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CRrispP SETs AND Fuzzy SETS

1.1 INTRODUCTION

The process and progress of knowledge unfolds into two stages: an attempt to
know the character of the world and a subsequent attempt to know the character
of knowledge itself. The second reflective stage arises from the failures of the
first; it generates an inquiry into the possibility of knowledge and into the limits
of that possibility. It is in this second stage of inquiry that we find ourselves today.
As a result, our concerns with knowledge, perceptions of problems and attempts
at solutions are of a different order than in the past. We want to know not only
specific facts or truths but what we can and cannot know, what we do and do
not know, and how we know at all. Our problems have shifted from questions of
how to cope with the world (how to provide ourselves with food, shelter, and so
on), to questions of how to cope with knowledge (and ignorance) itself. Ours has
been called an ‘‘information society,”” and a major portion of our economy is
devoted to the handling, processing, selecting, storing, disseminating, protecting,
collecting, analyzing, and sorting of information, our best tool for this being, of
course, the computer.

Our problems are seen in terms of decision, management, and prediction;
solutions are seen in terms of faster access to more information and of increased
aid in analyzing, understanding and utilizing the information that is available and
in coping with the information that is not. These two elements, large amounts of
information coupled with large amounts of uncertainty, taken together constitute
the ground of many of our problems today: complexity. As we become aware of
how much we know and of how much we do not know, as information and un-
certainty themselves become the focus of our concern, we begin to see our prob-
lems as centering around the issue of complexity.
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The fact that complexity itself includes both the element of how much we
know, or how well we can describe, and the element of how much we do not
know, or how uncertain we are, can be illustrated with the simple example of
driving a car. We can probably agree that driving a car is (at least relatively)
complex. Further, driving a standard transmission or stick-shift car is more com-
plex than driving a car with an automatic transmission, one index of this being
that more description is needed to cover adequately our knowledge of driving in
the former case than in the latter. Thus, because more knowledge is involved in
the driving of a standard-transmission car (we must know, for instance, the rev-
olutions per minute of the engine and how to use the clutch), it is more complex.
However, the complexity of driving also involves the degree of our uncertainty;
for example, we do not know precisely when we will have to stop or swerve to
avoid an obstacle. As our uncertainty increases—for instance, in heavy traffic or
on unfamiliar roads—so does the complexity of the task. Thus, our perception
of complexity increases both when we realize how much we know and when we
realize how much we do not know.

How do we manage to cope with complexity as well as we do, and how
could we manage to cope better? The answer seems to lie in the notion of sim-
plifying complexity by making a satisfactory trade-off or compromise between
the information available to us and the amount of uncertainty we allow. One option
is to increase the amount of allowable uncertainty by sacrificing some of the
precise information in favor of a vague but more robust summary. For instance,
instead of describing the weather today in terms of the exact percentage of cloud
cover (which would be much too complex), we could just say that it is sunny,
which is more uncertain and less precise but more useful. In fact, it is important
to realize that the imprecision or vagueness that is characteristic of natural lan-
guage does not necessarily imply a loss of accuracy or meaningfulness. It is, for
instance, generally more meaningful to give travel directions in terms of city
blocks than in terms of inches, although the former is much less precise than the
latter. It is also more accurate to say that it is usually warm in the summer than
to say that it is usually 72° in the summer. In order for a term such as sunny to
accomplish the desired introduction of vagueness, however, we cannot use it to

mean precisely 0 percent cloud cover. Its meaning is not totally arbitrary, how-
ever; a cloud cover of 100 percent is not sunny and neither, in fact, is a cloud
cover of 80 percent. We can accept certain intermediate states, such as 10 or 20
percent cloud cover, as sunny. But where do we draw the line? If, for instance,
any cloud cover of 25 percent or less is considered sunny, does this mean that a
cloud cover of 26 percent is not? This is clearly unacceptable since 1 percent of
cloud cover hardly seems like a distinguishing characteristic between sunny and
not sunny. We could, therefore, add a qualification that any amount of cloud
cover 1 percent greater than a cloud cover already considered to be sunny (that
is, 25 percent or less) will also be labeled as sunny. We can see, however, that
this definition eventually leads us to accept all degrees of cloud cover as sunny,
no matter how gloomy the weather looks! In order to resolve this paradox, the
term sunny may introduce vagueness by allowing some sort of gradual transition
from degrees of cloud cover that are considered to be sunny and those that are
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not. This is, in fact, precisely the basic concept of thﬁ: fuzzy set, a concept that
is both simple and intuitively pleasing and that forms, in essence, a generalization
sical or crisp set. o ‘
o theT(;ll: scrisp set is é’eﬁned in such a way as to dichotomize the md1v1dual§ ;n
some given universe of discourse into two groups: members (those that certainly
belong in the set) and nonmembers (those that certainly do not). A sharp, 1un-
ambiguous distinction exists between the members and nonm-embers of the ¢ ass
or category represented by the crisp set. Many _of the collections and categorlﬁs
we commonly employ, however (for instance, in ngtural ‘language), such as the
classes of tall people, expensive cars, highly contagious dlsea§e§, numbers muc_h
greater than 1, or sunny days, do not exhibit this characteristic. Instead, their
boundaries seem vague, and the transition from member to nonmember appears
gradual rather than abrupt. Thus, the fuzzy set introduces vagueness (with the
aim of reducing complexity) by eliminating the sharp boundary dividing rpembers
of the class from nonmembers. A fuzzy set can be deﬁped mathematically by
assigning to each possible individual in the universe .of discourse a value repr;la—
senting its grade of membership in the fuzzy set. Th}S grafie corresponds to the
degree to which that individual is similar or compatll?le with the concept repre-
sented by the fuzzy set. Thus, individuals may belong in the fuzzy set to a greater
or lesser degree as indicated by a larger or smaller membership grade. Thege
membership grades are very often represented by real-number vglues ranging in
the closed interval between 0 and 1. Thus, a fuzzy set representing our concept
of sunny might assign a degree of membership of 1 to a cloud cover of 0 percent,
.8 to a cloud cover of 20 percent, .4 to a cloud cover of 30 percent and 0 to a
cloud cover of 75 percent. These grades signify Fhe degree to which'each per-
centage of cloud cover approximates our subjectlv'e concept of sunny, _and‘ the
set itself models the semantic flexibility inherent in sugh a common lmgmst}c
term. Because full membership and full nonmembership in the fpzzy set can still
be indicated by the values of 1 and 0, respectively, we can cqrmder the crisp set
to be a restricted case of the more general fuzzy set for which only these two
f membership are allowed. ' .
gradels{:search on thg theory of fuzzy sets has been abundant, and in this book
we present an introduction to the major developments of the theory. There are,
however, several types of uncertainty other than the type represented by the fuz'zy
set. The classical probability theory, in fact, represents one of these alternative
and distinct forms of uncertainty. Understanding these various types of uncer-
tainty and their relationships with information and cm_nplexnty is cqrrently an arelz:
of active and promising research. Therefore, in addition to offgrmg a thoroug
introduction to the fuzzy set theory, this book provides an overview of the larger
framework of issues of uncertainty, information, and complex1ty' and places the
fuzzy set theory within this framework of mathemati'cal explorations.

In addition to presenting the theoretical foundations of fuzzy set the(?ry and
associated measures of uncertainty and information, the last cl}apter of this book
offers a glimpse at some of the successful applications of t‘hlS new conceptgal
framework to real-world problems. As general tools for dealing with complexity
independent of the particular content of concern, the theory of fuzzy sets and the
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various mathematical representations and measurements of uncertainty and in-
formation have a virtually unrestricted applicability. Indeed, possibilities for ap-
plication include any field that examines how we process or act on information,
make decisions, recognize patterns, or diagnose problems or any field in which
the complexity of the necessary knowledge requires some form of simplification.
Successful applications have, in fact, been made in fields as numerous and diverse
as engineering, psychology, artificial intelligence, medicine, ecology, decision
theory, pattern recognition, information retrieval, sociology, and meteorology.
Few fields remain, in fact, in which conceptions of the major problems and ob-
stacles have not been reformulated in terms of the handling of information and
uncertainty. While the diversity of successful applications has thus been expand-
ing rapidly, the theory of fuzzy sets in particular and the mathematics of uncer-
tainty and information in general have been achieving a secure identity as valid
and useful extensions of classical mathematics. They will undoubtedly continue
to constitute an important framework for further investigations into rigorous rep-
resentations of uncertainty, information, and complexity.

