIES OF CRISP SET OPERATIONS. 

Involution 

Commutativity 

Associativity 

Distributivity 

Idempotence 

Absorption 

Absorption of complement 

Absorption by X and 0 

Identity 

Law of contradiction 

Law of excluded middle 

DeMorgan's laws 

A=A 
AUB=BUA 
AnB=BnA 

(A U B) U C = A U (B U C) 
(A n B) n c = A n (B n C) 

A n (B u C) = (A n B) u (A n C) 
A u (B n C) = (A u B) n (A u C) 

AUA=A 
AnA=A 

AU (An B) =A 
An (AU B) =A 

AU (An B) AU B 
A n (A u B) = A n B 

AUX=X 
An0=0 

AU0=A 
AnX=A 
AnA 0 
AUA=X 

AnB=AUB 
AUB=AnB 
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are thus concerned with pairs of dual equations. They exemplify a general prin­
ciple of duality: for each valid equation in set theory that is based on the union 
and intersection operations, there corresponds a dual equation, also valid, that 
is obtained by the above specified replacement. 

1.3 THE NOTION OF FUZZY SETS 

As defined in the previous section, the characteristic function of a crisp set assigns 
a value of either 1 or 0 to each individual in the universal set, thereby discrimi­
nating between members and nonmembers of the crisp set under consideration. 
This function can be generalized such that the values assigned to the elements of 
the universal set fall within a specified range and indicate the membership grade 
of these elements in the set in question. Larger values denote higher degrees of 
set membership. Such a function is called a membership function and the set 
defined by it afuzzy set. 

Let X denote a universal set. Then, the membership function µA by which 
a fuzzy set A is usually defined has the form 

µA :X ~ (0, 1], 

where (0, 1] denotes the interval of real numbers from 0 to 1, inclusive. 
For example, we can define a possible membership function for the fuzzy 

set of real numbers close to 0 as follows: 

µA(x) = 1 + 10x2 . 

The graph of this function is pictured in Fig. 1.2. Using this function, we can 
determine the membership grade of each real number in this fuzzy set, which 

.5 

- 2 -I 0 2 x 

Figure 1.2. A possible membership function of the fuzzy set of real numbers 
close to zero . 
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signifies the degree to which that number is close to 0. For instance, the number 
3 is assigned a grade of .01, the number la grade of .09, the number .25 a grade 
of .62, and the number 0 a grade of 1. We might intuitively expect that by per­
forming some operation on the function corresponding to the set of numbers close 
to 0, we could obtain a function representing the set of numbers very close to 0. 
One possible way of accomplishing this is to square the function, that is, 

µA(x) = (1 +\ox2r 
We could also generalize this function to a family of functions representing the 
set of real numbers close to any given number a as follows: 

µA(x) = 1 + lO(x - a) 2 • 

Although the range of values between 0 and 1, inclusive, is the one most 
commonly used for representing membership grades, any arbitrary set with some 
natural full or partial ordering can in fact be used. Elements of this set are not 
required to be numbers as long as the ordering among them can be interpreted 
as representing various strengths of membership degree. This generalized mem­
bership function has t_he form 

µA:X~L, 

where L denotes any set that is at least partially ordered. Since Lis most frequently 
a lattice, fuzzy sets defined by this generalized membership grade function are 
called L-fuzzy sets, where L is intended as an abbreviation for lattice. (The full 
definitions of partial ordering, total ordering, and lattice are given in Sec. 3.6.) 
L-fuzzy sets are important in certain applications , perhaps the most important 
being those in which L = (0, l]n. The symbol (0, l]" is a shorthand notation of 
the Cartesian product 

(0, 1] x (0, 1] x .. . x (0, 1] 

n times 

(see Sec. 3.1). Although the set (0, 1] is totally ordered, sets (0, l]n for any n ~ 2 
are ordered only partially. For example, any two pairs (a1, b1) E (0, 1]2 and 
(a2 , b2 ) E (0, 1] 2 are not comparable (ordered) whenever a1 < az and b1 > bz. 

A few examples in this book demonstrate the utility of L -fuzzy sets. For the 
most part, however, our discussions and examples focus on the classical repre­
sentation of membership grades using real-number values in the interval [O, l ]. 

Fuzzy sets are often incorrectly assumed to indicate some form of proba­
bility. Despite the fact that they can take on similar values, it is important to 
realize that membership grades are not probabilities . One immediately apparent 
difference is that the summation of probabilities on a finite universal set must 
equal 1, while there is no such requirement for membership grades. A more thor­
ough discussion of the distinction between these two expressions of uncertainty 
is made in Chap. 4. 
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A further distinction must be drawn between the concept of a fuzzy set and 
another representation of uncertainty known as the fuzzy measure. Given a par­
ticular element of a universal set of concern whose membership in the various 
crisp subsets of this universal set is not known with certainty, a fuzzy measure 
g assigns a graded value to each of these crisp subsets, which indicates the degree 
of evidence or subjective certainty that the element belongs in the subset. Thus, 
the fuzzy measure is defined by the function 

g:~(X) -7 [O, 1], 

which satisfies certain properties. Fuzzy measures are covered in Chap. 4. 
The difference between fuzzy sets and fuzzy measures can be briefly illus­

trated by an example. For any particular person under consideration, the evidence 
of age that would be necessary to place that person with certainty into the group 
of people in their twenties, thirties, forties , or fifties may be lacking. Note that 
these sets are crisp; there is no fuzziness associated with their boundaries. The 
set assigned the highest value in this particular fuzzy measure is our best guess 
of the person's age; the next highest value indicates the degree of certainty as­
sociated with our next best guess, and so on. Better evidence would result in a 
higher value for the best guess until absolute proof would allow us to assign a 
grade of l to a single crisp set and 0 to all the others. This can be contrasted with 
a problem formulated in terms of fuzzy sets in which we know the person's age 
but must determine to what degree he or she is considered, for instance, "old" 
or " young." Thus, the type of uncertainty represented by the fuzzy measure 
should not be confused with that represented by fuzzy sets. Chapter 4 contains 
a further elaboration of this distinction. 

Obviously, the usefulness of a fuzzy set for modeling a conceptual class or 
a linguistic label depends on the appropriateness of its membership function . 
Therefore, the practical determination of an accurate and justifiable function for 
any particular situation is of major concern. The methods proposed for accom­
plishing this have been largely empirical and usually involve the design of ex­
periments on a test population to measure subjective perceptions of membership 
degrees for some particular conceptual class. There are various means for im­
plementing such measurements. Subjects may assign actual membership grades, 
the statistical response pattern for the true or false question of set membership 
may be sampled, or the time of response to this question may be measured , where 
shorter response times are taken to indicate higher subjective degrees of mem­
bership . Once these data are collected, there are several ways in which a mem­
bership function reflecting the results can be derived. Since many applications 
for fuzzy sets involve modeling the perceptions of a limited population for spec­
ified concepts , these methods of devising membership functions are, on the whole, 
quite useful. More detailed examples of some applied derivation methods are 
discussed in Chap. 6. 

The accuracy of any membership function is necessarily limited. In addition, 
it may seem problematical, if not paradoxical, that a representation of fuzziness 
is made using membership grades that are themselves precise real numbers. Al­
though this does not pose a serious problem for many applications, it is never-
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theless possible to extend the concept of the fuzzy set to allow the distinction 
between grades of membership to become blurred. Sets described in this way are 
known as type 2 fuzzy sets. By definition, a type 1 fuzzy set is an ordinary fuzzy 
set and the elements of a type 2 fuzzy set have membership grades that are them­
selves type 1 (i.e., ordinary) fuzzy sets defined on some universal set Y. For 
example, if we define a type 2 fuzzy set" intelligent ," membership grades assigned 
to elements of X (a population of human beings) might be type l fuzzy sets such 
as average, below average, superior, genius, and so on. Note that every fuzzy 
set of type 2 is an L-fuzzy set. When the membership grades employed in the 
definition of a type 2 fuzzy set are themselves type 2 fuzzy sets, the set is viewed 
as a type 3 fuzzy set. In the same way, higher types of fuzzy sets are defined. 

A different extension of the fuzzy set concept involves creating fuzzy subsets 
of a universal set whose elements are fuzzy sets. These fuzzy sets are known as 
level kfuzzy sets, where k indicates the depth of nesting. For instance, the elements 
of a level 3 fuzzy set are level 2 fuzzy sets whose elements are in turn level 1 
fuzzy sets. One example of a level 2 fuzzy set is the collection of desired attributes 
for a new car, where elements from the universe of discourse are ordinary (level 
l) fuzzy sets such as inexpensive, reliable, sporty, and so on. 

Given a crisp universal set X , let ~(X) denote the set of all fuzzy subsets 
of X and let ~k(X) be defined recursively by the equation 

~k(X) = ~(~k - I (X)), 

for all integers k ;:::: 2. Then, fuzzy sets of level k are formally defined by mem­
bership functions of the form 

µA : ~k - l(X)-7 [0, l], 

t .5 
µA (x) 

a 

Figure 1.3. An example of an interval-valued fuzzy set (µA(a) = [a , (3]). 
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or, when extended to L -fuzzy sets, by functions 

µA: rfpk- t (X) ~ L. 

Chap. 1 

The requirement for a precise membership function can also be relaxed by 
allowing values µA (x) to be intervals of real numbers in [0, 1] rather than single 
numbers . Fuzzy sets of this sort are called interval-valued fuzzy sets. They are 
formally defined by membership functions of the form 

µA :X ~ (i}l([O, l]). 

where µA(x) is a closed interval in [0, 1] for each x EX. An example of this kind 
of membership function is given in Fig. 1.3; for each x, µA(x) is represented by 
the segment between the two curves. It is clear that the concept of interval-valued 
fuzzy sets can be extended to L-fuzzy sets by replacing [0, 1] with a partially 
ordered set L and requiring that , for each x E X, µA (x) be a segment of totally 
ordered elements in L. 

1.4 BASIC CONCEPTS OF FUZZY SETS 

This section introduces some of the basic concepts and terminology of fuzzy sets . 
Many of these are extensions and generalizations of the basic concepts of crisp 
sets, but others are unique to the fuzzy set framework. To illustrate some of the 
concepts , we consider the membership grades of the elements of a small universal 
set in four different fuzzy sets as listed in Table 1.2 and graphically expressed in 
Fig. 1.4. Here the crisp universal set X of ages that we have selected is 

x = {5, 10, 20, 30, 40, 50, 60 , 70, 80}, 

and the fuzzy sets labeled as infant, adult, young, and old are four of the elements 
of the power set containing all possible fuzzy subsets of X, which is denoted by 
rfli(X). 

The support of a fuzzy set A in the universal set X is the crisp set that 
contains all the elements of X that have a nonzero membership grade in A. That 

TABLE 1.2. EXAMPLES OF FUZZY SETS. 

Elements (ages) Infant Adult Young Old 

5 0 0 0 
10 0 0 I 0 
20 0 .8 .8 . I 
30 0 .5 .2 
40 0 .2 .4 
50 0 . I .6 
60 0 0 .8 
70 0 0 
80 0 0 
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where the slash is employed to link the elements of the support with their grad~s 
of membership in A and the plus sign indicates, rather than any sort of alge?ra1c 
addition, that the Listed pairs of elements and membership grades c~llectl~ely 
form the definition of the set A . For the case in which a fuzzy set A 1s defmed 
on a universal set that is finite and countable, we may write 

n 

A = L µJx;. 

Similarly , when X is an interval of real numbers , a fuzzy set A is often written 
in the form 

A = Ix µA(x)lx . 

The height of a fuzzy set is the largest membership grade attained by a~y 
element in that set. A fuzzy set is called normalized when at least o!1e of its 
elements attains the maximum possible membership grade. If membership grades 
range in the closed interval between 0 and 1, for instance , then a_t least one ele~ent 
must have a membership grade of 1 for the fuzzy set to be considered normalized. 
Clearly , this will also imply that the height of the fuzzy set is equal to 1. The 
three fuzzy sets adult , young, and old from Table 1.2 as well as tho_se defined by 
Figs . 1.2 and 1.3 are all normalized , and thus the height of each 1s equal to l. 
Figure 1.5 illustrates a fuzzy set that is not normalized. . 

An a-cut of a fuzzy set A is a crisp set Aa that contams all th(( elements of 
the universal set X that have a membership grade in A greater than or equal to 

Figure 1.5. Nonnormalized fuzzy set 

that is convex. 
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t 
µA (Age) 

80 

Figure 1.4. Age------
adult, old}). Examples of fuzzy sets defined in Table I 2 (A . · E {infant, young, 

is, supports of fuzzy sets in X . are obtamed by the function 

supp: gi(X) ~ <!J>(X), 

where 

supp A = {x E X I ( 
For instance th fJ-A x) > O}. 

' e support of the fuzzy set yo f ung rom Table 1 2 · · 
supp(young) = {5 10 20 . IS the cnsp set 

An empty fuzzy set h ' • , 30, 40, 50}. 
to all elements of h . support; that is the me b . o as an empty 

is one example f t e umversal set. The fuzzy' set . 1' m ersh1p function assigns 
Let u . o an empty fuzzy set within th hm ant a~ defined in Table 1.2 

s mtroduce a · 
1 

e c osen umve 
defining fuzzy sets . sp~cia notation that is often . rse. . 
of fuzzy set A and :~t~ a fimte support. Assume that x is used I m the literature for 

a µ;is rts grade of membershi 'inane ement o_fthe support 
A = I p A. Then A rs written as 

µ, x, + µ2/x2 + ··· + I µn X,,, 
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the specified value of a. This definition can be written as 

Aa == {x E X \ µ.A(x) 2 a}. 

The value a can be chosen arbitrarily but is often designated at the values of the 
membership grades appearing in the fuzzy set under consideration. For instance, 
for a == .2, the a-cut of the fuzzy set young from Table 1.2 is the crisp set 

young.2 == {5, 10, 20, 30, 40}. 

For a == .8 , 
young.8 == {5, 10, 20}, 

and for a == 1, 
young1 == {5, 10}. 

Observe that the set of all a-cuts of any fuzzy set on Xis a family of nested crisp 

The set of all levels a E [0 , 1) that represent distinct a-cuts of a given fuzzy subsets of X. 

set A is called a level set of A. Formally, 
AA == {a\ µ.A(x) == a for some x E X}, 

where AA denotes the level set of fuzzy set A defined on X. 
When the universal set is the set of all n-tuples of real numbers in the n-

dimensional Euclidean vector space !Rn, the concept of set convexity can be gen­
eralized to fuzzy sets. A fuzzy set is convex if and only if each of its a-cuts is a 
convex set. Equivalently we may say that a fuzzy set A is convex if and only if 

µ.A(A.r + (l - A.)s) 2 min[µ.A(r), µ.A(s)), 

for all r, s E Wand all k E [O , \].Figures \.2, 1.4, and 1.5 il\ustrate convex fuzzy 
sets, whereas Fig. \.6 illustrates a nonconvex fuzzy set on R . Figure 1.7 i\lustrates 
a convex fuzzy set on R' expressed by the a-cuts for all a in its level set. Note 
that the definition of convexity for fuzzy sets does not mean that the membership 
function of a convex fuzzy set is necessarily a convex function. 

A convex and normalized fuzzy set defined on IR whose membership function 
is piecewise continuous is called afuzzY numb<'- Thus, a fuzzy number can be 
thought of as containing the real numbers within some interval to varying degrees. 
For example, the membership function given in Fig. 1.2 can be viewed as a rep-

resentation of a fuzzy number. The scalar cardinality of a fuzzy set A defined on a finite universal set X is 
the summation of the membership grades of all the elements of X in A. Thus, 

\A\ == L fJ-A(x). 
xEX 

The scalar cardinality of the fuzzy set old from Table 1.2 is 

I old I == o + o + .1 + .2 + .4 + .6 + .8 + i + 1 == 4.1 

The scalar cardinality of the fuzzy set infant is 0. 



0 

y 

Figure 1.6. Nonconvex fuzzy set. 

Figure 1.7. 

a= .1 

x fuzzy set defined on IR2 . 
a-cuts of a conve 

x 
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Other forms of cardinality have been proposed for fuzzy sets. One of these, 
which is called the fuzzy cardinality, is defined as a fuzzy number rather than as 
a real number, as is the case for the scalar cardinality. When a fuzzy set A has 
a finite support, its fuzzy cardinality I A I is a fuzzy set (fuzzy number) defined 
on N whose membership function is defined by 

µ1.41( 1 Ao: I) = a, 

for all a in the level set of A (a E AA). The fuzzy cardinality of the fuzzy set old 
from Table 1.2 is 

I old I = . u1 + .216 + .415 + .614 + .813 + 112. 

There are many ways of extending the set inclusion as well as the basic crisp 
set operations for application to fuzzy sets. Several of these are examined in detail 
in Chap. 2. The discussion here is a brief introduction to the simple definitions 
of set inclusion and complement and to the union and intersection operations that 
were first proposed for fuzzy sets. 

If the membership grade of each element of the universal set X in fuzzy set 
A is less than or equal its membership grade in fuzzy set B, then A is called a 
subset of B. Thus, if 

for every x E X, then 

A ~ B. 

The fuzzy set old from Table 1.2 is a subset of the fuzzy set adult since for each 
element in our universal set 

µo td(x) :S µadutr(X). 

Fuzzy sets A and B are called equal if µA(x) 
x E X. This is denoted by 

A = B. 

Clearly, if A = B, then A ~Band B ~A . 

µ 8 (x) for every element 

If fuzzy sets A and Bare not equal (µA(x) ¥- µ8 (x) for at least one x E X), 
we write 

A¥- B. 

None of the four fuzzy sets defined in Table 1.2 is equal to any of the others. 
Fuzzy set A is called a proper subset of fuzzy set B when A is a subset of 

Band the two sets are not equal; that is, µA(x) :s µ8 (x) for every x EX and µA(x) 
< µs(x) for at least one x E X. We can denote this by writing 

A C B if and only if A ~ B and A ¥- B. 

It was mentioned that the fuzzy set old from Table 1.2 is a subset of the fuzzy 
set adult and that these two fuzzy sets are not equal. Therefore, old can be said 
to be a proper subset of adult. 
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When membership grades range in the closed interval between 0 and 1, we 
denote the complement of a fuzzy set with respect to the universal set X by A 
and define it by 

µA(X) = l - µA(X), 

for every x E X. Thus, if an element has a membership grade of .8 in a fuzzy set 
A, its membership grade in the complement of A will be .2. For instance, taking 
the complement of the fuzzy set old from Table 1.2 produces the fuzzy set not 
old defined as 

not old = 115 + 1/10 + .9/20 + .8/30 + .6/40 + .4/50 + .2/60. 

Note that in this particular case not old is not equal to the fuzzy set young. 
The union of two fuzzy sets A and B is a fuzzy set A U B such that 

µAus(x) = max[µA(x), µs(x)], 

for every x E X. Thus, the membership grade of each element of the universal 
set in A U B is either its membership grade in A or its membership grade in B, 
whichever is the larger value. From this definition it can be seen that fuzzy sets 
A and B are both subsets of the fuzzy set A U B, a property we would in fact 
expect from a union operation. When we take the union of the fuzzy sets young 
and old from Table 1.2, the following fuzzy set is created: 

young U old = 115 + 1/10 + .8/20 + .5/30 + .4/40 

+ .6/50 + .8/60 + 1170 + 1180. 

The intersection of fuzzy sets A and B is a fuzzy set A n B such that 

µAns(x) = min[µA(x), µs(x)], 

for every x E X. Here, the membership grade of an element x in fuzzy set A n B 
is the smaller of its membership grades in set A and set B. As is desirable for an 
intersection operation, the fuzzy set A n B is a subset of both A and B. The 
intersection of fuzzy sets young and old from Table 1.2 is a fuzzy set defined as 

young n old = .1/20 + .2/30 + .2/40 + .1/50. 

These original formulations of fuzzy complement, union, and intersection 
perform identically to the corresponding crisp set operators when membership 
grades are restricted to the values 0 and 1. They are, therefore, good generali­
zations of the classical crisp set operators. Chapter 2 contains a further discussion 
of the properties of these original operators and of their relation to the other classes 
of operators subsequently proposed. 

A basic principle that allows the generalization of crisp mathematical con­
cepts to the fuzzy framework is known as the extension principle. It provides the 
means for any function f that maps points X1, X2, ... , Xn in the crisp set X to 
the crisp set Y to be generalized such that it maps fuzzy subsets of X to Y. 
Formally, given a function f mapping points in set X to points in set Y and any 
fuzzy set A E P(X), where 

A = µi/x1 + µz/X2 + .. · + µnlXn, 

Sec. 1.5 Classical Logic: An Overview 

the extension principle states that 

f (A) = f (µi/X1 + µz/X2 + ... + µnlXn) 

= µilf (xi) + µz/f (x2) + ... + µnlf (xn). 
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If more than one element of x · d b f 
the maximum of t ~s mappe y to the same element Y E Y, then 
chosen as the me~~e~~~be;~~1p~ grad~s of these elements in the fuzzy set A is 
Y' then the membershi r~:e e .or Y m [(A). If no element x E X is mapped to 
tuples of elements of ~;veral ~~~~fu~;e~~ ~roXOften a function f maps ordered 
. .. , Xn) = E y I h' i, 2, · · ·, Xn such that f(x 1 , x2, 
d f. d y, Y · n t is case, for any arbitrary fuzzy sets A A A 

e me on Xi X X t' I 1, 2, .. ., n 
f(A A , 1' ) . .' . , n, respec 1.v~ y, the membership grade of element Yin 

i, z: . A .,A n is equal to the mm1mum of the membership grades of x x 
· · · 'Xn m. 1, ~'···,An, respectively. 1' 2 ' 

As a simple illustration of the use of this . . I . 
mapping ordered pairs from X = { b } pnncip e, suppose that f IS a function 
f b . . i a, , c and X2 = {x y} to y - { } L 

e spec1f1ed by the following matrix: ' - p, q, r . et 

~ [~ ~] 
c r p 

Let Ai be a fuzzy set def d x . 
that me on i and let A1 be a fuzzy set defined on X2 such 

Ai = .3/a + .9/b + .5/c 
and 

Az = .5/x + l/y. 

The membership grades of P, q, and r in the fuzz set B - f -
be calculated from the extension principle as foll~ws: - (Ai, Az) E P( Y) can 

µs(p) = max[min(.3, .5), min(.3, 1), min(.S, I)] .5; 

µs(q) = max[min(.9, .5)] = .5; 

µs(r) = max[min(.5, .5), min(.9, l)] .9. 

Thus, by the extension principle 

fiAi, A2 ) .5/p + .5/q + .9/r. 

1.5 CLASSICAL LOGIC: AN OVERVIEW 

We assume that the reade f th' b k · .. 
sical logic. Therefore thi r o r is . oo is f~m1har with the fundamentals of clas-
of the basic concepts 'of c;a~~~ I~7 Is. solely m.tended to provide a brief overview 
employed in our discussion o~;uz~~1~0~7~. to mtroduce terminology and notation 
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Logic is the study of the methods and principles of reasoning in all its pos­
sible forms. Classical logic deals with propositions that are required to be either 
true or false. Each proposition has an opposite, which is usually called a negation 
of the proposition. A proposition and its negation are required to assume opposite 
truth values. 

One area of logic, referred to as propositional logic, deals with combinations 
of variables that stand for arbitrary propositions. These variables are usually 
called logic variables (or propositional variables). As each variable stands for a 
hypothetical proposition, it may assume either of the two truth values; the variable 
is not committed to either truth value unless a particular proposition is substituted 
for it. 

One of the main concerns of propositional logic is the study of rules by which 
new logic variables can be produced as functions of some given logic variables. 
It is not concerned with the internal structure of the propositions represented by 
the logic variables. 

Assume that n logic variables v 1 , v2 , ••• , Vn are given. A new logic variable 
can then be defined by a function that assigns a particular truth value to the new 
variable for each combination of truth values of the given variables. This function 
is usually called a logic function. Since n logic variables may assume 2n pro­
spective truth values, there are 22

" possible logic functions defining these vari­
ables. For example, all the logic functions of two variables are listed in Table 1.3, 
where falsity and truth are denoted by 0 and 1, respectively, and the resulting 16 
logic variables are denoted by w1 , w2 , •.• , w16 • Logic functions of one or two 
variables are usually called logic operations. 

TABLE 1.3. LOGIC FUNCTIONS OF TWO VARIABLES. 

V2 1 1 0 0 Adopted name Adopted Other names used Other symbols used 

Vt 1 0 1 0 of function Symbol in the literature in the literature 

Wt 0 0 0 0 Zero function 0 Falsum F, .l 
W2 0 0 0 1 Nor function Vt :..f V2 Pierce function Vt i v2, NOR(vt, v2) 

W3 0 0 1 0 Inhibition Vt ¢1 V2 Proper inequality Vt> V2 

W4 0 0 1 1 Negation ti2 Complement lv2, - v2, v~ 

W5 0 I 0 0 Inhibition Vt~ V2 Proper inequality Vt < V2 

W6 0 1 0 I Negation lit Complement l v1, -- V1, v? 
W7 0 I I 0 Exclusive-or Vt® V2 Nonequivalence Vt 'F V2, Vt EB V2 

function 
Wg 0 1 I I Nand function Vt Av2 Sheffer stroke Vt I v2, NAND(vt , v2) 

W9 I 0 0 0 Conjunction Vt f\ Vz And function Vi & Vz, V i Vz 

WJQ 1 0 0 1 Bi conditional Vt¢> Vz Equivalence 
, 
VJ"" Vz 

WJt 1 0 1 0 Assertion Vt Identity vi 

W12 1 0 1 1 Implication VJ {:: Vz Conditional, Vi C V2, VJ 2: Vz 

inequality 
W13 I I 0 0 Assertion Vz Identity v~ 
W14 I 1 0 I Implication Vt~ Vz Conditional, V1 :::J Vz, VJ :S Vz 

inequality 
W15 1 I 1 0 Disjunction Vt V Vz Or function V1 + Vz 

W 16 1 1 1 1 One function I Verum T, I 
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The key issue of propositional logic is the expression of all the logic functions 
of n variables (n E N), the number of which grows extremely rapidly with in­
creasing values of n, with the aid of a small number of simple logic functions. 
These simple functions are preferably logic operations of one or two variables 
which are called logic primitives. It is known that this can be accomplished on!; 
with some sets of logic primitives. We say that a set of primitives is complete if 
and only if any logic function of variables v1 , v2 , ••• , vn (for any finite n) can 
be composed by a finite number of these primitives. 

Two of the many complete sets of primitives have been predominant in 
propositional logic: (1) negation, conjunction, and disjunction, and (2) negation 
and implication. By combining, for example, negations, conjunctions, and dis­
junctions (employed as primitives) in appropriate algebraic expressions, referred 
to as logic formulas, we can form any other logic function. Logic formulas are 
then defined recursively as follows: 

1. The truth values 0 and 1 are logic formulas. 
2. If v denotes a logic variable, then v and v are logic formulas. 
3. If a and b denote logic formulas, then a/\ band a Vb are also logic formulas. 
4. The only logic formulas are those defined by statements I through 3. 

Every logic formula of this type defines a logic function by composing it 
from the three primary functions. To define a unique function, the order in which 
the individual compositions are to be performed must be specified in some way. 
There are various ways in which this order can be specified. The most common 
is the usual use of parentheses, as in any other algebraic expression. 

Other types of logic formulas can be defined by replacing some of the three 
operations in this definition with other operations or by including some additional 
operations. We may replace, for example, a/\ band a Vb in the definition with 
a =? b, or we may simply add a=? b to the definition . 