1.2 CRISP SETS: AN OVERVIEW

This text is devoted to an examination of fuzzy sets as a broad conceptual frame-
work for dealing with uncertainty and information. The reader’s familiarity with
the basic theory of crisp sets is assumed. Therefore, this section is intended to
serve simply to refresh the basic concepts of crisp sets and to introduce notation
and terminology useful for our discussion of fuzzy sets.

Throughout this book, sets are denoted by capital letters and their members
by lower-case letters. The letter X denotes the universe of discourse, or universal
set. This set contains all the possible elements of concern in each particular con-
text or application from which sets can be formed. Unless otherwise stated, X is
assumed in this text to contain a finite number of elements.

To indicate that an individual object x is a member or element of a set A,
we write

x € A.
Whenever x is not an element of a set A, we write
x £ A.

A set can be described either by naming all its members (the list method)
or by specifying some well-defined properties satisfied by the members of the set
(the rule method). The list method, however, can be used only for finite sets. The
set A whose members are a;, a2, . . . , a, is usually written as

A ={alya29--"an},

and the set B whose members satisfy the properties P, P>, . .., P, is usually
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Y4k

Figure 1.1. Example of sets in R2 that are either convex (A;—As) or nonconvex
(Ag—Ay).

written as
B = {b| b has properties Py, P2, . . ., Pl

.where the symbol | denotes the phrase ‘‘such that.”

An important and frequently used universal set is the set of all points in the
n-dimensional Euclidean vector space R” (i.e., all n-tuples of real numbers). Sets
defined in terms of R” are often required to possess a property_ referred to as
convexity. A set A in R” is called convex if, for every pair of points*

r=(|i€N,) and s = (si|i €N,
in A and every real number \ between 0 and 1, exclusively, the point
t=0r+ 10— Nsi|i €Ny

is also in A. In other words, a set A in R” is convex if, for every 'pair of points
r and s in A, all points located on the straight line segment conngctmg r a_nd s are
also in A. Examples of convex and nonconvex sets in R? are given in Fig. 1.1.

* N subscripted by a positive integer is used in this text to denote the set of all integers from
1 through the value of the subscript; that i N =41, 2y« v 5 4 n}.
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A set whose elements are themselves sets is often referred to as a family of
sets. It can be defined in the form

where i and 7 are called the set identifier and the identification set, respectively.
Because the index i is used to reference the sets A;, the family of sets is also
called an indexed set.

If every member of set A is also a member of set B—that is, if x € A implies
x € B—then A is called a subset of B, and this is written as

A CB.

Every set is a subset of itself and every set is a subset of the universal set. If
A C Band B C A, then A and B contain the same members. They are then called
equal sets; this is denoted by

A = B.
To indicate that A and B are not equal, we write
A # B.

If both A C B and A # B, then B contains at least one individual that is not a
member of A. In this case, A is called a proper subset of B, which is denoted by

A CB.

The set that contains no members is called the empty set and is denoted by
. The empty set is a subset of every set and is a proper subset of every set
except itself.

The process by which individuals from the universal set X are determined
to be either members or nonmembers of a set can be defined by a characteristic,
or discrimination, function. For a given set A, this function assigns a value w4 (x)
to every x € X such that

1 ifand onlyif x € A,
0 ifand only if x £ A.

Thus, the function maps elements of the universal set to the set containing 0 and
1. This can be indicated by

palx) = {

}"“A:X_> {05 1}

The number of elements that belong to a set A is called the cardinality of
the set and is denoted by | A |. A set that is defined by the rule method may
contain an infinite number of elements.

The family of sets consisting of all the subsets of a particular set A is referred
to as the power set of A and is indicated by P(A). It is always the case that

| P(A) | = 2141,

The relative complement of a set A with respect to set B is the set containing
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all the members of B that are not also members of A. This can be written B —
A. Thus,

B—-A={x|x€B and x £ A}.

If the set B is the universal set, the complement is absolute and is usually denoted
by A. Complementation is always involutive; that is, taking the complement of a
complement yields the original set, or

A=A

The absolute complement of the empty set equals the universal set., and the ab-
solute complement of the universal set equals the empty set. That is,

=X,
and
X=0.

The union of sets A and B is the set containing all the elements that belong
either to set A alone, to set B alone, or to both set A and set B. This is denoted
by A U B. Thus,

AUB={x|x€A or xE€B}

The union operation can be generalized for any number of sets. For a family of
sets {A; | i € I}, this is defined as

U A; = {x|x € A, for some i € I}.

i€l

The union of any set with the universal set yields the universal set, wher.eas the
union of any set with the empty set yields the set itself. We can write this as

AUuX=X
and
AUJ = A.

Because all the elements of the universal set necessarily belong either. toasetA
or to its absolute complement, A, the union of A and A yields the universal set.
Thus,

AUA = X.

This property is usually called the law of excluded middle.
The intersection of sets A and B is the set containing all the elements be-
longing to both set A and set B. It is denoted by A N B. Thus,

ANB={x|x¢€Aandx € B}.
The generalization of the intersection for a family of sets {A; | i € I} is defined as
MNA; ={x|x¢€Aforallic€I}.

iel
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The intersection of any set with the universal set yields the set itself, and the

intersection of any set with the empty set yields the empty set. This can be in-
dicated by writing

ANX=A
and

ANY =G
Since a set and its absolute complement by definition share no elements, their
intersection yields the empty set. Thus,

ANA=Q.

This property is usually called the law of contradiction.
Any two sets A and B are disjoint if they have no elements in common, that

is, if
ANB=.

It follows directly from the law of contradiction that a set and its absolute com-
plement are always disjoint.

A collection of pairwise disjoint nonempty subsets of a set A is called a
partition on A if the union of these subsets yields the original set A. We denote
a partition on A by the symbol w(A). Formally,
where A; # J, is a partition on A if and only if

A,‘ N AJ' — @
for each pair i # j, i, j € I, and
U A,‘ = A
ier

Thus, each element of A belongs to one and only one of the subsets forming the
partition.

There are several important properties that are satisfied by the operations
of union, intersection and complement. Both union and intersection are com-
mutative, that is, the result they yield is not affected by the order of their operands.
Thus,

AUB=BUA,
ANB=BNA.

Union and intersection can also be applied pairwise in any order without
altering the result. We call this property associativity and express it by the
equations

AUBUC=AUBUC=AU(BUCOUL),
ANBNC=MANBNC=ANBNCU0C),

where the operations in parentheses are performed first.

Sec. 1.2 Crisp Sets: An Overview 9
Because the union and intersection of any set with itself yields that same
set, we say that these two operations are idempotent. Thus,
AUA=A,
ANA = A.

The distributive law is also satisfied by union and intersection in the following
ways:

ANBUC)=ANBUMANOC,
AUMBNCO) =AUBNAUO.

Finally, DeMorgan’s law for union, intersection, and complement states that
the complement of the intersection of any two sets equals the union of their
complements. Likewise, the complement of the union of two sets equals the in-
tersection of their complements. This can be written as

ANB=A4AUB,
AUB=ANB.
These and some additional properties are summarized in Table 1.1. Note
that all the equations in this table that involve the set union and intersection are

arranged in pairs. The second equation in each pair can be obtained from the first
by replacing J, U, and N with X, N, and U, respectively, and vice versa. We

TABLE 1.1. PROPERTIES OF CRISP SET OPERATIONS.

Involution
Commutativity

A‘ssociativity
Distributivity
Idempotence

Absorption

Absorption of complement
Absorption by X and &
Identity

Law of contradiction
Law of excluded middle
DeMorgan’s laws

A=A
AUB=BUA
ANB=BNA

(AUBYUC=AUBUCOC
(ANBINC=ANMBNCUO
ANBUCO =AUNBUMANDC
AUBNC) =(AUBNAUCQC
AUA=A
ANA=A
AUMNB) = A
ANAUB =4
AU(ANB)=AUB
AN(AUB =ANB

AUX =X
ANG =
AU =4
ANX=4A
ANAd=0
AUA =X

ANB=AUB

AUB=ANB
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are thus concerned with pairs of dual equations. They exemplify a general prin-
ciple of duality: for each valid equation in set theory that is based on the union
and intersection operations, there corresponds a dual equation, also valid, that
is obtained by the above specified replacement.

1.3 THE NOTION OF FUZZY SETS

As defined in the previous section, the characteristic function of a crisp set assigns
a value of either 1 or 0 to each individual in the universal set, thereby discrimi-
nating between members and nonmembers of the crisp set under consideration.
This function can be generalized such that the values assigned to the elements of
the universal set fall within a specified range and indicate the membership grade
of these elements in the set in question. Larger values denote higher degrees of
set membership. Such a function is called a membership function and the set
defined by it a fuzzy set.

Let X denote a universal set. Then, the membership function w4 by which
a fuzzy set A is usually defined has the form

H’A:X_> [03 1]9

where [0, 1] denotes the interval of real numbers from 0 to 1, inclusive.
For example, we can define a possible membership function for the fuzzy
set of real numbers close to 0 as follows:

1

ka(0) = 757002

The graph of this function is pictured in Fig. 1.2. Using this function, we can

determine the membership grade of each real number in this fuzzy set, which

MaA (x) A

1

il | |

~2 =] 0 1 2

x Y

Figure 1.2. A possible membership function of the fuzzy set of real numbers
close to zero.
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signifies the degree to which that number is close to 0. For instance, the number
3 is assigned a grade of .01, the number 1 a grade of .09, the number .25 a grade
of .62, and the number 0 a grade of 1. We might intuitively expect that by per-
forming some operation on the function corresponding to the set of numbers close
to 0, we could obtain a function representing the set of numbers very close to 0.
One possible way of accomplishing this is to square the function, that is,

1 2
halx) = <W) :

We could also generalize this function to a family of functions representing the
set of real numbers close to any given number a as follows:

1
1 + 10(x — a)*’

Although the range of values between 0 and 1, inclusive, is the one most
commonly used for representing membership grades, any arbitrary set with some
natural full or partial ordering can in fact be used. Elements of this set are not
required to be numbers as long as the ordering among them can be interpreted
as representing various strengths of membership degree. This generalized mem-
bership function has the form

pal(x) =

}LAIX"? L,

where L denotes any set that is at least partially ordered. Since L is most frequently
a lattice, fuzzy sets defined by this generalized membership grade function are
called L-fuzzy sets, where L is intended as an abbreviation for lattice. (The full
definitions of partial ordering, total ordering, and lattice are given in Sec. 3.6.)
L-fuzzy sets are important in certain applications, perhaps the most important
being those in which L = [0, 1]”. The symbol [0, 1]” is a shorthand notation of
the Cartesian product
[0, 1] x [0, 1] x -+ x [0, 1]

~— —_— —

n times

(see Sec. 3.1). Although the set [0, 1] is totally ordered, sets [0, 1]” for any n = 2
are ordered only partially. For example, any two pairs (a;, b;) € [0, 1]* and
(az, by) € [0, 1]? are not comparable (ordered) whenever a; < a, and by, > b,.

A few examples in this book demonstrate the utility of L-fuzzy sets. For the
most part, however, our discussions and examples focus on the classical repre-
sentation of membership grades using real-number values in the interval [0, 1].

Fuzzy sets are often incorrectly assumed to indicate some form of proba-
bility. Despite the fact that they can take on similar values, it is important to
realize that membership grades are not probabilities. One immediately apparent
difference is that the summation of probabilities on a finite universal set must
equal 1, while there is no such requirement for membership grades. A more thor-
ough discussion of the distinction between these two expressions of uncertainty
is made in Chap. 4.
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A further distinction must be drawn between the concept of a fuzzy set and
another representation of uncertainty known as the fuzzy measure. Given a par-
ticular element of a universal set of concern whose membership in the various
crisp subsets of this universal set is not known with certainty, a fuzzy measure
g assigns a graded value to each of these crisp subsets, which indicates the degree
of evidence or subjective certainty that the element belongs in the subset. Thus,
the fuzzy measure is defined by the function

g:2X) — [0, 1],

which satisfies certain properties. Fuzzy measures are covered in Chap. 4.

The difference between fuzzy sets and fuzzy measures can be briefly illus-
trated by an example. For any particular person under consideration, the evidence
of age that would be necessary to place that person with certainty into the group
of people in their twenties, thirties, forties, or fifties may be lacking. Note that
these sets are crisp; there is no fuzziness associated with their boundaries. The
set assigned the highest value in this particular fuzzy measure is our best guess
of the person’s age; the next highest value indicates the degree of certainty as-
sociated with our next best guess, and so on. Better evidence would result in a
higher value for the best guess until absolute proof would allow us to assign a
grade of 1 to a single crisp set and 0 to all the others. This can be contrasted with
a problem formulated in terms of fuzzy sets in which we know the person’s age
but must determine to what degree he or she is considered, for instance, ‘‘old”’
or ‘‘young.”” Thus, the type of uncertainty represented by the fuzzy measure
should not be confused with that represented by fuzzy sets. Chapter 4 contains
a further elaboration of this distinction.

Obviously, the usefulness of a fuzzy set for modeling a conceptual class or
a linguistic label depends on the appropriateness of its membership function.
Therefore, the practical determination of an accurate and justifiable function for
any particular situation is of major concern. The methods proposed for accom-
plishing this have been largely empirical and usually involve the design of ex-
periments on a test population to measure subjective perceptions of membership
degrees for some particular conceptual class. There are various means for im-
plementing such measurements. Subjects may assign actual membership grades,
the statistical response pattern for the true or false question of set membership
may be sampled, or the time of response to this question may be measured, where
shorter response times are taken to indicate higher subjective degrees of mem-
bership. Once these data are collected, there are several ways in which a mem-
bership function reflecting the results can be derived. Since many applications
for fuzzy sets involve modeling the perceptions of a limited population for spec-
ified concepts, these methods of devising membership functions are, on the whole,
quite useful. More detailed examples of some applied derivation methods are
discussed in Chap. 6.

The accuracy of any membership function is necessarily limited. In addition,
it may seem problematical, if not paradoxical, that a representation of fuzziness
is made using membership grades that are themselves precise real numbers. Al-
though this does not pose a serious problem for many applications, it is never-
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theless possible to extend the concept of the fuzzy set to allow the distinction
between grades of membership to become blurred. Sets described in this way are
known as fype 2 fuzzy sets. By definition, a type 1 fuzzy set is an ordinary fuzzy
set and the elements of a type 2 fuzzy set have membership grades that are them-
selves type 1 (i.e., ordinary) fuzzy sets defined on some universal set Y: For
example, if we define a type 2 fuzzy set ‘‘intelligent,”” membership grades assigned
to elements of X (a population of human beings) might be type 1 fuzzy sets such
as average, below average, superior, genius, and so on. Note that every fuzzy
set of type 2 is an L-fuzzy set. When the membership grades employed in the
definition of a type 2 fuzzy set are themselves type 2 fuzzy sets, the set is viewed
as a type 3 fuzzy set. In the same way, higher types of fuzzy sets are defined.

A different extension of the fuzzy set concept involves creating fuzzy subsets
of a universal set whose elements are fuzzy sets. These fuzzy sets are known as
level k fuzzy sets, where k indicates the depth of nesting. For instance, the elements
of a level 3 fuzzy set are level 2 fuzzy sets whose elements are in turn level 1
fuzzy sets. One example of a level 2 fuzzy set is the collection of desired attributes
for a new car, where elements from the universe of discourse are ordinary (level
1) fuzzy sets such as inexpensive, reliable, sporty, and so on.

Given a crisp universal set X, let %(X) denote the set of all fuzzy subsets
of X and let ?*(X) be defined recursively by the equation

PrX) = PP*'(X)),

for all integers k = 2. Then, fuzzy sets of level k are formally defined by mem-
bership functions of the form

pa:PE1(X) — [0, 11,

I-‘«A(X)

x ——P~

Figure 1.3. An example of an interval-valued fuzzy set (pa(a) = [o, B)).
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or, when extended to L-fuzzy sets, by functions
pa i PF1(X) = L.

The requirement for a precise membership function can also be relaxed by
allowing values p.4(x) to be intervals of real numbers in [0, 1] rather than single
numbers. Fuzzy sets of this sort are called interval-valued fuzzy sets. They are
formally defined by membership functions of the form

pa:X — 2([0, 1]).

where w4 (x) is a closed interval in [0, 1] for each x € X. An example of this kind
of membership function is given in Fig. 1.3; for each x, w4(x) is represented by
the segment between the two curves. It is clear that the concept of interval-valued
fuzzy sets can be extended to L-fuzzy sets by replacing [0, 1] with a partially

ordered set L and requiring that, for each x € X, pa(x) be a segment of totally
ordered elements in L.

1.4 BASIC CONCEPTS OF FUZZY SETS

This section introduces some of the basic concepts and terminology of fuzzy sets.
Many of these are extensions and generalizations of the basic concepts of crisp
sets, but others are unique to the fuzzy set framework. To illustrate some of the
concepts, we consider the membership grades of the elements of a small universal
set in four different fuzzy sets as listed in Table 1.2 and graphically expressed in
Fig. 1.4. Here the crisp universal set X of ages that we have selected is

X = {5, 10, 20, 30, 40, 50, 60, 70, 80},

and the fuzzy sets labeled as infant, adult, young, and old are four of the elements
of the power set containing all possible fuzzy subsets of X, which is denoted by
P(X).