While each proper logic formula represents a single logic function and the 
associated logic variable, different formulas may represent the same function and 
variable. If they do, we consider them equivalent. When logic formulas a and b 
are equivalent, we write a = b. For example, 

(v, /\ v2) V (v , /\ v3) V (v2 /\ v3) = (v2 /\ v3) V (v1 /\ v3) V (v 1 /\ v2), 

as can easily be verified by evaluating each of the formulas for all eight combi­
nations of truth values of the logic variables v 1 , v2 , and v

3
• 

When the variable represented by a logic formula is always true regardless 
of the truth values assigned to the variables participating in the formula, it is called 
a tautology; when it is always false, it is called a contradiction. For example, 
when two logic formulas a and b are equivalent, then a~ bis a tautology, whereas 
the formula a ® b is a contradiction. Tautologies are important for deductive 
reasoning, since they represent logic formulas that, due to their form, are true on 
logical grounds alone. 

Various forms of tautologies can be used for making deductive inferences. 
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TABLE 1.4. PROPERTIES OF BOOLEAN ALGEBRAS. 

(Bl) Idempotence a + a = a 
a· a= a 

(B2) Commutativity a + b = b + a 
a·b=b·a 

(B3) Associativity (a + b) + c = a + (b + c) 
(a· b) · c =a· (b · c) 

(B4) Absorption a + (a · b) = a 
a · (a + b) = a 

(B5) Distributivity a · (b + c) = (a · b) + (a · c) 
a + (b · c) = (a + b) · (a + c) 

(B6) Universal bounds a + 0 = a, a + 1 = 1 
a · 1 = a, a · 0 = 0 

(B7) Complementarity a + a = 1 
a. a= 0 

T = o 
(BS) Involution a= a 

(B9) Dualization a+b=a·b 
a·b=a+b 

They are referred to as inference rules. Examples of some tautologies frequently 
used as inference rules are: 

(a/\ (a=? b)) =? b 

(6 /\(a::;, b))::;, a 
((a=? b) /\ (b =? c)) =?(a=? c) 

(modus ponens), 

(modus tollens), 

(hypothetical syllogism). 

Modus ponens, for instance, states that given two true propositions a and a =? b 
(the premises), the truth of the proposition b (the conclusion) may be inferred. 

Every tautology remains a tautology when any of its variables is replaced 
with any arbitrary logic formula. This property is another example of a powerful 
rule of inference, referred to as a rule of substitution. 

It is well established that propositional logic is isomorphic to set theory under 
the appropriate correspondence between components of these two mathematical 
systems. Furthermore, both of these systems are isomorphic to a Boolean algebra, 
which is a mathematical system defined by abstract (interpretation-free) entities 
and their axiomatic properties. 

A Boolean algebra on a set B is defined as the quadruple 

VA = (B, +, · , -), 

where the set B has at least two elements (bounds) 0 and 1; + and · are binary 
operations on B, and - is a unary operation on B for which the properties listed 
in Table 1.4 are satisfied.* Properties (B 1)-(B4) are common to all lattices. Boo-

* Not all these properties are necessary for an axiomatic characterization of Boolean algebras; 
we present this larger set of properties in order to emphasize the relationship between Boolean algebras, 
set theory, and propositional logic. 
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lean algebras are therefore lattices that are distributive (BS), bounded (B6), and 
complemented (B7)-(B9). This means that each Boolean algebra can also be char­
acterized in terms of a partial ordering on a set that is defined as follows: a :s: b 
if and only if a · b = a or, alternatively, if and only if a + b = b. 

The isomorphisms between Boolean algebra, set theory, and propositional 
logic guarantee that every theorem in any one of these theories has a counterpart 
in each of the other two theories. These counterparts can be obtained from one 
another by applying the substitutional correspondences in Table 1.5. All symbols 
used in this table have previously been defined in the text except for the symbol 
2F(V); V denotes here the set of all combinations of truth values of given logic 
variables, and 2F(V) stands for the set of all logic functions defined in terms of 
these combinations. It is obviously required that the cardinalities of sets V and 
X be equal. These isomorphisms allow us, in effect, to cover all these theories 
by developing only one of them. We take advantage of this possibility by focusing 
the discussion in this book primarily on the theory of fuzzy sets rather than on 
fuzzy logic. For example, our study in Chap. 2 of the general operations on fuzzy 
sets is not repeated for operations of fuzzy logic, since the isomorphism between 
the two areas allows the properties of the latter to be obtained directly from the 
corresponding properties of fuzzy set operations. 

Propositional logic is concerned only with those logic relationships that de­
pend on the way in which propositions are composed from other propositions by 
logic operations. These latter propositions are treated as unanalyzed wholes. This 
is not adequate for many instances of deductive reasoning, for which the internal 
structure of propositions cannot be ignored. · 

Propositions are sentences expressed in some language. Each sentence rep­
resenting a proposition can fundamentally be broken down into a subject and a 
predicate. In other words, a simple proposition can be expressed, in general, in 
the canonical form 

xis P, 

where xis a symbol of a subject and P designates a predicate, which characterizes 
a property. For example, "Austria is a German-speaking country" is a proposition 
in which "Austria" stands for a subject (a particular country) and "a German 

TABLE 1.5. CORRESPONDENCES DEFINING ISOMORPHISMS 
BETWEEN SET THEORY, BOOLEAN ALGEBRA, AND 
PROPOSITIONAL LOGIC. 

Set theory 

2/'(X) 

u 
n 

x 
0 
\;;; 

Boolean algebra 

B 
+ 

0 

Propositional logic 

2F(V) 
v 
/\ 

1 
0 
? 
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stands for the sentence "there exists an x1 E X1 such that for all x2 E X2 there 
exists x3 such that P(x1, x2, x3)." For example, if X1 = X2 = X3 = [O, 1] and 
P(x1, X2, X3) means x1 :::; x2 :::::: X3, then the sentence is true (assume x1 = 0 and 
X3 = 1) . 

The standard existential and universal quantification of predicates can be 
conveniently generalized by conceiving a quantifier Q applied to a predicate P(x) , 
x E X , as a binary relation 

Q C {(a, 13)1 o. , 13 E N, a + 13 = IX J}, 

where a and 13 specify the number of elements of X for which P(x) is true or false, 
respectively. Formally, 

o. = J{x E X I P(x) is true}! , 

13 J{x E XI P(x) is false}! . 

For example, when Q is defined by the condition a "" 0, we obtain the standard 
existential quantifier; when 13 = 0, Q becomes the standard universal quantifier; 
when a > 13, we obtain the so-called plurality quantifier, expressed by the word 
most. 

New predicates (quantified or not) can be produced from given predicates 
by logic formulas in the same way as new logic variables are produced by logic 
formulas in propositional logic. These formulas, which are called predicate for­
mulas, are the essence of predicate logic . 

1.6 FUZZY LOGIC 

'The basic assumption upon which classical logic (or two-valued logic) is based­
that every proposition is either true or false- has been questioned since Aristotle. 
In his treatise On Interpretation, Aristotle discusses the problematic truth status 
of matters that are future-contingent. Propositions about future events, he main­
tains, are neither actually true nor actually false but are potentially either; hence, 
their truth value is undetermined, at least prior to the event. 

It is now well understood that propositions whose truth status is problematic 
are not restricted to future events. As a consequence of the Heisenberg principle 
of uncertainty, for example, it is known that truth values of certain propositions 
in quantum mechanics are inherently indeterminate due to fundamental limitations 
of measurement. In order to deal with such propositions, we must relax the true­
false dichotomy of classical two-valued logic by allowing a third truth value, which 
may be called indeterminate. 

The classical two-valued logic can be extended into three-valued logic in 
various ways . Several three-valued logics, each with its own rationale, are now 
well established. It is common in these logics to denote the truth, falsity, and 
indeterminacy by 1, 0, and!, respectively. It is also common to define the negation 
a of a proposition a as 1 - a; that is, T = 0, 0 = 1 and I = !. Other primitives, 
such as /\, V , =>, and ~ differ from one logic to another. Five of the best known 
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three-valued logics, labeled with the names of their originators , are defined in 
terms of these four primitives in Table 1.6 

We can see from Table 1.6 that all the logic primitives listed for the five 
three-valued logics fully conform to the usual definitions of these primitives in 
the classical logic for a, b E {O, I} and that they differ from each other only in 
their treatment of the new truth value ! . We can also easily verify that none of 
these three-valued logics satisfies the law of contradiction (a f\ 7i = 0) , the law 
of excluded middle (a V 7i = I) , and some other tautologies of two-valued logic . 
The Bochvar three-valued logic , for example, clearly does not satisfy any of the 
tautologies of two-valued logic, since each of its primitives produces the truth 
value ! whenever at least one of the propositions a and b assumes this value . It 
is, therefore, common to extend the usual concept of a tautology to the broader 
concept of a quasi-tautology. We say that a logic formula in a three-valued logic 
that does not assume the truth value 0 (falsity) regardless of the truth values 
assigned to its proposition variables is a quasi-tautology. Similarly , we say that 
a logic formula that does not assume the truth value 1 (truth) is a quasi-

contradiction . 
Once the various three-valued logics were accepted as meaningful and use­

ful, it became desirable to explore generalizations into n-valued logics for an 
arbitrary number of truth values (n 2: 2) . Several n-valued logics were , in fact , 
developed in the 1930s. For any given n, the truth values in these generalized 
logics are usually labeled by rational numbers in the unit interval [O, I]. These 
values are obtained by evenly dividing the interval between 0 and 1, exclusive . 
The set Tn of truth values of an n-valued logic is thus defined as 

Tn = {o = _o_, _ 1_ , _ 2 _ , . . . , n - 2
1
, n - 1

1 
= i}. 

n - 1 n - 1 n - I n - n -

These values can be interpreted as degrees of truth . 
The first series of n-valued logics for which n 2: 2 was proposed by Luka­

siewicz in the early 1930s as a generalization of his three-valued logic . It uses 
truth values in Tn and defines the primitives by the following equations: 

7i = I - a, 

a/\ b = min(a, b), 

a Vb = max(a, b), (1.3) 

a:::;. b = min(l, 1 + b - a), 

a~b = l -l a - b l . 

Lukasiewicz, in fact, used only negation and implication as primitives and defined 
the other logic operations in terms of these two primitives, as follows: 

a Vb = (a=? b) =? b, 

a/\ b =: av b, 

a~ b = (a=? b) /\ (b =?a). 
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TABLE 1.6. PRIMITIVES OF SOME TH REE-VALUED LOGICS. 

Lukasiewicz Boch var Kleene Hey ting Reichenbach 
a b /\ v ~~ /\ v ~~ /\ v ~~ /\ v ~ ~ /\ v ~~ 

0 0 0 0 I I 0 0 I I 0 0 I I 0 0 I I 0 0 I I 
0 ! 0 ! I t 1 t 1 t 0 1 I 1 0 J. I 0 0 .! I i 2 2 2 2 2 2 

0 I 0 I I 0 0 I I 0 0 I I 0 0 I I 0 0 I I 0 
1 0 0 J. t 1 t t t t 0 1 .! 1 0 1. 0 0 0 .! t ! 2 2 2 2 2 2 2 2 

l t 1 t I I 1 ! t 1 t J. .! ! t t I I 1. t I I 2 2 2 2 2 2 2 

1 I 1 I I 1 t t t 1. .l I I t t I I ! 1 I I 1 
2 2 2 2 2 2 2 

I 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 
I t 1. I .! t t t t l t I t i t I .! t .! I 1 1 

2 2 2 2 2 2 2 

I I I I I I I I I I I I I I I I I I I I I I 

It can be easily verified that Eqs. (1.3) become the definitions of the usual primi­
tives of two-valued logic when n = 2 and that they define the primitives of Luka­
siewicz's three-valued logic as given in Table 1.6. 

For each n 2: 2, then-valued logic of Lukasiewicz is usually denoted in the 
literature by Ln. The truth values of Ln are taken from Tn and its primitives are 
defined by Eqs. (1.3) . The sequence (L2 , L 3 , • . • , L c.o ) of these logics contains 
two extreme cases- logics L2 and L c.o . Logic L2 is clearly the classical two-valued 
logic discussed in Sec. 1.5. Logic L"' is an infinite-valued logic who~e truth values 
are taken from the set Too of all rational numbers in the unit interval [O, I]. 

When we do not insist on taking truth values only from the set T"' but rather 
accept as truth values any real numbers in the interval [O, 1], we obtain an al­
ternative infinite-valued logic. Primitives of both of these infinite-valued logics 
are defined by Eqs. (1.3); they differ in their sets of truth values. Whereas one 

. of these logics uses the set T"' as truth values, the other employs the set of all 
real numbers in the interval [0, I]. In spite of this difference, these two infinite­
valued logics are established as essentially equivalent in the sense that they rep­
resent exactly the same tautologies. This equivalence holds , however, only for 
logic formulas involving propositions ; for predicate formulas with quantifiers, 
some fundamental differences between the two logics emerge. 

Unless otherwise stated, the term infinite-valued logic is usually used in the 
literature to indicate the logic whose truth values are represented by all the real 
numbers in the interval [0, I]. This is also quite often called the standard Luka­
siewicz logic L1 , where the subscript I is an abbreviation for X1 (read "aleph I"), 
which is the symbol commonly used to denote the cardinality of the continuum. 

Given the isomorphism that exists between logic and set theory as defined 
in Table 1.5, we can see that the standard Lukasiewicz logic L 1 is isomorphic to 
the original fuzzy set theory based on the min, max, and 1 - a operators for 
fuzzy set intersection, union , and complement, respectively, in the same way as 
the two-valued logic is isomorphic to the crisp set theory. In fact , the membership 
grades µA(x) for x E X by which a fuzzy set A on the universal set Xis defined 
can be interpreted as the truth values of the proposition "x is a member of set 
A" in L1. Conversely, the truth values for all x EX of any proposition "xis P" 
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in L1, where P is a vague (fuzzy) predicate (such as tall, young, expensive, dan­
gerous, and so on), can be interpreted as the membership degrees µp(x) by which 
the fuzzy set characterized by the property P is defined on X. The isomorphism 
then follows from the fact that the logic operations of L 1 , defined by Eqs. (1.3), 
have exactly the same mathematical form as the corresponding standard opera­
tions on fuzzy sets. 