The support of a fuzzy set A in the universal set X is the crisp set that
contains all the elements of X that have a nonzero membership grade in A. That

TABLE 1.2. EXAMPLES OF FUZZY SETS.

Elements (ages) Infant Adult Young Old

b 0 0 1 0
10 0 0 1 0
20 0 .8 8 .
30 0 1 5 2
40 0 1 2 4
50 0 1 1 .6
60 0 1 0 .8
70 0 1 0 1
80 0 1 0 1
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where the slash is employed to link the elements of the support with their grade',s
of membership in A and the plus sign indicates, rather than any sort of algel_aralc
addition, that the listed pairs of elements and membership grades chectlyely
form the definition of the set A. For the case in which a fuzzy set A is defined
on a universal set that is finite and countable, we may write

A= 2 Wil X;.
i=1

Similarly, when X is an interval of real numbers, a fuzzy set A is often written
in the form

A = J-X pa(x)/x.

The height of a fuzzy set is the largest membership grade attained by any
element in that set. A fuzzy set is called normalized when at least one of its
clements attains the maximum possible membership grade. If membership grades
range in the closed interval between 0 and 1, for instance, then at least one elerpent
must have a membership grade of 1 for the fuzzy set to be considered normalized.
Clearly, this will also imply that the height of the fuzzy set is equal to 1. The
three fuzzy sets adult, young, and old from Table 1.2 as well as tho§e defined by
Figs. 1.2 and 1.3 are all normalized, and thus the height of each is equal to 1.
Figure 1.5 illustrates a fuzzy set that is not normalized.

An a-cut of a fuzzy set A is a crisp set A, that contains all the elements of
the universal set X that have a membership grade in A greater than or equal to

0 Figure 1.5. Nonnormalized fuzzy set

% o that is convex.
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This definition can be written as

A, = xeX| pa(x) = ol

The value a can be chosen arbitrarily but is often designated at the values of the
membership grades appearing in the fuzzy set under consideration. For instance,
for a = .2, the a-cut of the fuzzy set young from Table 1.2 is the crisp set

= {5, 10, 20, 30, 40}.

the specified value of a.

young.z

For o = .8,
young.s = {5, 10, 20},

and for a = 1,
youngi = {5, 10}.
Observe that the set of all a-cuts of any fuzzy set on X is a family of nested crisp
subsets of X.
The set of all le

set A is called a leve

vels a € [0, 1] that represent distinct a-cuts of a given fuzzy

| set of A. Formally,
Aa = {o | palx) = @ for some x € X},

where A4 denotes the level set of fuzzy set A defined on X.

When the universal set is the set of all n-tuples of real numbers in the n-
dimensional Euclidean vector space R", the concept of set convexity can be gen-
eralized to fuzzy sets. A fuzzy set is convex if and only if each of its a-cuts is 2
convex set. Equivalently we may say that a fuzzy set A is convex if and only if

g palhr + (1 = N)s) = min{pa(r); pa(s)ls

¢ Rrandall \ € [o, 11. Figures 1.2, 1.4, and 1.5 illustrate convex fuzzy
sets, whereas Fig. 1.6illustrates 2 nonconvex fuzzy set on R. Figure 1.7 illustrates
a convex fuzzy set on R2 expressed by the a-cuts for all & in its level set. Note
that the definition of convexity for fuzzy sets does not mean that the membership
is necessarily 2 convex function.
bership function

function of a convex fuzzy set
A convex and normalized fuzzy set defined on R whose mem
zzy number can be

is piecewise continuous is called a fuzzy number. Thus, 2 fu
thought of as containing the real numbers within some interval to varying degrees.
function given in Fig. 1.2 can be viewed as a rep-

For example, the membership

resentation of a fuzzy number.
The scalar cardinality of 2 fuzzy set A defined on a finite universal set X is
the summation of the membership grades of all the elements of X in A. Thus,

\A\ = 2 palx).

x€X
et old from Table 1.2 is
.4+.6+.8+1+1=4.1

forallr,s

The scalar cardinality of the fuzzy s
\old\=0+0+.1+.2+

The scalar cardinality of the fuzzy set infant is 0.
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Other forms of cardinality have been proposed for fuzzy sets. One of these,
which is called the fuzzy cardinality, is defined as a fuzzy number rather than as
a real number, as is the case for the scalar cardinality. When a fuzzy set A has
a finite support, its fuzzy cardinality | A | is a fuzzy set (fuzzy number) defined
on N whose membership function is defined by

wa(| Aa ) = a,

for all « in the level set of A (o € A4). The fuzzy cardinality of the fuzzy set old
from Table 1.2 is

|old | = .1/7 + .2/6 + .4/5 + .6/4 + .8/3 + 1/2.

There are many ways of extending the set inclusion as well as the basic crisp
set operations for application to fuzzy sets. Several of these are examined in detail
in Chap. 2. The discussion here is a brief introduction to the simple definitions
of set inclusion and complement and to the union and intersection operations that
were first proposed for fuzzy sets.

If the membership grade of each element of the universal set X in fuzzy set
A is less than or equal its membership grade in fuzzy set B, then A is called a
subset of B. Thus, if

pa(x) = ps(x),
for every x € X, then
A C B.

The fuzzy set old from Table 1.2 is a subset of the fuzzy set adult since for each
element in our universal set
p‘old(x) = p“adult(-x)-
Fuzzy sets A and B are called equal if ps(x) = wp(x) for every element
x € X. This is denoted by
A = B.

Clearly, if A = B, then A C Band B C A.

If fuzzy sets A and B are not equal (p4(x) # ps(x) for at least one x € X),
we write

A # B.

None of the four fuzzy sets defined in Table 1.2 is equal to any of the others.

Fuzzy set A is called a proper subset of fuzzy set B when A is a subset of
B and the two sets are not equal; that is, w4 (x) < pgs(x) for every x € X and p4(x)
< wp(x) for at least one x € X. We can denote this by writing

ACB ifandonlyif A C Band A # B.

It was mentioned that the fuzzy set old from Table 1.2 is a subset of the fuzzy
set adult and that these two fuzzy sets are not equal. Therefore, old can be said
to be a proper subset of adult.
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When membership grades range in the closed interval between 0 and 1, we
denote the complement of a fuzzy set with respect to the universal set X by A
and define it by

pA(x) = 1 — palx),

for every x € X. Thus, if an element has a membership grade of .8 in a fuzzy set
A, its membership grade in the complement of A will be .2. For instance, taking
the complement of the fuzzy set old from Table 1.2 produces the fuzzy set not
old defined as

not old = 1/5 + 1/10 + .9/20 + .8/30 + .6/40 + .4/50 + .2/60.

Note that in this particular case not old is not equal to the fuzzy set young.
The union of two fuzzy sets A and B is a fuzzy set A U B such that

paup(x) = max[pa(x), ps(x)],

for every x € X. Thus, the membership grade of each element of the universal
set in A U B is either its membership grade in A or its membership grade in B,
whichever is the larger value. From this definition it can be seen that fuzzy sets
A and B are both subsets of the fuzzy set A U B, a property we would in fact
expect from a union operation. When we take the union of the fuzzy sets young
and old from Table 1.2, the following fuzzy set is created:

young U old = 1/5 + 1/10 + .8/20 + .5/30 + .4/40
+ .6/50 + .8/60 + 1/70 + 1/80.
The intersection of fuzzy sets A and B is a fuzzy set A N B such that

Ranp(x) = min[p,(x), ps(x)],

for every x € X. Here, the membership grade of an element x in fuzzy set A N B
is the smaller of its membership grades in set A and set B. As is desirable for an
intersection operation, the fuzzy set A N B is a subset of both A and B. The
intersection of fuzzy sets young and old from Table 1.2 is a fuzzy set defined as

young N old = .1/20 + .2/30 + .2/40 + .1/50.

These original formulations of fuzzy complement, union, and intersection
perform identically to the corresponding crisp set operators when membership
grades are restricted to the values 0 and 1. They are, therefore, good generali-
zations of the classical crisp set operators. Chapter 2 contains a further discussion
of the properties of these original operators and of their relation to the other classes
of operators subsequently proposed.