The standard Lukasiewicz logic L1 is only one of a variety of infinite-valued 
logics in the same sense as the standard fuzzy set theory is only one of a variety 
of fuzzy set theories, which differ from one another by the set operations they 
employ. For each particular infinite-valued logic, we can derive the isomorphic 
fuzzy set theory by the correspondence in Table 1.5; a similar derivation can be 
made of the infinite-valued logic that is isomorphic to a given particular fuzzy set 
theory. A thorough study of only one of these areas, therefore, reveals the full 
scope of both. We are free to examine either the classes of acceptable set op­
erations or the classes of acceptable logic operations and their various combi­
nations. We choose in this text to focus on set operations, which are fully dis­
cussed in Chap. 2. The isomorphic logic operations and their combinations, which 
we do not cover explicitly, are nevertheless utilized in some of the applications 
discussed in Chap. 6. 

The insufficiency of any single infinite-valued logic (and therefore the de­
sirability of a variety of these logics) is connected with the notion of a complete 
set of logic primitives. It is known that there exists no finite complete set of logic 
primitives for any infinite-valued logic. Hence, using a finite set of primitives that 
defines an infinite-valued logic, we can obtain only a subset of all the logic func­
tions of the given primary logic variables. Because some applications require 
functions outside this subset, it may become necessary to resort to alternative 
logics. 

Since, as argued in this section, the various many-valued logics have their 
counterparts in fuzzy set theory, they form the kernel of fuzzy logic, that is, a 
logic based on fuzzy set theory. In its full scale, however, fuzzy logic is actually 
an extension of many-valued logics. Its ultimate goal is to provide foundations 
for approximate reasoning with imprecise propositions using fuzzy set theory as 
the principle tool. This is analogous to the role of quantified predicate logic for 
reasoning with precise propositions. 

The primary focus of fuzzy logic is on natural language, where approximate 
reasoning with imprecise propositions is rather typical. The following syllogism 
is an example of approximate reasoning in linguistic terms that cannot be dealt 
with by the classical predicate logic: 

Old coins are usually rare collectibles. 

Rare collectibles are expensive. 

Old coins are usually expensive. 

This is a meaningful deductive inference. In order to deal with inferences such 
as this, fuzzy logic allows the use of fuzzy predicates (expensive, old, rare, dan­
gerous, and so on),fuzzy quantifiers (many, few, almost all, usually, and the like), 
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fuzzy truth values (quite true, very true, more or less true, mostly false, and so 
forth), and various other kinds of fuzzy modifiers (such as likely, almost impos­
sible, or extremely unlikely). 

0.75 

0.5 

0.25 

0 

Each simple fuzzy predicate, such as 

xis P 

is represented in fuzzy logic by a fuzzy set, as described previously. Assume, for 
example, that x stands for the age of a person and that P has the meaning of 
young. Then, assuming that the universal set is the set of integers from 0 to 60 
representing different ages, the predicate may be represented by a fuzzy set whose 
membership function is shown in Fig. l .8(a). Consider now the truth value of a 
proposition obtained by a particular substitution for x into the predicate, such as 

Tina is young. 

The truth value of this proposition depends not only on the membership grade of 
Tina's age in the fuzzy set chosen to characterize the concept of a young person 
(Fig. l.8(a)) but also depends upon the strength of truth (or falsity) claimed. Ex­
amples of some possible truth claims are: 

Tina is young is true. 

Tina is young is false. 

Tina is young is fairly true. 

Tina is young is very false. 

Each of the possible truth claims is represented by an appropriate fuzzy set. All 
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Figure 1.8. Truth values of a fuzzy proposition. 
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these sets are defined on the unit interval [O, 1]. Some examples are shown in 
Fig. l.8(b), where a stands for the membership grade in the fuzzy set that rep­
resents the predicate involved and t is a common label representing each of the 
fuzzy sets in the figure that expresses truth values. Thus, in our case a = fLyoung(x) 
for each x E X. Returning now to Tina, who is 25 years old, we obtain fLyoung(25) 

.87 (Fig. l.8(a)), and the truth values of the propositions 

Tina is young is fairly true (true, very true, fairly false, 
false, very false) 

are .9 (.87, .81, .18, .13, .I), respectively. 
We may operate on fuzzy sets representing predicates with any of the basic 

fuzzy set operations of complementation, union, and intersection. Furthermore, 
these sets can be modified by special operations corresponding to linguistic terms 
such as very, extremely, more or less, quite, and so on. These terms are often 
called linguistic hedges. For example, applying the linguistic hedge very to the 
fuzzy set labeled as young in Fig. I .8(a), we obtain a new fuzzy set representing 
the concept of a very young person, which is specified in the same figure. 

In general, fuzzy quantifiers are represented in fuzzy logic by fuzzy numbers. 
These are manipulated in terms of the operations of fuzzy arithmetic, which is 
now well established. 

From this brief outline of fuzzy logic we can see that it is operationally based 
on a great variety of manipulations with fuzzy sets, through which reasoning in 
natural language is approximated. The principles underlying these manipulations 
are predominantly semantic in nature. While full coverage of these principles is 
beyond the scope of this book, Chap. 6 contains illustrations of some aspects of 
fuzzy reasoning in the context of a few specific applications. 

NOTES 

1.1. The theory of fuzzy sets was founded by Lotfi Zadeh [1965a], primarily in the context 
of his interest in the analysis of complex systems [Zadeh, 1962, 1965b, 1973]. How­
ever, some of the key ideas of the theory were envisioned by Max Black, a philos­
opher, almost 30 years prior to Zadeh's seminal paper [Black, 1937]. 

1.2. The development of fuzzy set theory since its introduction in 1965 has been dramatic. 
Thousands of publications are now available in this new area. A survey of the status 
of the theory and its applications in the late 1970s is well covered in a book by Dubois 
and Prade [1980a]. Current contributions to the theory are scattered in many journals 
and books of collected papers, but the most important source is the specialized 
journal Fuzzy Sets and Systems (North-Holland). A very comprehensive bibliog­
raphy offuzzy set theory appears in a book by Kandel [1982]. An excellent annotated 
bibliography covering the first decade of fuzzy set theory was prepared by Gaines 
and Kohout [1977]. Books by Kaufmann [1975], Zimmermann [1985], and Kandel 
[1986] are useful supplementary readings on fuzzy set theory. 

1.3. The concept of L-fuzzy sets was introduced by Goguen [1967]. A thorough inves­
tigation of properties of fuzzy sets of type 2 and higher types was done by Mizumoto 
and Tanaka [1976, 1981]. The concept of fuzzy sets of level k, which is due to Zadeh 

Chap. 1 Exercises 33 

[197lb], was investigated by Gottwald [1979]. Convex fuzzy sets were studied in 
greater detail by Lowen [1980] and Liu [1985]. 

1.4. One concept that is only mentioned in this book but not sufficiently developed is 
the concept of afuzzy number. It is a basis for fuzzy arithmetic, which can be viewed 
as an extension of interval arithmetic [Moore, 1966, 1979]. Among other applications, 
fuzzy numbers are essential for expressing fuzzy cardinalities and, consequently, 
fuzzy quantifiers [Dubois and Prade, 1985c]. Fuzzy arithmetic is thus a basic tool 
for dealing with fuzzy quantifiers in approximate reasoning; it is also a basis for 
developing afuzzy calculus [Dubois and Prade, 1982b]. We do not cover fuzzy arith­
metic, since there now exists an excellent book devoted solely to this subject [Kauf­
mann and Gupta, 1985]. 

1.5. The extension principle was introduced by Zadeh [1975b]. A further elaboration of 
the principle was presented by Yager [1986]. 

1.6. Fuzzy extensions of some mathematical subject areas are beyond the scope of this 
introductory text and are thus not covered here. They include, for example, fuzzy 
topological spaces [Chang, 1968; Wong, 1975; Lowen, 1976], fuzzy metric spaces 
[Kaleva and Seikkala, 1984], and fuzzy games [Butnariu, 1978]. 

1.7. An excellent and comprehensive survey of many-valued logics was prepared by 
Rescher [1969]; it also contains an extensive bibliography on the subject. Various 
aspects of the relationship between many-valued logics and fuzzy logic are examined 
by numerous authors, including Baldwin [1979a, b, c], Baldwin and Guild [1980a, b], 
Baldwin and Pilsworth [1980], Dubois and Prade [1979a, 1984a], Gaines [1976, 1978, 
1983], Giles [1977], Gottwald [1980], Lee and Chang [1971], Miwmoto [1981], Skala 
[1978], Turksen and Yao [1984], and White [1979]. Approximate reasoning based on 
fuzzy predicate logic is also investigated in some of these papers. Particularly good 
overview papers were prepared by Zadeh [1975c, 1984, 1985] and Gaines [1976]. 
Most aspects of approximate reasoning were developed by Zadeh [1971b, 1972, 
1975b, c, 1976, 1978b, 1983a, b, 1984, 1985], but we should also mention an early 
and important paper by Goguen [1968-69]. 

1.8. An alternative set theory, which is referred to as the theory of semisets, was proposed 
and developed by Vopenka and Hajek [1972] to represent sets with imprecise bound­
aries. Unlike fuzzy sets, however, semisets may be defined in terms of vague prop­
erties and not necessarily by explicit membership grade functions. While semisets 
are more general than fuzzy sets, they are required to be approximated by fuzzy 
sets in practical situations. The relationship between semisets and fuzzy sets is well 
characterized by Novak [1984]. The concept of semisets leads into a formulation of 
an alternative (nonstandard) set theory [Vopenka, 1979]. 

1.9. For a general background on crisp sets and classical two-valued logic, we recommend 
the book Set Theory and Related Topics by S. Lipschutz (Shaum, New York, 1964). 
The book covers all topics that are needed for this text and contains many solved 
examples. For a more advanced treatment of the topics, we recommend the book 
Set Theory and Logic by R. R. Stoll (W.R. Freeman, San Francisco, 1961). 

EXERCISES 

1.1. For each of the properties of crisp set operations listed in Table 1.1, determine 
whether the property holds for the complement, union, and intersection operations 
originally proposed for fuzzy sets. 
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1.2. Compute the scalar cardinality and the fuzzy cardinality for each of the following 
fuzzy sets: 
(a) A = .4/v + .2/w + .5/x + .4/y + l/z; 
(b) B = llx + l/y + Ilz; 

x 
(c) µc(x) = -- , x E {O, 1, 2, ... , 10}. 

x + 1 

1.3. Consider the fuzzy sets A, B, and C defined on the interval X 
numbers by the membership grade functions 

[O, 10] of real 

µc(x) = I + IO(x - 2) 2 • 

Determine mathematical formulas and graphs of the membership grade functions of 
each of the following: 
(a) A, B, C; 
(b) AU B, A UC, BU C; 
(c) A n B, A n C, B n C; 
(d) A u B u C, A n B n C; 
(e) A n C, B n C, A U C. 

1.4. Show that DeMorgan's laws are satisfied for the three pairs of fuzzy sets obtained 
from fuzzy sets A, B, and C in Exercise 1.6. 

1.5. Propose an extension of the standard fuzzy set operanons (min, max, 1 - a) to 
interval-valued fuzzy sets. 

1.6. Order the fuzzy sets defined by the following membership grade functions (assuming 
x 2:: 0) by the inclusion (subset) relation: 

1 
µA(x) = 1 + 20x ' ( 

l )112 
µs(x) = 1 + IOx ' 

1.7. Let the membership grade functions of sets A, B, and C in Exercise 1.3 be defined 
on the set X = {O, 1, ... , 10} and let f(x) = x 2 for all x E X. Use the extension 
principle to derive f(A), f(B), and f(C). 

1.8. Define a-cuts of each of the fuzzy sets defined in Exercises 1.2 and 1.3 for a = .2, 
.5, .9, 1. 

1.9. Show that all a-cuts of any fuzzy set A defined on !Rn (n 2:: 1) are convex if and only 
if 

µA[;\r + (l - ;\)s] 2:: min[µA(r), µA(s)] 

for all r, s E Wand all;\ E [O, l]. 

1.10. For each of the three-valued logics defined in Table 1.6, determine the truth values 
of each of the following logic expressions for all combinations of truth values of 
logic variables a, b, c (assume that negation a is defined by 1 - a): 
(a) (a/\b)=}c; 
(b) (a Vb)<:> (a/\ b); 
(c) (a:::;, b):::;, (c:::;, a). 

1.11. Define in the form of a table (analogous to Table 1.6) primitives,/\, V, :::;,, and<:>, 
of the Lukasiewicz logics L4 and Ls. 

1.12. Repeat the example illustrated by Fig. 1.8, which is discussed in Sec. 1.6 (Tina is 
young, and so on) for yourself. 
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Figure 1.9. Fuzzy sets for Exercise 1.13. 
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1.13. Assume four types of fuzzy predicates applicable to persons (age, height, weight, 
and level of education). Several specific fuzzy predicates for each of these types are 
represented by fuzzy sets whose membership functions are specified in Fig. 1.9. 
Apply these membership functions and the fuzzy truth values defined in Fig. l.S(b) 
to some person x (perhaps yourself) to determine the truth values of various prop­
ositions such as the following: 

x is highly educated and not very young is very true; 

xis very young, tall, not heavy, and somewhat educated is true; 
x is more or less old or highly educated is fairly true; 

xis very heavy or old or not highly educated is fairly true; 

x is short, not very young and highly educated is very true. 

In your calculations, use standard fuzzy set operators (min, max, 1 - a). 

2 

OPERATIONS ON Fuzzy SETS 

2.1 GENERAL DISCUSSION 

As mentioned in Chap. 1, the original theory of fuzzy sets was form'ulated in terms 
of the following specific operators of set complement, union, and intersection: 

f.LA(X) 

f.LAuB(x) 

f.LAnB(x) 

1 - f.LA(X), 

max[µA(x), f.LB(x)], 

min[µA(x), µB(x)]. 

(2.1) 

(2.2) 

(2.3) 

Note that when the range of membership grades is restricted to the set {O, 1}, 
these functions perform precisely as the corresponding operators for crisp sets, 
thus establishing them as clear generalizations of the latter. It is now understood, 
however, that these functions are not the only possible generalizations of the crisp 
set operators. For each of the three set operations, several different classes of 
functions, which possess appropriate axiomatic properties, have subsequently 
been proposed. This chapter contains discussions of these desirable properties 
and defines some of the different classes of functions satisfying them. 

Despite this variety of fuzzy set operators, however, the original comple­
ment, union, and intersection still possess particular significance. Each defines a 
special case within all the various classes of satisfactory functions. For instance, 
if the functions within a class are interpreted as performing union or intersection 
operations of various strengths, then the classical max union is found to be the 
strongest of these and the classical min intersection, the weakest. Furthermore, 
a particularly desirable feature of these original operators is their inherent pre­
vention of the compounding of errors of the operands. If any error e is associated 
with the membership degrees f.LA (x) and µB(x), then the maximum error associated 

37 
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with the membership grade of x in A, A U B, or A n B remains e. Many of the 
alternative fuzzy set operator functions later proposed lack this characteristic. 

Fuzzy set theory that is based on the operators given by Eqs. (2.1) through 
(2.3) is now usually referred to as possibility theory. This theory emerges, quite 
naturally, as a special case of fuzzy measures. It is covered in this latter context 
in Chap. 4. For convenience, let the operations defined by Eqs. (2.1) through 
(2.3) be called the standard operations of fuzzy set theory. 

2.2 FUZZY COMPLEMENT 

A complement of a fuzzy set A is specified by a function 

c : (0, 1] ---i> [O, 1), 

which assigns a value c(µA (x)) to each membership grade µA (x). This assigned 
value is interpreted as the membership grade of the element x in the fuzzy set 
representing the negation of the concept represented by A. Thus, if A is the fuzzy 
set of tall men, its complement is the fuzzy set of men who are not tall. Obviously, 
there are many elements that can have some nonzero degree of membership in 
both a fuzzy set and in its complement. 

In order for any function to be considered a fuzzy complement, it must satisfy 
at least the following two axiomatic requirements: 

Axiom cl. c(O) = 1 and c(l) = 0, that is, c behaves as the ordinary com­
plement for crisp sets (boundary conditions). 

Axiom c2. For all a, b E (0, 1], if a < b, then c(a) 2 c(b), that is, c is 
monotonic nonincreasing. 

Symbols a and b, which are used in Axiom c2 and the rest of this section 
as arguments of the function c, represent degrees of membership of some arbitrary 
elements of the universal set in a given fuzzy set. For example, a = µA(x) and 
b = µA(y) for some x, y EX and some fuzzy set A. 

There are many functions satisfying Axioms cl and c2. For any particular 
fuzzy set A, different fuzzy sets can be said to constitute its complement, each 
being produced by a different fuzzy complement function. In order to distinguish 
the complement resulting from the application of the classical fuzzy complement 
of Eq. (2.1) and these numerous others, the former is denoted in this text by A; 
the latter, expressed by function c, is denoted by C(A), where 

C : cjj)(X) _,, cjj)(X) 
' 

is a function such that c(µA (x)) = µqAJ(x) for all x E X. 
Given a particular fuzzy complement c, function C may conveniently be 

used as a global operator representing c. Each function C transforms a fuzzy set 
A into its complement C(A) as determined by the corresponding function c, which 
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assigns to elements of X membership grades in the complement C(A). Thus each 
fuzzy complement c implies a corresponding function C. 

All tunctions that satisfy Axioms c 1 and c2 form the most general class of 
fuzzy complements. It is rather obvious that the exclusion or weakening of either 
of these axioms would add to this class some functions totally unacceptable as 
complements. Indeed, a violation of Axiom cl would in~lude f~nctions .tha~ do 
not conform to the ordinary complement for crisp sets. Ax10m c2 is essential smce 
we intuitively expect that an increase in the degree of membership in a fuzzy set 
must result either in a decrease or, in the extreme case, in no change in the degree 
of membership in its complement. Let Axioms c 1 and c2 be called the axiomatic 

skeleton for fuzzy complements. . . 
In most cases of practical significance, it is desirable to consider vanous 

additional requirements for fuzzy complements. Each of them reduces the g~neral 
class of fuzzy complements to a special subclass. Two of the n:ost desirable 
requirements, which are usually listed in the literature among ax10ms of fuzzy 

complements, are the following: 

Axiom c3. c is a continuous function. 

Axiom c4. c is involutive, which means that c(c(a)) = a for all a E [O, l]. 

Functions that satisfy Axiom c3 form a special subclass of the general class 
of fuzzy complements; those satisfying Axiom c4 are necessaril~ co?tinuous as 
well and, therefore, form a further nested subclass, as illustrated m Fig. 2.1. The 
classical fuzzy complement given by Eq. (2.1) is contained within the class of 

involutive complements. . . 
Examples of general fuzzy complements that satisfy only the ax10mat1c skel-

eton are the threshold-type complements defined by 

{
I for a ::s t, 

c(a) = 0 for a> t, 

where a E [O, l] and t E (0, 1); t is called the threshold of c. This function is 

illustrated in Fig. 2.2(a). 
An example of a fuzzy complement that is continuous (Axiom c3) but not 

involutive (Axiom c4) is the function 

c(a) = HI + cos 7ra), 

which is illustrated in Fig. 2.2(b). The failure of this function to satisfy the property 
of involution can be seen by noting that, for example, c(.33) = .75 but c(.75) 

.15 r= .33. 
One class of involutive fuzzy complements is _the Sugeno class defined by 

1 - a 
c,..(a) = l + A.a , 

where A. E ( -1, oo). For each value of the parameter A., we obtain one particular 
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All functions c: [0, I] -+ [O, I] 

All continuous 
fuzzy complements 

(Axiom c3) 

All fuzzy 
complements 

(Axioms cl and c2) 

All involutive 
fuzzy complements 

(Axiom c4) 

Figure 2.1. Illustration of the nested subset relationship of 
the basic classes of fuzzy complements. 

Classical fuzzy 
complement 
(Eq. (2.1 )) 

Chap. 2 

involutive fuzzy complement. This class is illustrated in Fig. 2.3(a) for several 
different values of A.. Note how the shape of the function is affected as the value 
of A. is changed. For A. = 0, the function becomes the classical fuzzy complement 
defined by Eq. (2.1). 

Another example of a class of involutive fuzzy complements is defined by 

c w(a) = (1 - aw)llw' 

where w E (0, oo); let us refer to it as the Yager class offuzzy complements. Figure 
2.3(b) illustrates this class of functions for various values of w. Here again, chang­
ing the value of the parameter w results in a deformation of the shape of the 
function. When w = I, this function becomes the classical fuzzy complement of 
c(a) = 1 - a. , 

Several important properties are shared by all fuzzy complements. These 
concern the equilibrium of a fuzzy complement c, which is defined as any value 
a for which c(a) = a. In other words, the equilibrium of a complement c is that 
degree of membership in a fuzzy set A equaling the degree of membership in the 
complement C(A). For instance, the equilibrium value for the classical fuzzy 
complement given by Eq. (2.1) is .5, which is the solution of the equation 1 - a 
= a. 
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.4 

I\ 

\ 
I\ 
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.3 

.2 

.1 

I\ 

\ 
~ 

I'-. 
"'--- Figure 2.2. Examples of fuzzy com­

plements: (a) a general complement of 
O .1 .2 .3 .4 .5 .6 . 7 .8 .9 1.0 the threshold type; (b) a continuous 

a----.... fuzzy complement c(a) = Yi(I+cos 7ra). 
(b) 7Tll). 

Theorem 2.1. Every fuzzy complement has at most one equilibrium. 

Proof: Let c be an arbitrary fuzzy complement. An equilibrium of c is a 
solution of the equation 

c(a) - a = 0, 
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t 
Ci.. (a) 

0 

t 

0 
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.I .2 .3 .4 .5 .6 .7 
a-

(a) 

.1 .2 .3 .4 .5 .6 
a-

(b) 

.7 

.8 .9 1.0 

.8 .9 1.0 

Figure 2.3. Examples from two classes. of involutive fuzzy complements: (a) 
Sugeno class; (b) Yager class. 
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where a E [O, 1]. We can demonstrate that any equation c(a) - a = b, where b 
is a real constant, must have at most one solution, thus proving the theorem. In 
order to do so, we assume that a 1 and a2 are two different solutions of the equation 
c(a) - a = b such that a 1 < a 2. Then, since c(ai) - a1 = band c(a2) - az 
= b, we get 

c(ai) (2.4) 

However, because c is monotonic nonincreasing (by Axiom c2), c(ai) 2: c(a2) 
and, since a1 < az, 

This inequality contradicts Eq. (2.4), thus demonstrating that the equation must 
have at most one solution. II 

Theorem 2.2. Assume that a given fuzzy complement c has an equilibrium 
e c which by Theorem 2 .1 is unique. Then 

a :S c(a) if and only if a :S e c 

and 

a 2: c(a) if and only if a 2: ec. 

Proof: Let us assume that a< en a = ec, and a> ec, in turn. Then, since 
c is monotonic nonincreasing by Axiom c2, c(a) 2: c(ec) for a< en c(a) = c(ec) 
for a = e

0 
and c(a) :S c(ec) for a > ec. Because c(ec) = ec, we can rewrite 

these expressions as c(a) 2: en c(a) = e c, and c(a) :S e 0 respectively. In fact, 
due to our initial assumption we can further rewrite these as c(a) > a, c(a) = a, 
and c(a) <a, respectively. Thus, a :Sec implies c(a) 2: a and a 2: ec implies c(a) 
:S a. The inverse implications can be shown in a similar manner. II 

Theorem 2.3. If c is a continuous fuzzy complement, then c has a unique 
equilibrium. 

Proof: The equilibrium e c of a fuzzy complement c is the solution of the 
equation c(a) - a = 0. This is a special case of the more general equation c(a) 
- a = b, where b E [ 1, I] is a constant. By Axiom cl, c(O) - 0 = 1 and c(l) 
- 1 = - 1. Since c is a continuous complement, it follows from the intermediate 
value theorem for continuous functions* that for each b E [ - 1, 1], there exists 
at least one a such that c(a) - a = b. This demonstrates the necessary existence 
of an equilibrium value for a continuous function, and Theorem 2.1 guarantees 
its uniqueness. II 

* See, for example, Mathematical Analysis (second ed.), by T. M. Apostol, Addison-Wesley, 

Reading, Mass., 1974, p. 85. 
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The equilibrium for each individual fuzzy complement c'- of the Sugeno class 
is given by 

~-1 
for A. #- 0, 

1 for A. = 0 ( = lim -~-l_+_A._-_l) 
A-i>O A 

-
2 

This is clearly obtained by selecting the positive solution of the equation 

1 - ec, 
1 + A.ec, = ec,· 

The dependence of the equilibrium e c, on the parameter A. is shown in Fig. 2.4. 
If we are given a fuzzy complement c and a membership grade whose value 

is represented by a real number a E [O, l], then any membership grade represented 
by the real number da E [0, I] such that 

(2.5) 

is called a dual point of a with respect to c. 
It follows directly from the proof of Theorem 2.1 that Eq. (2.5) has at most 

one solution for da given c and a. There is, therefore, at most one dual point for 
each particular fuzzy complement c and membership grade of value a. Moreover, 
it follows from the proof of Theorem 2.3 that a dual point exists for each a E [O, 1] 
when c is a continuous complement. 

t 
e,, 

1.0 

.9 

. 8 \ 

.7 

.6 

.5 

.4 

. 3 

.2 

.1 

0 
-1 

\ 
\ 
"'-

- --- ·-· 

' 

~ 
----~ 

0 2 3 4 

Figure 2.4. Equilibria for the Sugeno class of fuzzy complements. 
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Theorem 2.4. If a complement c has an equilibrium e c, then 

Proof: If a = e,, then by our definition of equilibrium, c(a) = a and thus 
a - c(a) = 0. Additionally, if d a = e °' then c(d a) = d a and c(d a) - d a = 0. 
Therefore, 

c(da) - da = a - c(a). 

This satisfies Eq. (2.5) when a = da = e,. Hence, the equilibrium of any com­
plement is its own dual point. 1111 

Theorem 2.5. For each a E [0, 1], da = c(a) if and only if c(c(a)) = a, 

that is, when the complement is involutive. 

Proof: Let da = c(a). Then, substitution of c(a) for da in Eq. (2.5) produces 

c(c(a)) - c(a) = a - c(a). 

Therefore, c(c(a)) = a. For the reverse implication, let c(c(a)) = a. Then, sub­
stitution of c(c(a)) for a in Eq. (2.5) yields 

c(da) - da = c(c(a)) - c(a). 

Because d a can be substituted for c(a) everywhere in this equation to yield a 
tautology, da = c(a). Ill 

Thus, the dual point of any membership grade is equal to its complemented 
value whenever the complement is involutive. If the complement is not involutive, 
then either the dual point does not exist or it does not coincide with the comple­
ment point. 

These results associated with the concepts of the equilibrium and the dual 
point of a fuzzy complement are referenced in the discussion of measures of 
fuzziness contained in Chap. 5 . 

~ FUZZY UNION 

The union of two fuzzy sets A and B is specified in general by a function of the 
form 

u : [O, 1] x [O, 1] ~ [O, 1] . 

For each element x in the universal set, this function takes as its argument the 
pair consisting of the element's membership grades in set A and in set B and yields 
the membership grade of the element in the set constituting the union of A and 
B. Thus, 

µAuB(x) = u[µA(x), µB(x)]. 

In order for any function of this form to qualify as a fuzzy union, it must 
satisfy at least the following axioms: 
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Axiom ul. u(O, 0) = O; u(O, 1) = u(l, 0) = u(l, 1) = 1; that is, u behaves 
as the classical union with crisp sets (boundary conditions). 