A basic principle that allows the generalization of crisp mathematical con-
cepts to the fuzzy framework is known as the extension principle. 1t provides the
means for any function f that maps points x,, x2, . . . , X, in the crisp set X to
the crisp set Y to be generalized such that it maps fuzzy subsets of X to Y.
Formally, given a function f mapping points in set X to points in set ¥ and any
fuzzy set A € P(X), where

A= walxy + palxa + 0+ palx,,
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the extension principle states that
FA) = flua/x, + Ralxa + o+ w,/x,)

= W) + palf(x) + -+ Mol f(X).
If more than one element of X is ma

the maximum of the membership gt pped by f to the same element Yy € Y, then

¥, then the membership grade of y | i
yin f(A)is zero. Often a function
tuples of elements of several different sets X L X2, ..., X sucl{ tmhz%[)sf(();deiced
ae‘fin’eﬁn())n—Xy’ ‘);( € Y. In this case, f_or any arbitrary fuzzy sets A, A, . . .1’ A2 ’
g 15 j’)'ig .e , X,i ,tretslll)ectlvely, the membership grade of element’y ig
Az, LA, qual to the minimum of the membershj

. ,Xn in .A" A.z, .. ,.An, respectively. i grades of v, xa,
s asimple illustration of the use of this principle, suppose that f is a function

mapping ordered pairs from X, = a, b =
f be specified by the followingl mairi’x: ehand X = e r=iea rh Let

Q
G IV
S R

[

Let A, be a fuzzy set defined on X, and let 4,

o be a fuzzy set defined 'on X> such

Av = 3la + 9 + 5/¢
and
A = S5/x + 1/y.

The membership grades of D, q,

and r i = 5
be calculated from the extensio rin the fuzzy set B = f(A,, A2) € P(Y) can

n principle as follows:
wep(p) = max[min(.3, .5), min(.3, 1), min(.5, 1)] = .5:
ra(q)

i

max[min(.9, .5)] = .5:

pp(r) = max[min(.5, .5), min(.9, 1)] = 9.
Thus, by the extension principle

flA;, Ay) = Slp + 5lq + .9/r.

1.5 CLASSICAL LOGIC: AN OVERVIEW

We assume that the reade i i
\ | r of this book is familiar it
sical logic. Therefore, this section is solel ¥ 1o provis mentals o clas
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Logic is the study of the methods and principles of reasoning in all its pos-
sible forms. Classical logic deals with propositions that are required to be either
true or false. Each proposition has an opposite, which is usually called a negation
of the proposition. A proposition and its negation are required to assume opposite
truth values.

One area of logic, referred to as propositional logic, deals with combinations
of variables that stand for arbitrary propositions. These variables are usually
called logic variables (or propositional variables). As each variable stands for a
hypothetical proposition, it may assume either of the two truth values; the variable
is not committed to either truth value unless a particular proposition is substituted
for it.

One of the main concerns of propositional logic is the study of rules by which
new logic variables can be produced as functions of some given logic variables.
It is not concerned with the internal structure of the propositions represented by
the logic variables.

Assume that » logic variables vy, v,, . . . , v, are given. A new logic variable
can then be defined by a function that assigns a particular truth value to the new
variable for each combination of truth values of the given variables. This function
is usually called a logic function. Since n logic variables may assume 2" pro-
spective truth values, there are 22" possible logic functions defining these vari-
ables. For example, all the logic functions of two variables are listed in Table 1.3,
where falsity and truth are denoted by 0 and 1, respectively, and the resulting 16
logic variables are denoted by w;, w,, . . ., wis. Logic functions of one or two
variables are usually called logic operations.

TABLE 1.3. LOGIC FUNCTIONS OF TWO VARIABLES.

v 1 1 0 0 | Adopted name | Adopted Other names used | Other symbols used

v 1 0 1 0 of function Symbol in the literature in the literature

wi | 0 0 0 O |Zero function 0 Falsum F, L

w2 | 0 0 0 1 |Nor function v % v, | Pierce function v1 | vz, NOR(v1, v2)

ws | 0 0 1 O |Inhibition vi & v, | Properinequality |v; > v

ws | 0 0 1 1 |Negation Uy Complement vz, ~ U2, V3

ws | 0 1 0 0 |[Inhibition vi B v, | Proper inequality v < v

wse | 0 1 0 1 |Negation 1 Complement vy, ~ v1, V)

wz | 0 1 1 0 |Exclusive-or v © vy Nonequivalence U1 F U2, U1 D vy

function

wg | 0 1 1 1 |Nandfunction | y, A v, | Sheffer stroke v1 | v2, NAND(v1, v2)

wog | 1 0 0 0 |Conjunction v N\ va And function v1 & v2, V1V

wwo| 1 0 0 1 |Biconditional v1 © v, | Equivalence M=

wiil 1 0 1 0 |Assertion N Identity vl

wiz| 1 0 1 1 |Implication U1 & vp Conditional, v1 C U2, U1 = 13
inequality

wiz| 1 1 0 0 [Assertion vy Identity vl

wiel 1 1 0 1 |Implication U1 Vs Conditional, U1 D V2, U1 = Vs
inequality

wis| 1 1 1 0 |Disjunction v1 V vy Or function U1 + V2

wig| 1 1 1 1 |One function 1 Verum T, 1
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The key issue of propositional logic is the expression of all the logic functions
of n yariables (n € N), the number of which grows extremely rapidly with in-
creasing values of n, with the aid of a small number of simple logic functions.
Tht_:se simple functions are preferably logic operations of one or two variables,
w?nch are called logic primitives. It is known that this can be accomplished only
with some sets of logic primitives. We say that a set of primitives is complete if
and only if any logic function of variables U1, U2, . . ., U, (for any finite n) can
be composed by a finite number of these primitives.

Two of the many complete sets of primitives have been predominant in
proppsitional logic: (1) negation, conjunction, and disjunction, and (2) negation
gnd 1mplication. By combining, for example, negations, conjunctions, and dis-
Junctions (employed as primitives) in appropriate algebraic expressions, referred

to as logic formulas, we can form any other logic function. Logic formulas are
then defined recursively as follows:

The truth values 0 and 1 are logic formulas.

If v denotes a logic variable, then v and 7 are logic formulas.

If a and b denote logic formulas, then a /A b and a \/ b are also logic formulas.
The only logic formulas are those defined by statements 1 through 3.

AW N -

Every logic formula of this type defines a logic function by composing it
from the three primary functions. To define a unique function, the order in which
the individual compositions are to be performed must be specified in some way.
There are various ways in which this order can be specified. The most common
is the usual use of parentheses, as in any other algebraic expression.

cher types of logic formulas can be defined by replacing some of the three
operat!ons in this definition with other operations or by including some additional
operations. We may replace, for example, a /\ b and a \/ b in the definition with
a = b, or we may simply add a = b to the definition.

While each proper logic formula represents a single logic function and the
associated logic variable, different formulas may represent the same function and

variablg. If they do, we consider them equivalent. When logic formulas a and b
are equivalent, we write a = b. For example,

@A)V (01 AT)V (03 A vs) = @2 NT3) V @1 A wvs) V (01 A\ va),

as can easily be verified by evaluating each of the formulas for all eight combi-
nations of truth values of the logic variables v, v,, and vs.

When the variable represented by a logic formula is always true regardless
of the truth values assigned to the variables participating in the formula, it is called
a tautology; when it is always false, it is called a contradiction. For example,
when two logic formulas a and b are equivalent, then a & b is a tautology, whereas
the for_mula a ® b is a contradiction. Tautologies are important for deductive
reasoning, since they represent logic formulas that, due to their form, are true on
logical grounds alone.

Various forms of tautologies can be used for making deductive inferences.
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TABLE 1.4. PROPERTIES OF BOOLEAN ALGEBRAS.

(B1) lIdempotence a+a=a
a-a=a
(B2) Commutativity a+b=0b+a
a-b=>b:a
(B3) Associativity a+b)+c=a+ b+
a-b)y-c=a-(b-c)
(B4) Absorption a+ @ -b)y=a
a (a+b)=a
(B5) Distributivity a-b+cy=(a-b)+(a-c
a+(b-c)=(a+b)-(a+c)
(B6) Universal bounds +0=ag,a+1=
1= -0 = 0
B7) Complementarity a+ ﬁ =1
a-a=70
1=0
(B8) Involution d=a
(B9) Dualization a+b=a"b_
a-b=a+5b

They are referred to as inference rules. Examples of some tautologies frequently
used as inference rules are:

(aN(a=>b)=>bh (modus ponens),
GN@>b)y=>a (modus tollens),
(a=>b)NbDe))D(a=D o) (hypothetical syllogism).

Modus ponens, for instance, states that given two true propositions a and a = b
(the premises), the truth of the proposition b (the conclusion) may be inferred.

Every tautology remains a tautology when any of its variables is replaced
with any arbitrary logic formula. This property is another example of a powerful
rule of inference, referred to as a rule of substitution.

{t is well established that propositional logic is isomorphic to set theory under
the appropriate correspondence between components of these two mathematical
systems. Furthermore, both of these systems are isomorphic to a Boolean algebra,
which is a mathematical system defined by abstract (interpretation-free) entities
and their axiomatic properties.

A Boolean algebra on a set B is defined as the quadruple

= (B, +,", ),

where the set B has aLleast two elements (bounds) 0 and 1; + and - are binary
operations on B, and  is a unary operation on B for which the properties listed
in Table 1.4 are satisfied.* Properties (B1)-(B4) are common to all lattices. Boo-

* Not all these properties are necessary for an axiomatic characterization of Boolean algebras;
we present this larger set of properties in order to emphasize the relationship between Boolean algebras,

set theory, and propositional logic.
i
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lean algebras are therefore lattices that are distributive (B5), bounded (B6), and
complemented (B7)—(B9). This means that each Boolean algebra can also be char-
acterized in terms of a partial ordering on a set that is defined as follows: a = b
ifand only if a - b = a or, alternatively, if and only if a + b = b.

The isomorphisms between Boolean algebra, set theory, and propositional
logic guarantee that every theorem in any one of these theories has a counterpart
in each of the other two theories. These counterparts can be obtained from one
another by applying the substitutional correspondences in Table 1.5. All symbols
used in this table have previously been defined in the text except for the symbol
F(V); V denotes here the set of all combinations of truth values of given logic
variables, and %F(V) stands for the set of all Jogic functions defined in terms of
these combinations. It is obviously required that the cardinalities of sets V and
X be equal. These isomorphisms allow us, in effect, to cover all these theories
by developing only one of them. We take advantage of this possibility by focusing
the discussion in this book primarily on the theory of fuzzy sets rather than on
fuzzy logic. For example, our study in Chap. 2 of the general operations on fuzzy
sets is not repeated for operations of fuzzy logic, since the isomorphism between
the two areas allows the properties of the latter to be obtained directly from the
corresponding properties of fuzzy set operations.

Propositional logic is concerned only with those logic relationships that de-
pend on the way in which propositions are composed from other propositions by
logic operations. These latter propositions are treated as unanalyzed wholes. This
is not adequate for many instances of deductive reasoning, for Wthh the internal
structure of propositions cannot be ignored.

Propositions are sentences expressed in some language. Each sentence rep-
resenting a proposition can fundamentally be broken down into a subject and a
predicate. In other words, a simple proposition can be expressed, in general, in
the canonical form

x1is P,

where x is a symbol of a subject and P designates a predicate, which characterizes
aproperty. For example, ‘‘Austria is a German-speaking country’’ is a proposition
in which ““Austria’’ stands for a subject (a particular country) and ‘‘a German

TABLE 1.5. CORRESPONDENCES DEFINING ISOMORPHISMS
BETWEEN SET THEORY, BOOLEAN ALGEBRA, AND
PROPOSITIONAL LOGIC.

Set theory Boolean algebra Propositional logic
PX) B F(V)
(G] +

N ™1 D
W o |
o1 >
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three-valued logics, labeled with the names of their originators, are defined in
terms of these four primitives in Table 1.6

We can see from Table 1.6 that all the logic primitives listed for the five
three-valued logics fully conform to the usual definitions of these primitives in
the classical logic for a, b € {0, 1} and that they differ from each other only in
their treatment of the new truth value . We can also easily verify that none of
these three-valued logics satisfies the law of contradiction (a A\ @ = 0), the law
of excluded middle (a \V @ = 1), and some other tautologies of two-valued logic.
The Bochvar three-valued logic, for example, clearly does not satisfy any of the
tautologies of two-valued logic, since each of its primitives produces the truth
value & whenever at least one of the propositions a and b assumes this value. It
is, therefore, common to extend the usual concept of a tautology to the broader
concept of a quasi-tautology. We say that a logic formula in a three-valued logic
that does not assume the truth value 0 (falsity) regardless of the truth values
assigned to its proposition variables is a quasi-tautology. Similarly, we say that
a logic formula that does not assume the truth value 1 (truth) is a quasi-
contradiction.

Once the various three-valued logics were accepted as meaningful and use-
ful, it became desirable to explore generalizations into n-valued logics for an
arbitrary number of truth values (n = 2). Several n-valued logics were, in fact,
developed in the 1930s. For any given n, the truth values in these generalized
logics are usually labeled by rational numbers in the unit interval [0, 1]. These
values are obtained by evenly dividing the interval between 0 and 1, exclusive.
The set T, of truth values of an n-valued logic is thus defined as

0 1 2 n-2n-1
T"‘{O‘n—l’n—l’n—1""’71——1’;1—1_1}'

These values can be interpreted as degrees of truth.

The first series of n-valued logics for which n = 2 was proposed by Luka-
siewicz in the early 1930s as a generalization of his three-valued logic. It uses
truth values in T, and defines the primitives by the following equations:

a=1—a,
a /\ b = min(a, b),
aV b = max(a, b), (1.3)

a>b =min(l,1 + b — a),
acb=1-|a-b|.

Bukasiewicz, in fact, used only negation and implication as primitives and defined
the other logic operations in terms of these two primitives, as follows:

aV b= (a=b) > b
aNb=a\b,
a& b= (a>b)N\(b=>a).

Il
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TABLE 1.6. PRIMITIVES OF SOME THREE-VALUED LOGICS.

Fukasiewicz Bochvar Kleene Heyting Reichenbach
a b ARE—E— NV =& AVSES AVSS AR A —
00 00 11 00 11 00 11 0 0 11 00 11
0 % 0 3 1 3 PRI 0 3 1 3 0 34 10 03z 1 3
01 0110 0110 0110 0110 0110
20| 04 bk [ 4 E b b |04 [ 000 |0} 3
TR RN R E R E R N E R E R
31 ¥ 11 % LR 111 3 $ 11 3 £+ 11 3
10 01 00 0100 0100 0100 0100
14 [ #1344 | ¢ 434 [ 2134|2143 | 4144
I 1 1111 L 1 0 1 L 1 1L 1 1111 11 11

I‘t can be easily verified that Eqs. (1.3) become the definitions of the usual primi-
tl_ves of two-valued logic when n = 2 and that they define the primitives of Luka-
siewicz’s three-valued logic as given in Table 1.6.

‘ For each n = 2, the n-valued logic of Lukasiewicz is usually denoted in the
literature by L,. The truth values of L, are taken from T, and its primitives are
defined by Egs. (1.3). The sequence (L,, Ls, . . ., L) of these logics contains
twg extreme cases—logics L, and L... Logic L, is clearly the classical two-valued
logic discussed in Sec. 1.5. Logic L. is an infinite-valued logic whose truth values
are taken from the set T.. of all rational numbers in the unit interval [0, 1].

When we do not insist on taking truth values only from the set T.. but rather
accept as truth values any real numbers in the interval [0, 1], we obtain an al-
ternative infinite-valued logic. Primitives of both of these infinite-valued logics
are defined by Eqgs. (1.3); they differ in their sets of truth values. Whereas one

. of these logics uses the set T.. as truth values, the other employs the set of all

real numbers in the interval [0, 1]. In spite of this difference, these two infinite-
valued logics are established as essentially equivalent in the sense that they rep-
resent exactly the same tautologies. This equivalence holds, however, only for
logic formulas involving propositions; for predicate formulas with quantifiers,
some fundamental differences between the two logics emerge.

' Unless otherwise stated, the term infinite-valued logic is usually used in the
literature to indicate the logic whose truth values are represented by all the real
numbers in the interval [0, 1]. This is also quite often called the standard Luka-
sie‘_w'cz logic L, where the subscript 1 is an abbreviation for X (read ‘‘aleph 1”°),
which is the symbol commonly used to denote the cardinality of the continuum.
. Given the isomorphism that exists between logic and set theory as defined
in Table 1.5, we can see that the standard Fukasiewicz logic L, is isomorphic to
the original fuzzy set theory based on the min, max, and 1 — a operators for
fuzzy set intersection, union, and complement, respectively, in the same way as
the two-valued logic is isomorphic to the crisp set theory. In fact, the membership
grades pa(x) for x € X by which a fuzzy set A on the universal set X is defined
can be interpreted as the truth values of the proposition ‘“‘x is a member of set
A’ in L,. Conversely, the truth values for all x € X of any proposition “‘x is P”’
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in L, where P is a vague (fuzzy) predicate (such as tall, young, expensive, dan-
gerous, and so on), can be interpreted as the membership degrees p.p(x) by which
the fuzzy set characterized by the property P is defined on X. The isomorphism
then follows from the fact that the logic operations of L,, defined by Egs. (1.3),
have exactly the same mathematical form as the corresponding standard opera-
tions on fuzzy sets.