Axiom u2. u(a, b) = u(b, a); that is, u is commutative. 

Axiom u3. If a ::s a' and b ::s b', then u(a, b) ::s u(a', b'); that is, u is 
monotonic. 

Axiom u4. u(u(a, b), c) = u(a, u(b, c)); that is, u is associative. 

Let us call this set of axioms the axiomatic skeleton for fuzzy set unions. 
The first axiom insures that the function will define an operation that gen­

eralizes the classical crisp set union. The second axiom of commutativity (or 
symmetry) indicates indifference to the order in which the sets to be combined 
are considered. The third axiom is the natural requirement that a decrease in the 
degree of membership in set A or set B cannot produce an increase in the degree 
of membership in A U B. Finally, the fourth axiom of associativity ensures that 
we can take the union of any number of sets in any order of pairwise grouping 
desired; this axiom allows us to extend the operation of fuzzy set union to more 
than two sets. 

It is often desirable to restrict the class of fuzzy unions by considering var­
ious additional requirements. Two of the most important requirements are ex­
pressed by the following axioms: 

Axiom u5. u is a continuous function. 

Axiom u6. u(a, a) = a; that is, u is idempotent. 

The axiom of continuity prevents a situation in which a very small increase 
in the membership grade in either set A or set B produces a large change in the 
membership grade in A U B. Axiom u6 insures that the union of any set with 
itself yields precisely the same set. 

Several classes of functions have been proposed whose individual members 
satisfy all the axiomatic requirements for the fuzzy union and neither, one, or 
both of the optional axioms. One of these classes of fuzzy unions is known as the 
Yager class and is defined by the function 

Uw(a, b) = min(l, (aw + bw)llw], (2.6) 

where values of the parameter w lie within the open interval (0, oo). This class of 
functions satisfies Axioms ul through u5, but these functions are not, in general, 
idempotent. Special functions within this class are formed when certain values 
are chosen for the parameter w. For instance, for w = 1, the function becomes 

u 1(a, b) = min[l, a + b]; 

for w = 2, we obtain 

u2(a, b) = min[l, \la2 + b2]. 
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Since it is not obvious what form the function uw given by Eq. (2.6) takes 
for w ~ oo, we use the following theorem. 

Theorem 2.6. Lim min[l, (aw + bw) 11w] = max(a, b). 

Proof: The theorem is obvious whenever (1) a or b equal 0, or (2) a = b, 
because the limit of 211w as w ~ oo equals 1. If a =F b and the min equals 
(aw + b w) 1/w' the proof reduces to the demonstration that 

lim (aw + bw)llw = max(a, b). 

Let us assume, with no loss of generality, that a< b, and let Q = (aw + bw)vw. 

Then 
ln(aw + bw) 

limlnQ=lim . 
~00 ~00 w 

Using l'Hospital's rule, we obtain 

Hence, 

aw In a + b w In b 
~In Q = ~ aw + bw 

_ . (alb )w ln a + ln b = In b 
- ~ (a/b)w + 1 . 

lim Q = lim(aw + bw)llw = b (=max(a, b)). 
~00 ~00 

It remains to show that the theorem is still valid when the min equals 1. In this 

case, 

or 
aw + bw;::: 1 

for all w E (0, oo). When w ~ oo, the last inequality holds if a = 1 orb = 1 (since 
a, b E [O, l]). Hence, the theorem is again satisfied. Ill 

The various functions of the Yager class, which are defined by di~ferent 
choices of the parameter w, can be interpreted as performing union operat10ns of 
various strengths. Table 2.l(a) illustrates how the values produced by the Yager 
functions for fuzzy unions decrease as the value of w increases. I~ .fact, we m~y 
interpret the value llw as indicating the degree. of interc~angeab1hty present m 
the union operation uw. The notion of the set um on ope:~t10n corresponds to the 
logical OR (disjunction), in which some interchangeab1hty bet"."een the two ar­
guments of the statement "A or B" is assumed. Thus, the umon of two fuzzy 
sets young and tall would represent the concept young or tall. With the Yager 
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TABLE 2.1. EXAMPLES OF FUZZY SET OPERATIONS FROM THE YAGER CLASS. 

b = 0 

a = I 1 

.75 .75 

. 5 .5 

.25 .25 

0 0 

b = 0 

a = 1 1 

.75 .75 

.5 .5 

.25 .25 

0 0 

b = 0 

a = I 0 

.75 0 

.5 0 

.25 0 

0 0 

b = 0 

a = I 0 

.75 0 

.5 0 

.25 0 

0 0 

.25 .5 .75 

I I I 

I 1 I 

.75 1 I 

.5 .75 1 

.25 .5 .75 

w = I (soft) 

.25 .5 .75 

1 1 1 

.75 .75 .8 

.5 .54 .75 

.27 .5 .75 

.25 .5 .75 

w = 10 

(a) Fuzzy unions 
I b = 0 

I 

1 

1 

I 

I 

a = 1 

.75 

.5 

.25 

0 

I 

.75 

.5 

.25 

0 

b = 0 

1 a = 1 I 

I .75 .75 

I .5 .5 

1 .25 .25 

1 0 0 

(b) Fuzzy intersections 

.25 .5 .75 b = 0 

.25 .5 .75 I a 0 

0 .25 .5 .75 .75 0 

0 0 .25 .5 .5 0 

0 0 0 .25 .25 0 

0 0 0 0 0 0 

w = I (strong) 

.25 .5 .75 b = 0 

.25 .5 .75 I a = I 0 

.25 .5 .73 .75 .75 0 

.25 .46 .5 .5 .5 0 

.20 .25 .25 .25 .25 0 

0 0 0 0 0 0 

w = 10 

.25 .5 .75 

I I 1 I 

.79 .9 I 1 

.56 .71 .9 1 

.35 .56 .79 1 

.25 .5 .75 I 

w=2 

.25 .5 .75 

1 1 1 1 

.75 .75 .75 I 

.5 .5 .75 I 

.25 .5 .75 I 

.25 .5 .75 I 

w -? oo (hard) 

.25 .5 .75 

.25 .5 .75 I 

.21 .44 .65 .75 

.I .29 .44 .5 

0 . I .21 .25 

0 0 0 0 

w = 2 

.25 .5 .75 

.25 .5 .75 I 

.25 .5 .75 .75 

.25 .5 .5 .5 

.25 .25 .25 .25 

0 0 0 0 

w-? oo (weak) 
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fuzzy union for which w = 1, the membership grades in the two sets are summed 
to produce the membership grade in their union. Therefore, this union is very 
soft and indicates perfect interchangeability between the two arguments. On the 
other hand, the Yager function for which w ___.,, oo (the classical fuzzy union) per­
forms a very hard OR by selecting the largest degree of membership in either set. 
In this sense, then, the functions of the Yager class perform a union operation, 
which increases in strength as the value of the parameter w increases . 

Some other proposed classes of fuzzy set unions along with the correspond­
ing class of fuzzy set intersections are given in Table 2.2. They are identified by 
the names of their originators and the date of the publication in which they were 
introduced. While we do not deem it essential to examine all these various classes 
in this text, the information provided in Note 2.7 is sufficient to allow the reader 
to pursue such an examination. 

2.4 FUZZY INTERSECTION 

The discussion of fuzzy intersection closely parallels that of fuzzy union. Like 
fuzzy union, the general fuzzy intersection of two fuzzy sets A and B is specified 
by a function 

i : [0, 1] x [O, 1] ___.,, [O, l]. 

The argument to this function is the pair consisting of the membership grade of 
some element x in fuzzy set A and the membership grade of that same element 
in fuzzy set B. The function returns the membership grade of the element in the 
set A n B. Thus, 

µAnB(x) = i[µA(x), µB(x)]. 

A function of this form must satisfy the following axioms in order to be 
considered a fuzzy intersection: 

Axiomil. i(l, I)= l;i(O, 1) = i(l,0) = i(O,O) = O;thatis,ibehavesas 
the classical intersection with crisp sets (boundary conditions). 

Axiom i2. i(a, b) = i(b, a); that is, i is commutative. 

Axiomi3. If a::::; a' andb::::; b', theni(a, b)::::; i(a', b'); that is, iis monotonic. 

Axiom i4. i(i(a, b), c) = i(a, i(b, c)), that is, i is associative. 

The justification for these essential axioms (the axiomatic skeleton for fuzzy set 
intersections) is similar to that given in the previous section for the required 
axioms of fuzzy union. 

The most important additional requirements for fuzzy set intersections, 
which are desirable in certain applications, are expressed by the following two 
ax10ms: 



50 

(j) 
z 
0 
i== 
() 
UJ 
(j) 
a: 
UJ 
f-
~ 
0 z 
<( 
(j) 
z 
0 z 
:::> 
f­
UJ 
(j) 

>-
~ 
:::> 
LL 
LL 
0 
(j) 
UJ 
(j) 
(j) 
<( 
...J 
() 

UJ 
:2: 
0 
(j) 

<...., ... 
o2 

"' ~a 
i:: ro ro ,,. 
0:: & 

"' i:: 
0 
'fj 
"' "' ... 
"' E ->, 
N 
N 
;:l 

µ;,. 

"' i:: 
0 ·a 
::i 
>, 
N 
N 
;:l 

µ;,. 

"' (,) 

i:: 

"' ... 
<-8 
"' 0:: 

8 . 
8 
I 
~ 

w 

<:>. 

g 
I 
~ 

I 

" I 
-t:> 

+ 
" I 
<:: 

0 
~ ro a 

g 
~ 

I 

" I 

~ 
I -~ 
+ 
" I 

~ 
I -~ 

o· 
'R' ro a 
I 

-
~ 

Cd ~ 
... 0\ 

"'::::. N ... 'ii) ro 
:s :2 
-B [/) 
[/) 

8 8 8 
8 8 8 
w w w 

?- "' "' 
f 

~ i:::::-' [ 
..0 <:: 

I 
I I 

"" - --t:> ~ ~ 

I + ;'.:;' + 
"' -t:> ~ I " <:: '2 ;;:: 0 

~ I 
I + :::, -~ - . 
+ '-----' t=' on ?- .s '§ 

I -
i:::::-' 

I 

"" I 
-t:> ~ - f <:: 
~-t:> I 
?- <:: ;'.:;' 

~ I ;;:: "' I 
t!, I , + 

I ? 
I :::, 

~ ~ 
-t:> I . 

+ + - t=' 
<:: - '§ '-----' 

on .s 
I 

-

0:: 0 ... I'- 00 

"' 0\ 0\ 
..o~ ::::. (,) 00 
ro t-- ..:..: ... a ;::::: i:: "' ro ~ ro bl) 

::i:: 
... ro 

µ;,. >-< 

~ 8 -
8 8 
w w 

<:J -< 

~ 
,-----, 
.< 
~ -

I 

~ 
-1-t:i 
'---" 

..0 
..0 ro· + 
ro -~ .< 

ro ~ a -
I 

-1 <:! 
'---" 
'-----' 

+ -

iS 
'2 

I 
,-----, 
.< 

I I 

'2 ~ - -..<:) ..<:) I 

~ I -1-t:i 
i:: '---" 
'§ -

<:i' - + 
I .< 

I I 
-t:> ~ 

<:: 
~ -

I ro I 
-t:> a -1 <:! 

+ '---" 
'-----' 

<:: + -
"' "O r: 'N a... 00 

O(l ~ 
0\ 
::::. 

"'0 
·- 00 :.0 0 0\ a ..o-
;:i~ 0 

Cl Cl 

Sec. 2.4 Fuzzy Intersection 
51 

Axiom i5. i is a continuous function. 

Axiom i6. i(a, a) = a; that is, i is idempotent. 

The implications of these two properties for fuzzy intersection operations are 
basically the same as those given in the previous section for fuzzy unions. 

Some of the classes of functions that satisfy Axioms i l through i4 are shown 
in Table 2.2. Let us examine one of these-the Yager class, which is defined by 

the function 
(2.7) 

where values of the parameter w lie in the open interval (0, oo) . 
For each value of the parameter w, we obtain one particular fuzzy set in­

tersection. Like the Yager class of fuzzy unions, all the functions of this class 
are continuous but most are not idempotent. For w = 1, the function of Eq. (2.7) 

is defined by 

i1(a, b) = I - min[l, 2 - a - b]; 

for w 2, we obtain 

i2(a, b) = 1 - min[l, \1(1 - a)2 + (1 - b)
2
]; 

similar values are obtained for other finite values of w. For w ___,.to, the form of 
the function given by Eq. (2.7) is not obvious and, therefore, we employ the 

following theorem. 

Theorem 2. 7. Lim i w 

min(a, b). 

Proof: From the proof of Theorem 2.6, we know that 

lim min[l, [(1 - a)w + (1 - b)w]llw] = max[l - a, 1 - b]. 
w->OO 

ThusJ,,(a,b) = 1- max[l - a, 1 - b].Letusassume,withnolossofgenerality, 

that a s b. Then, 1 - a 2: 1 - b and 

ioo(a, b) = 1 - (1 - a) = a. 

Hence, ioo(a, b) = min(a, b), which concludes the proof. Ill 

As is the case with the functions in the Yager class of fuzzy unions, the 
choice of the parameter w determines the strength of the intersection operations 
performed by the Yager functions of Eq. (2.7). Table 2. l(b) illustrates the in­
creasing values returned by the Yager intersections as the value of the parameter 
w increases. Thus, the value Ilw can be interpreted as the degree of strength of 
the intersection performed. Since the intersection is analogous to the logical AND 
(conjuction), it generally demands simultaneous satisfaction of the operands of A 
and B. The Yager intersection for which w = 1 returns a positive value only when 
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the summation of the membership grades in the two sets exceeds 1. Thus, it 
performs a hard intersection with the strongest demand for simultaneous set mem­
bership. In contrast to this, the Yager function for which w ~ oo, which is the 
classical fuzzy set intersection, performs a soft intersection that allows the lowest 
degree of membership in either set to dictate the degree of membership in their 
intersection. In effect then, this operation shows the least demand for simultane­
ous set membership. 