The standard Lukasiewicz logic L; is only one of a variety of infinite-valued
logics in the same sense as the standard fuzzy set theory is only one of a variety
of fuzzy set theories, which differ from one another by the set operations they
employ. For each particular infinite-valued logic, we can derive the isomorphic
fuzzy set theory by the correspondence in Table 1.5; a similar derivation can be
made of the infinite-valued logic that is isomorphic to a given particular fuzzy set
theory. A thorough study of only one of these areas, therefore, reveals the full
scope of both. We are free to examine either the classes of acceptable set op-
erations or the classes of acceptable logic operations and their various combi-
nations. We choose in this text to focus on set operations, which are fully dis-
cussed in Chap. 2. The isomorphic logic operations and their combinations, which
we do not cover explicitly, are nevertheless utilized in some of the applications
discussed in Chap. 6.

The insufficiency of any single infinite-valued logic (and therefore the de-
sirability of a variety of these logics) is connected with the notion of a complete
set of logic primitives. It is known that there exists no finite complete set of logic
primitives for any infinite-valued logic. Hence, using a finite set of primitives that
defines an infinite-valued logic, we can obtain only a subset of all the logic func-
tions of the given primary logic variables. Because some applications require
functions outside this subset, it may become necessary to resort to alternative
logics.

Since, as argued in this section, the various many-valued logics have their
counterparts in fuzzy set theory, they form the kernel of fuzzy logic, that is, a
logic based on fuzzy set theory. In its full scale, however, fuzzy logic is actually
an extension of many-valued logics. Its ultimate goal is to provide foundations
for approximate reasoning with imprecise propositions using fuzzy set theory as
the principle tool. This is analogous to the role of quantified predicate logic for
reasoning with precise propositions.

The primary focus of fuzzy logic is on natural language, where approximate
reasoning with imprecise propositions is rather typical. The following syllogism
is an example of approximate reasoning in linguistic terms that cannot be dealt
with by the classical predicate logic:

Old coins are usually rare collectibles.

Rare collectibles are expensive.

OId coins are usually expensive.

This is a meaningful deductive inference. In order to deal with inferences such
as this, fuzzy logic allows the use of fuzzy predicates (expensive, old, rare, dan-
gerous, and so on), fuzzy quantifiers (many, few, almost all, usually, and the like),
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SJuzzy truth values (quite true, very true, more or less true, mostly false, and so
forth), and various other kinds of fuzzy modifiers (such as likely, almost impos-
sible, or extremely unlikely).

Each simple fuzzy predicate, such as

xis P

is represented in fuzzy logic by a fuzzy set, as described previously. Assume, for
example, that x stands for the age of a person and that P has the meaning of
young. Then, assuming that the universal set is the set of integers from 0 to 60
representing different ages, the predicate may be represented by a fuzzy set whose
membership function is shown in Fig. 1.8(a). Consider now the truth value of a
proposition obtained by a particular substitution for x into the predicate, such as

Tina is young.

The truth value of this proposition depends not only on the membership grade of
Tina’s age in the fuzzy set chosen to characterize the concept of a young person
(Fig. 1.8(a)) but also depends upon the strength of truth (or falsity) claimed. Ex-
amples of some possible truth claims are:

Tina is young is true.
Tina is young is false.
Tina is young is fairly true.
Tina is young is very false.

Each of the possible truth claims is represented by an appropriate fuzzy set. All

ba(x) 4 u(a)
1 1 &
0.87 = A =Young
0.75 |~
4 3
A= Very & &
Young ) >
0.5 2 =
£ E]
0.36 = 2 2
< <
0.25 -
| | -
0 20 4 40 60 Age 0 T 1 a
Tina 0.87

(a) ‘ (b)

Figure 1.8. Truth values of a fuzzy proposition.
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these sets are defined on the unit interval [0, 1]. Some examples are shown in
Fig. 1.8(b), where a stands for the membership grade in the fuzzy set that rep-
resents the predicate involved and ¢ is a common label representing each of the
fuzzy sets in the figure that expresses truth values. Thus, in our case @ = fyoung(x)
for each x € X. Returning now to Tina, who is 25 years old, we obtain pyoung (25)
= .87 (Fig. 1.8(a)), and the truth values of the propositions

Tina is young is fairly true (true, very true, fairly false,
false, very false)

are .9 (.87, .81, .18, .13, .1), respectively.

We may operate on fuzzy sets representing predicates with any of the basic
fuzzy set operations of complementation, union, and intersection. Furthermore,
these sets can be modified by special operations corresponding to linguistic terms
such as very, extremely, more or less, quite, and so on. These terms are often
called linguistic hedges. For example, applying the linguistic hedge very to the
fuzzy set labeled as young in Fig. 1.8(a), we obtain a new fuzzy set representing
the concept of a very young person, which is specified in the same figure.

In general, fuzzy quantifiers are represented in fuzzy logic by fuzzy numbers.
These are manipulated in terms of the operations of fuzzy arithmetic, which is
now well established.

From this brief outline of fuzzy logic we can see that it is operationally based
on a great variety of manipulations with fuzzy sets, through which reasoning in
natural language is approximated. The principles underlying these manipulations
are predominantly semantic in nature. While full coverage of these principles is
beyond the scope of this book, Chap. 6 contains illustrations of some aspects of
fuzzy reasoning in the context of a few specific applications.

NOTES

1.1. The theory of fuzzy sets was founded by Lotfi Zadeh [1965a], primarily in the context
of his interest in the analysis of complex systems [Zadeh, 1962, 1965b, 1973]. How-
ever, some of the key ideas of the theory were envisioned by Max Black, a philos-
opher, almost 30 years prior to Zadeh’s seminal paper [Black, 1937].

1.2. The development of fuzzy set theory since its introduction in 1965 has been dramatic.
Thousands of publications are now available in this new area. A survey of the status
of the theory and its applications in the late 1970s is well covered in a book by Dubois
and Prade [1980a]. Current contributions to the theory are scattered in many journals
and books of collected papers, but the most important source is the specialized
journal Fuzzy Sets and Systems (North-Holland). A very comprehensive bibliog-
raphy of fuzzy set theory appears in a book by Kandel [1982]. An excellent annotated
bibliography covering the first decade of fuzzy set theory was prepared by Gaines
and Kohout [1977]. Books by Kaufmann [1975], Zimmermann [1985], and Kandel
[1986] are useful supplementary readings on fuzzy set theory.

1.3. The concept of L-fuzzy sets was introduced by Goguen [1967]. A thorough inves-
tigation of properties of fuzzy sets of type 2 and higher types was done by Mizumoto
and Tanaka [1976, 1981]. The concept of fuzzy sets of level k, which is due to Zadeh

Chap. 1 Exercises 33

[1971b], was investigated by Gottwald [1979]. Convex fuzzy sets were studied in
greater detail by Lowen [1980] and Liu [1985].

1.4. One concept that is only mentioned in this book but not sufficiently developed is
the concept of a fuzzy number. It is a basis for fuzzy arithmetic, which can be viewed
as an extension of interval arithmetic [Moore, 1966, 1979]. Among other applications,
fuzzy numbers are essential for expressing fuzzy cardinalities and, consequently,
fuzzy quantifiers [Dubois and Prade, 1985c]. Fuzzy arithmetic is thus a basic tool
for dealing with fuzzy quantifiers in approximate reasoning; it is also a basis for
developing a fuzzy calculus [Dubois and Prade, 1982b]. We do not cover fuzzy arith-
metic, since there now exists an excellent book devoted solely to this subject [Kauf-
mann and Gupta, 1985].

1.8. The extension principle was introduced by Zadeh [1975b]. A further elaboration of
the principle was presented by Yager [1986].

1.6. Fuzzy extensions of some mathematical subject areas are beyond the scope of this
introductory text and are thus not covered here. They include, for example, fuzzy
topological spaces [Chang, 1968; Wong, 1975; Lowen, 1976], fuzzy metric spaces
[Kaleva and Seikkala, 1984], and fuzzy games [Butnariu, 1978).