2.5 COMBINATIONS OF OPERATIONS 

It is known that fuzzy set unions that satisfy the axiomatic skeleton (Axioms ul 
through u4 given in Sec. 2.3) are bounded by the inequalities 

where 

max( a, b) :S u(a, b) :S Umax(a, b ), 

{

a when b = 0, 
UmaxCa, b) = b when a = 0, 

I otherwise. 

(2.8) 

Similarly, fuzzy set intersections that satisfy Axioms i 1 through i4 (given in Sec. 
2.4) are bounded by the inequalities 

where 

imin(a, b) :S i(a, b) :S min(a, b), 

{

a when b = I, 
imin(a, b) = b when a = 1, 

0 otherwise. 

(2.9) 

The inequalities u(a, b) 2: max(a, b) and i(a, b):::; min(a, b) are often used 
as axioms for fuzzy unions and intersections, respectively, instead of the axioms 
of associativity. However, these inqualities as well as those for Umax and imin can 
be derived from our axioms as shown in the following four theorems. 

Theorem 2.8. For all a, b E [O, 1], u(a, b) 2: max(a, b). 

Proof: Using associativity (Axiom u4), the equation 

u(a, u(O, 0)) = u(u(a, 0), 0) 

is valid. By applying the boundary condition u(O, 0) 
rewrite this equation as 

u(a, 0) = u(u(a, 0), 0). 

0 (Axiom ul), we can 

Assume now that the solution of this equation is u(a, 0) = a # a. Substitution 
of a for u(a, O) in the equation yields a = u(a, 0), which contradicts our as-
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sumption. Hence, the only solution of the equation is u(a, 0) 
monotonicity of u (Axiom u3), we have 

u(a, b) 2: u(a, O) = a, 

and, by employing commutativity (Axiom u2), we also have 

u(a, b) = u(b, a) 2: u(b, O) = b. 

Hence, u(a, b) 2: max(a, b). II 

Theorem 2.9. For all a, b E [0, I], u(a, b) :S Umax(a, b). 
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a. Now, by 

Proof: When b = o, then u(a, b) = ~ ~see the proof of Theorem 2.8) _and 
the theorem holds. Similarly, by commutativity, when a = 0, then u(a, b) - b, 
and the theorem again holds. Since u(a, b) E [O, 1], it follows from Theorem 2.8 
that u(a, 1) u(l, b) 1. Now, by monotonicity we have 

u(a, b) :S u(a, 1) = u(l, b) = 1. 

This concludes the proof. Ill 

Theorem 2.10. For all a, b E [O, l], i(a, b) :S min(a, b). 

Proof: The proof of this theorem is similar to that of Theorem 2.8. First, we 

form the equation · 

i(a, i(l, 1)) = i(i(a, 1), 1) 

based on the associativity of i. Then, using the boundary condition i(l, 1) 

we rewrite the equation as 

i(a, 1) = i(i(a, 1), 1). 

1, 

·The only solution of this equation is i(a, 1) = a. Then, by monotonicity we have 

i(a, b) :S i(a, 1) = a, 

and by commutativity 

i(a, b) = i(b, a) :S i(b, 1) 

which completes the proof. 111 

b, 

Theorem 2.11. For all a, b E [O, 1], i(a, b) 2: imin(a, b). 

Proof: The proof is analogous to the proof of Theorem 2.9. W?en b. '°'. 1, 
then i(a, b) = a (see the proof of Theorem 2.10) a~d the theorem is satisfied. 
Similarly, commutativity ensures that when a = 1, z(a, b) = b ~nd the ~h~orem 
holds. Since i(a, b) E [O, 1], it follows from Theorem 2.10 that z(a, O) - z(O, b) 

= 0. By monotonicity, 

i(a, b) 2 i(O, b) 

and the proof is complete. 11 

i(a, 0) = 0 
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. We can see that the standard max and min operations have a special sig-
mfica~ce: they represent, respectively, the lower bound of functions u (the strong­
est umon) and the upper bound of functions i (the weakest intersection). Of all 
the possible pairs offuzzy set unions and intersections, the max and min functions 
are closest to each other. That is, for all a, b E [0, 1], the inequality 

max(a, b) - min(a, b) = I a - b I :-::; u(a, b) - i(a, b) 

is ~atisfied. for any .arbitrary pair of functions u and i that qualify as a fuzzy set 
umon and mtersect10n, respectively. The standard max and min operations there­
fore represent an extreme pair of all the possible pairs of fuzzy unions and in­
tersections. Moreover, the functions of max and min are related to each other by 
DeMorgan's laws based on the standard complement c(a) = I - a, that is, 

max(a, b) = I - min(l - a, I - b), 

min(a, b) = 1 - max(l - a, 1 - b). 

1:he operations Umax and imin represent another pair of a fuzzy union and a 
~uzzy 1?tersection which is extreme in the sense that for all a, b E [0, 1], the 
mequahty 

Umax(a, b) - im;n(a, b) 2: u(a, b) - i(a, b) 

~s satisfied fo~ any arbitrary pair of fuzzy unions u and fuzzy intersections i.'As 
~s the case with the standard max and min operations, the operations Umax and 
!min are related to each other by DeMorgan's laws under the standard complement 
that is, ' 

Umax(a, b) = - iminO - a, I - b), 

imin(a, b) = - UmaxO - a, I - b). 

The Yager class of fuzzy unions and intersections, discussed in Secs. 2.3 
and 2.4, covers the entire range of these operations as given by inequalities (2.8) 
and (2.9). The standard max and min operations are represented by w-? oo, and 
the Umax and imin operations at the other extreme are represented by w -? O. Of 
~he other classes of operations listed in Table 2.2, the full range of these operations 
1s covered only by the Schweizer and Sklar class (with p -? oo for the standard 
operations and p -? - oo for the other extreme) and by the Dombi class (with 
X.-? 00 representing the standard operations and X.-? 0 the other extreme). 

!he standard max and min operations are additionally significant in that they 
constitute the only fuzzy union and intersection operators that are continuous 
and idempotent. We express this fact by the following two theorems. 

Theore~ 2.~2. u(a, b) = ma~(a, b) is the only continuous and idempotent 
fuzzy set umon (1.e., the only function that satisfies Axioms ul through u6). 

Proof: By associativity, we can form the equation 

u(a, u(a, b)) = u(u(a, a), b). 
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The application of idempotency (Axiom u6) allows us to replace u(a, a) in this 

equation with a and thus to obtain /fA 
u(a, (u(a, b))) = (f)a, b). 

Similarly, 

u(u(a, b), b) = u(a, u(b, b)) u(a, b). 

Hence, 

u(a, u(a, b)) u(u(a, b), b) 

or, by commutativity, 

u(a, u(a, b)) = u(b, u(a, b)). (2.10) 

When a = b, idempotency is applicable and Eq. (2.10) is satisfied. Let a < band 
assume that u(a, b) = a, where a#- a and a#- b. Then, Eq. (2.10) becomes 

u(a, a) = u(b, a). 

Since u is continuous (Axiom u5) and monotonic nondecreasing (Axiom u3) with 
u(O, a) = a and u(l, a) = 1 (as determined in proofs of Theorems 2.8 and 2.9, 
respectively), there exists a pair a, b E [0, l] such that 

u(a, a) < u(b, a) 

and, consequently, the assumption is not warranted.* Assume now. that u(a, b) 
= a = min(a, b). This assumption is also unacceptable, since it vioiates the 
boundary conditions (Axiom u I) when a = 0 and b = l. The final possibility is 
to consider u(a, b) = b = max(a, b ). In this case, the boundary conditions are 
satisfied and Eq. (2.10) becomes 

u(a, b) = u(b, b); 

that is, it is satisfied for all a < b. Because of commutativity, the same argument 
can be repeated for a > b. Hence, max is the only function that satisfies Axioms 

u I through u6. • 

Theorem 2.13. i(a, b) = min(a, b) is the only continuous and idempotent 
fuzzy set intersection (i .e., the only function that satisfies Axioms il through i6). 

. Proof: This theorem can be proven in exactly the same way as Theorem 
2.12 by replacing function u with function i and by applying Axioms i 1 through 
i6 instead of Axioms ul through u6. The counterpart of Eq. (2.10) is 

i(a, i(a, b)) = i(b, i(a, b)). 

We use the same reasoning as in the proof of Theorem 2.8, albeit with different 
boundary conditions (Axiom it instead of Axiom ul) to conclude that i(a, b) 

min(a, b) is the only solution of this equation. • 

* This is a consequence of the intermediate value theorem for continuous functions . 
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The operations of complement, union, and intersection defined on crisp sub­
sets of X form a Boolean lattice on the power set \J(X), as explained in Sec. 1.5; 
they possess the properties listed in Table 1. I (or, in the abstracted form, in Table 
1.4). The various fuzzy counterparts of these operations are defined on the power 
set e7> (X)-the set of all fuzzy subsets of X. It is known that every possible selection 
of these three fuzzy operations violates some properties of the Boolean lattice on 
\J(X). Different selected operations, however, may violate different properties of 
the Boolean lattice. Let us examine some possibilities. 

It can be easily verified that the standard fuzzy operations satisfy all the 
properties of the Boolean lattice except the law of excluded middle A U A = X 
and the law of contradiction A n A = 0. These operations are said to form a 
pseudo-complemented distributive lattice on e7>(X). We know from Theorems 2.12 
and 2.13 that the max and min operations are the only operations of fuzzy union 
and intersection that are idempotent. This means, in turn, that none of the other 
possible operations offuzzy unions and intersections form a lattice on e7> (X). Some 
of them, however, satisfy the law of excluded middle and the law of contradiction, 
which for fuzzy sets have the form 

u(a, c(a)) = I and i(a, c(a)) = 0 

for all a E [0, I]. These latter operations are characterized by the following 
theorem. 

Theorem 2.14. Fuzzy set operations of union, intersection, and continuous 
complement that satisfy the law of excluded middle and the law of contradiction 
are not idempotent or distributive. 

Proof: Since the standard operations do not satisfy the two laws of excluded 
middle and of contradiction and, by Theorems 2.12 and 2.13, they are the only 
operations that are idempotent, operations that do satisfy these laws cannot be 
idempotent. Next, we must prove that these operations do not satisfy the dis­
tributive laws, 

u(a, i(b, d)) i(u(a, b), u(a, d)) (2.11) 

and 

i(a, u(b, d)) = u(i(a, b), i(a, d)). (2.12) 

Let e denote the equilibrium of the complement c involved, that is, c(e) = e. 
Then, from the law of excluded middle, we obtain 

u(e, c(e)) = u(e, e) = 1; 

similarly, from the law of contradiction, 

i(e, c(e)) = i(e, e) = 0. 

Then, by applying e to the left hand side of Eq. (2 .11), we obtain 

u(e, i(e, e)) = u(e, 0). 
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we observe that e is neither 0 nor 1 because of the requirement that c(O)( = ~ 
and c(l) = o (Axiom cl). By Theorem 2.8 and Theorem 2.9, we have u e, 

= e and, consequently, 

u(e, i(e, e)) = e (""' 1). 

Now we apply e to the right hand side of Eq. (2.11) to obtain 

i(u(e, e), u(e, e)) = i(l, 1) = l. 

This demonstrates that the distributive law (2.11) is violated. 
2 10 Let us now apply e to the second distributive law (2.12). By Theorems · 

and 2.11, we obtain 

i(e, u(e, e)) i(e, 1) e (""' 0), 

and 
u(i(e, e), i(e, e)) = u(O, 0) = 0, 

which demonstrates that Eq. (2.12) is not satisfied. This completes the proof. • 
It follows from Theorem 2.14 that we may' if it is des.ired, preserve ~he law 

of excluded middle and the law of contradiction in our chm~e o~ ~uzzy umon and 
intersection operations by sacrificing idempoten_cy ~nd distnb~trv1ty · ~he reverse 
is also true. The context of each particular apphcat10n determmes which of these 

options is preferable. · f th 
It is trivial to verify that Umax• imin• and the standard complement ~atts_ Y e 

law of excluded middle and the law of contradiction. Another combmat10n of 

operations of this type is the following: 

u(a, b) = min(l, a + b), 

i(a, b) = max(O, a + b - 1), 

c(a) = 1 - a. 

As previously mentioned, these operations do not fo~~ a lattic~ on ~(~). ble to 
Given two of the three operations u, i, and c, it is sometimes es1ra_ f d 

determine the third operation in such a way ~hat DeMorgan's laws are satts te · 
This amounts to solving the functional equat10n 

c(u(a, b)) = i(c(a), c(b)) (2.13) 

with respect to the unknown operation. When c is continuous and involutive, we 

have 
u(a, b) = c[i(c(a), c(b))] (2.14) 

and 

i(a, b) c[u(c(a), c(b))]. (2.15) 
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Example 2.1. 

Given u(a, b) = max(a, b) and c(a) = (1 - a 2)112 , determine i such that DeMorgan's 
laws are satisfied. Employing Eq. (2.15), we obtain 

i(a, b) = (I _ u2[(1 _ a2)112, (1 _ b2)112])112 

= (I _ max2[(1 _ a2)112, (1 _ b2)112])112. 

Solving Eq. (2.13) for c is more difficult and may result in'more than one 
solution. For example, if the standard max and min operations are employed for 
u and i, respectively, then every involutive complement satisfies the equation. 
Hence, max, min, and any of the Sugeno complements (or Yager complements) 
defined in Sec. 2.2 satisfy DeMorgan's laws. 

For the sake of simplicity, we have omitted an examination of the properties 
of one operation that is important in fuzzy logic-fuzzy implication, :::}. This 
operation can be expressed in terms of fuzzy disjunction, V, fuzzy conjunction, 
/\, and negation, -, by using the equivalences 

a :::} b = a v b or a :::} b = a /\ b. 

By employing the correspondences between logic operations and set operations 
defined in Table 1.5, the equivalences just given can be fully studied in terms of 
the functions 

u(c(a), b) or c(i(a, c(b))). 

Different fuzzy implications are obtained when different fuzzy complements c and 
either different fuzzy unions u or different fuzzy intersections i are used. 

2.6 GENERAL AGGREGATION OPERATIONS 

Aggregation operations on fuzzy sets are operations by which several fuzzy sets 
are combined to produce a single set. In general, any aggregation operation is 
defined by a function 

h : [O, l]n ~ [O, I] 

for some n 2:: 2. When applied ton fuzzy sets A 1 , A 2 , ••• , An defined on X, h 
produces an aggregate fuzzy set A by operating on the membership grades of each 
x E X in the aggregated sets. Thus, 

fLA(x) = h(µA,(x), fLA2(X), ... ' fLA,,(x)) 

for each x E X. 

In order to qualify as an aggregation function, h must satisfy at least the 
following two axiomatic requirements, which express the essence of the notion 
of aggregation: 

Axiom hl. h(O, 0, ... , 0) 
conditions). 

0 and h (1, 1 , . . . , 1) I (boundary 
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Axiom h2. For any pair (ai / i E Nn) and (bi / i E Nn), where ai E [O, 1] and 
bi E [O, 1], if a; 2:: bi for all i E Nn, then h(a; Ii E Nn) 2:: h(bi / i E Nn), that is, h 
is monotonic nondecreasing in all its arguments. 

Two additional axioms are usually employed to characterize aggregation 
operations despite the fact that they are not essential: 

Axiom h3. h is a continuous function. 

Axiom h4. h is a symmetric function in all its arguments, that is, 

h(ai / i E Nn) = h(ap(i) / i E Nn) 

for any permutation p on Nn. 

Axiom h3 guarantees that an infinitesimal variation in any argument of h 
does not produce a noticeable change in the aggregate. Axiom h4 reflects the 
usual assumption that the aggregated sets are equally important. If this assumption 
is not warranted in some application context, the symmetry axiom must be 
dropped. 

We can easily see that fuzzy unions and intersections qualify as aggregation 
operations on fuzzy sets. Although they are defined for only two arguments, their 
property of associativity guaranteed by Axioms u4 and i4 provides a mechanism 
for extending their definition to any number of arguments. Hence, fuzzy unions 
and intersections can be viewed as special aggregation operations that are sym­
metric, usually continuous, and required to satisfy some additional boundary con­
ditions. As a result of these additional requirements, fuzzy unions and intersec­
tions can produce only aggregates that are subject to restrictions (2.8) and (2.9). 
In particular, they do not produce any aggregates of a 1, az, . .. , an that produce 
values between min(a 1, a 2 , ••• , an) and max(a 1, a2 , ••. , an). Aggregates that 
are not restricted in this way are, however, allowed by Axioms hi through h4; 
operations that produce them are usually called averaging operations. 

Averaging operations are therefore aggregation operations for which 

min(a1, az, ... 'an) :S h(a1, az, ... , an) :S max(a1, az, ... 'an). (2.16) 

In other words, the standard max and min operations represent boundaries be­
tween the averaging operations and the fuzzy unions and intersections, 
respectively. 

One class of averaging operations that covers the entire interval between 
the min and max operations consists of generalized means. These are defined by 
the formula 

(
al + a2 + .. · + a~) i1cx 

hu(a1, az, ... 'an)= n ' (2.17) 

where a E IR (a ~ 0) is a parameter by which different means are distinguished. 
Function ha clearly satisfies Axioms hl through h4 and, consequently, it 

represents a parameterized class of continuous and symmetric aggregation op-
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erations. It also satisfies the inequalities (2.16) for all a E IR, with its lower bound 

h-oo(a1, az, ... , an)= min(a1, az, ... 'an) 

and its upper bound 

hoo(a1, az, ... , an) = max(a 1, a2, ... , an). 

For f~xed arguments, function hex is monotonic increasing with a. For a_,, o, the 
function hex becomes the geometric mean 

ho(a1' az, ... 'an) = (a1 . az ... an) 11n; 

furthermore, 

n 

+ + 

is the harmonic mean and 

is the arithmetic mean. 

Since it is not obvious that ha represents the geometric mean for a_,, o we 
use the following theorem. ' 

Theorem 2.15. Let hex be given by Eq. (2.17). Then, 

lim ha = (a1 . az ... an) 11n. 
ex->0 

Proof: First, we determine 

l. I h 1· ln(al + a2 + + a~) - In n Im n ex = Im ----:---=-------.:~:____:.::._:_: 
a-,;.Q U-?Q U 

Using !'Hospital's rule, we now have 

lim In hex lim al In a1 + a2 ln az + ... + a~ In an 
a->0 a->0 al + a2 + ... + a~ 

In a I + In az + ... + ln an 
= ln(a I . az ... an)lln. n 

Hence, 

lim hex= (a1 · az ... an) 11n. Ill 
a->0 

When it is desirable to accommodate variations in the importance of individual 
aggregated sets, the function ha can be generalized into weighted generalized 
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means, as defined by the formula 

( 

n ) Ila 
hex(a1, az, ... , an; W1, W2, ... , Wn) = .2: W;a/ , 

1~1 

(2.18) 

where w; 2: 0 (i E Nn) are weights that express the relative importance of the 
aggregated sets; it is required that 

n 

2: W; = 1. 
i=1 

The weighted means are obviously not symmetric. For fixed arguments and 
weights, the function ha given by Eq. (2.18) is monotonic increasing with a. 

The full scope of fuzzy aggregation operations is summarized in Fig. 2.5. 
Included in this diagram are only the generalized means, which cover the entire 
range of averaging operators, and those parameterized classes of fuzzy unions 
and intersections given in Table 2.2 that cover the full ranges specified by the 
inequalities (2.8) and (2.9). For each class of operators, the range of the respective 
parameter is indicated. Given one of these families of operations, the identification 
of a suitable operation for a specific application is equivalent to the estimation of 
the parameter involved. 

Dom bi 

o--A.--= 

Schweizer/Sklar --p--= 
Yager 

o--w--

I Generalized means -00- Ct --

Dom bi 
___...,.____ A. --4-- 0 

Schweizer/Sklar 
00~ p ~-00 

Yager 

oo~w~O 

min max 

Intersection 
operations 

Averaging 
operations 

Union 
operations 

Figure 2.5. The full scope of fuzzy aggregation operations. 
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NOTES 

2.1. In the seminal paper by Zadeh [1965a], fuzzy set theory is formulated in terms of 
the standard operations of complement, union, and intersection, but other possi­
bilities of combining fuzzy sets are also hinted at. 

2.2. The first axiomatic treatment of fuzzy set operations was presented by Bellman and 
Giertz [1973). They demonstrated the uniqueness of the max and min operators in 
terms of axioms that consist of our axiomatic skeletons for u and i, the axioms of 
continuity, distributivity, strict increase of u(a, a) and i(a, a) in a, and lower and 
upper bounds u(a, b) 2: max(a, b) and i(a, b) :S min(a, b). They concluded, however, 
that the operation of fuzzy complement is not unique even when all reasonable 
requirements (boundary conditions, monotonicity, continuity, and involution) are 
employed as axioms. A thorough investigation of properties of the max and min 
operators was done by Voxman and Goetschel [1983). 

2.3. The Sugeno class of fuzzy complements results from special measures (called 
;\-measures) introduced by Sugeno [1977). The Yager class of fuzzy complements 
is derived from his class of fuzzy unions defined by Eq. (2.6) by requiring that 
A U C(A) = X, where A is a fuzzy set defined on X. This requirement can be ex­
pressed more specifically by requiring that Uw(a, cw(a)) = 1 for all a E [0, 1) and all 
w > 0. 

2.4. Different approaches to the study of fuzzy complements were used by Lowen [1978), 
Esteva, Trillas, and Domingo [1981], and Ovchinnikov [1981, 1983]. Yager [1979b, 
1980a] investigated fuzzy complements for the purpose of developing useful mea­
sures of fuzziness (Sec. 5.2). Our presentation of fuzzy complements in Sec. 2.2 is 
based upon a paper by Higashi and Klir [1982], which is also motivated by the aim 
of developing measures of fuzziness. 

2.5. The Yager class of fuzzy unions and intersections was introduced in a paper by 
Yager [1980b], which contains some additional characteristics of these classes. Yager 
[1982b] also addressed the question of the meaning of the parameter win his class 
and the problem of selecting appropriate operations for various purposes. 

2.6. The axiomatic skeletons that we use for characterizing fuzzy intersections and unions 
are known in the literature as triangular norms (or t-norms) and triangular conorms 
(or t-conorms), respectively [Schweizer and Sklar, 1960, 1961, 1983]. These concepts 
were originally introduced by Menger [1942] in his study of statistical metric spaces. 
In current literature on fuzzy set theory, the terms t-norms and t-conorms are used 
routinely. 

2. 7. Classes of functions given in Table 2.2 that can be employed for fuzzy unions and 
intersections were proposed by Schweizer and Sklar [1961, 1963, 1983], Hamacher 
[1978], Frank [1979], Yager [1980b], Dubois and Prade [1980b], and Dombi [1982]. 
Additional theoretical studies of fuzzy set operations were done by Trillas, Alsina, 
and Valverde [1982], Czogala and Drewniak [1984], Klement [1984], and Silvert 
[1979]. A good overview of the various classes of fuzzy set operations was prepared 
by Dubois and Prade [1982a]; they also overviewed properties of various combi­
nations of fuzzy set operations [Dubois and Prade, 1980b]. 

2.8. The issue of which operations on fuzzy sets are suitable in various situations was 
studied by Zimmermann [1978a], Thole, Zimmermann, and Zysno [1979j, Zimmer­
mann and Zysno [1980], Yager [1979a, 1982b], and Dubois and Prade [1980b]. 
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2.9. 

2.10. 

One class of operators not covered in this book are fuzzy implication operators. 
They were extensively studied by Bandier and Kohout [1980a, b] and Yager [1983b]. 

An excellent overview of the whole spectrum of aggregation opera~ions on ~uzzy 
sets was prepared by Dubois and Prade [1985a]; it covers fuzz_Y umons and mter­
sections as well as averaging operations. In another paper, Dub01s and ~ra~e [1984b] 
presented a similar overview in the context of decision-making applications. The 
class of generalized means defined by Eq. (2.17) is covered in a paper by Dyckhoff 

and Pedrycz [1984). 

EXERCISES 

'2.1. Using Sugeno complements for A. = 1, 2, 10 and Yager complements for w = 1, 2, 
3, determine complements of the following fuzzy sets: 
(a) the fuzzy number defined in Fig. 1.2; 
(b) the fuzzy sets defined in Exercise 1.3; 
(c) some of the fuzzy sets defined in Fig. 1.9. 

'2.2. Does the function c(a) = (1 ar qualify for each w > 0 as a fuzzy complement? 
Plot the function for some values w > 1 and some values w < 1. 

'2.3. Prove that the Sugeno complements are monotonic nonincreasing (Axiom c2) for all 

A. E ( -1, oo) . 
.,2,4. Show that the Sugeno complements are involutive for all A. E (- ~, oo). Show that 

the Yager complements are involutive for w E (1, 00
). 

'2.5. Show that the equilibria ec .. for the Yager fuzzy complements are given by the 

formula 

ec .. · = (1/2)!/w. 

Plot this function for w E (0, 10]. . 
112.6. Prove that Axioms u I through u5 (or i 1 through i5) are satisfied by all fuzzy umons 

(or intersections) in the Yager class. . . 

1 
2.7. Prove that the following properties are satisfied by all fuzzy umons m the Yager 

~ 2.8. 

r2.9. 

·2.10. 

class: 
(a) Uw(a, 0) = a; 
(c) Uw(a, a) 2: a; 
(e) Jim Uw(a, b) = Umax(a, b). 

(b) Uw(a, 1) = 1; 
(d) ifw :S w', then Uw(a, b) 2: Uw,(a, b); 

w---?0 • • 

Prove that the following properties are satisfied by all fuzzy intersect10ns m the Yager 

class: 
(a) iw(a, 0) = O; 
(c) iw(a, a) :S a; 
(e) lim iw(a, b) = Zmin(a, b ). 

w->O 

(b) iw(a, 1) = a; 
(d) if w :S w', then iw(a, b) :S iw·(a, b ); 

Show that uw(a, Cw(a)) = I for all a E [O, l] and all w > 0, where Uw and Cw denote 
the Yager union and complement, respectively (Note 2.3). 
For each class of fuzzy set unions and intersections defined in Table 2.2 a~d several 
values of the parameter involved (values 1 and 2, for instance), determme mem-
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bership functions of the respective unions and intersections in a form similar to Table 
2.1. 

2.11. For each of the classes of fuzzy unions defined by the parameterized functions in 
Table 2.2·, show that the function decreases with an increase in the parameter. 

2.12. For each of the classes of fuzzy intersections defined by the parameterized functions 
in Table 2.2, show that the function increases with any increase in the parameter. 

2. 13. The proof of Theorem 2 .13 is outlined in Sec. 2 .5. Describe the proof in full detail. 
2.14. Show that the following operations satisfy the law of excluded middle and the law 

of contradiction: 
(a) Umax, imin, c(a) = 1 - a; 
(b) u(a, b) = min(l, a + b), i(a, b) = max(O, a + b - 1), c(a) = 1 - a. 

2.15. Show that the following operations on fuzzy sets satisfy DeMorgan's laws: 
(a) Umax' imin• c(a) = 1 - a; 
(b) max, min, c1- is a Sugeno complement for some A. E ( - i, oo); 
(c) max, min, cw is a Yager complement for some w E (0, oo); 

2.16. Determine the membership function based on the generalized means (in a form similar 
to Table 2.1) for a = -2, -1, 0, 1, 2; assume only two arguments and, then, repeat 
one of the cases for three arguments. 

2.17. Show that the generalized means defined by Eq. (2.17) become min and max op­
erations for a----)> -oo and a----)> oo, respectively. 

2.18. Demonstrate that the generalized means h" defined by Eq. (2.17) are monotonic 
increasing with a for fixed arguments. 
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