1.7. An excellent and comprehensive survey of many-valued logics was prepared by
Rescher [1969]; it also contains an extensive bibliography on the subject. Various
aspects of the relationship between many-valued logics and fuzzy logic are examined
by numerous authors, including Baldwin {1979a, b, c], Baldwin and Guild [1980a, b,
Baldwin and Pilsworth [1980], Dubois and Prade [1979a, 1984a], Gaines [1976, 1978,
1983], Giles [1977], Gottwald [1980], Lee and Chang [1971], Mizumoto [1981], Skala
[1978], Turksen and Yao [1984], and White [1979]. Approximate reasoning based on
fuzzy predicate logic is also investigated in some of these papers. Particularly good
overview papers were prepared by Zadeh [1975c, 1984, 1985] and Gaines [1976].
Most aspects of approximate reasoning were developed by Zadeh [1971b, 1972,
1975b, c, 1976, 1978b, 1983a, b, 1984, 1985], but we should also mention an early
and important paper by Goguen [1968-69].

1.8. Analternative set theory, which is referred to as the rheory of semisets, was proposed
and developed by Vopénka and Hajek [1972] to represent sets with imprecise bound-
aries. Unlike fuzzy sets, however, semisets may be defined in terms of vague prop-
erties and not necessarily by explicit membership grade functions. While semisets
are more general than fuzzy sets, they are required to be approximated by fuzzy
sets in practical situations. The relationship between semisets and fuzzy sets is well
characterized by Novik [1984]. The concept of semisets leads into a formulation of
an alternative (nonstandard) set theory [Vopénka, 1979].

1.9. For a general background on crisp sets and classical two-valued logic, we recommend
the book Set Theory and Related Topics by S. Lipschutz (Shaum, New York, 1964).
The book covers all topics that are needed for this text and contains many solved
examples. For a more advanced treatment of the topics, we recommend the book
Set Theory and Logic by R. R. Stoll (W.H. Freeman, San Francisco, 1961).

EXERCISES

1.1. For each of the properties of crisp set operations listed in Table 1.1, determine
wlr'le.ther the property holds for the complement, union, and intersection operations
originally proposed for fuzzy sets.
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1.2,

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.11.

1.12.
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Compute the scalar cardinality and the fuzzy cardinality for each of the following
fuzzy sets:

@ A = 4lv + 2/w+ Six + 4y + l/z;

M) B=1x+ 1y + Uz

© pe(x) = ——,x€{0,1,2,..., 10}
x + 1

Consider the fuzzy sets A, B, and C defined on the interval X = [0, 10] of real
numbers by the membership grade functions

X 1
, =27 S S—
x+2 w(x) kel = T oG = 22

palx) =

Determine mathematical formulas and graphs of the membership grade functions of
each of the following:

(a) 4,B,C;

b)) AUB,AUC,BUC;

© ANB ANC,BNC;

dAUBUC, ANBNC;

€ ANC,BNC,AUC.

Show that DeMorgan’s laws are satisfied for the three pairs of fuzzy sets obtained
from fuzzy sets A, B, and C in Exercise 1.6.

Propose an extension of the standard fuzzy set operauons (min, max, 1 — a) to
interval-valued fuzzy sets.

Order the fuzzy sets defined by the following membership grade functions (assuming
x = () by the inclusion (subset) relation:

1 12 1 2
0 = (515) e = (7575)

Let the membership grade functions of sets A, B, and C in Exercise 1.3 be defined
on the set X = {0, 1, ..., 10} and let f(x) = x? for all x € X. Use the extension
principle to derive f(A4), f(B), and f(C).

Define a-cuts of each of the fuzzy sets defined in Exercises 1.2 and 1.3 for a = .2,
5,9, L.

Show that all a-cuts of any fuzzy set A defined on R” (n = 1) are convex if and only
if

1
“‘A(x) - 1 + 20x ’

walAr + (I — N)s] = minfpa(r), pa(s)]
forallr,s € R"and all A € [0, 1].

. For each of the three-valued logics defined in Table 1.6, determine the truth values

of each of the following logic expressions for all combinations of truth values of
logic variables a, b, ¢ (assume that negation @ is defined by 1 — a):

(@) @A b) > ¢
(b) (@aV b)) (ab);

(¢) (a = b)=> (c>a) b

Define in the form of a table (analogous to Table 1.6) primitives, /\, V, =, and <,
of the L.ukasiewicz logics L4 and Ls.

Repeat the example illustrated by Fig. 1.8, which is discussed in Sec. 1.6 (Tina is
young, and so on) for yourself.

Chap. 1
a(x)

1

L A =young

Exercises

Y

A = very young

A = not very young

A =old

S A = more or less old
L L —p-
0 15 30 45 60 75 Age [years]
by (x
() 4 H = short H= tall
1
S+
! { ! | -
0 12 24, 36 48 60 72 Height [inches]
My (%) A W = not heavy W= heavy
I !
5 ~¢— W = very heavy
| 1 >
0 100 150 200 250 Weight
[pounds]
HE(X) A
E = somewhat educated
1 A\
\ ~— E = highly educated
S+
—«——— E = not highly educated
I ! I I .
0 Elementary  High College Ph.D. Degree of
school school education

Figure 1.9. Fuzzy sets for Exercise 1.13.
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1.13. Assume four types of fuzzy predicates applicable to persons (age, height, weight,
and level of education). Several specific fuzzy predicates for each of these types are
represented by fuzzy sets whose membership functions are specified in Fig. 1.9.
Apply these membership functions and the fuzzy truth values defined in Fig. 1.8(b)

to some person x (perhaps yourself) to determine the truth values of various prop-
ositions such as the following:

x is highly educated and not very young is very true;

x is very young, tall, not heavy, and somewhat educated is true;
x is more or less old or highly educated is fairly true;

x is very heavy or old or not highly educated is fairly true;

x is short, not very young and highly educated is very true.

In your calculations, use standard fuzzy set operators (min, max, 1 — a).

2

OPERATIONS ON Fuzzy SETS

2.1 GENERAL DISCUSSION

As mentioned in Chap. 1, the original theory of fuzzy sets was formulated in terms
of the following specific operators of set complement, union, and intersection:

pax) = 1 — palx), 2.1
Raup(®) = max[pa(x), ps(x)], 2.2)
Rans(x) = min[pa(x), ns()]. (2.3)

Note that when the range of membership grades is restricted to the set {0, 1},
these functions perform precisely as the corresponding operators for crisp sets,
thus establishing them as clear generalizations of the latter. It is now understood,
however, that these functions are not the only possible generalizations of the crisp
set operators. For each of the three set operations, several different classes of
functions, which possess appropriate axiomatic properties, have subsequently
been proposed. This chapter contains discussions of these desirable properties
and defines some of the different classes of functions satisfying them.

Despite this variety of fuzzy set operators, however, the original comple-
ment, union, and intersection still possess particular significance. Each defines a
special case within all the various classes of satisfactory functions. For instance,
if the functions within a class are interpreted as performing union or intersection
operations of various strengths, then the classical max union is found to be the
strongest of these and the classical min intersection, the weakest. Furthermore,
a particularly desirable feature of these original operators is their inherent pre-
vention of the compounding of errors of the operands. If any error e is associated
with the membership degrees w4 (x) and pg(x), then the maximum error associated

37
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with the membership grade of x in A, A U B, or A N B remains e. Many of the
alternative fuzzy set operator functions later proposed lack this characteristic.

Fuzzy set theory that is based on the operators given by Eqgs. (2.1) through
(2.3) is now usually referred to as possibility theory. This theory emerges, quite
naturally, as a special case of fuzzy measures. It is covered in this latter context
in Chap. 4. For convenience, let the operations defined by Egs. (2.1) through
(2.3) be called the standard operations of fuzzy set theory.

2.2 FUZZY COMPLEMENT

A complement of a fuzzy set A is specified by a function
c: [0, 1]— [0, 1],

which assigns a value c(un4(x)) to each membership grade p4(x). This assigned
value is interpreted as the membership grade of the element x in the fuzzy set
representing the negation of the concept represented by A. Thus, if A is the fuzzy
set of tall men, its complement is the fuzzy set of men who are not tall. Obviously,
there are many elements that can have some nonzero degree of membership in
both a fuzzy set and in its complement.

In order for any function to be considered a fuzzy complement, it must satisfy
at least the following two axiomatic requirements:

Axiom c¢l. ¢(0) = 1 and ¢(1) = 0, that is, ¢ behaves as the ordinary com-
plement for crisp sets (boundary conditions).

Axiom ¢2. Forall a, & € [0, 1], if a < b, then c(a) = c(b), that is, c is
monotonic nonincreasing.

Symbols a and b, which are used in Axiom c¢2 and the rest of this section
as arguments of the function c, represent degrees of membership of some arbitrary
elements of the universal set in a given fuzzy set. For example, a = p4(x) and
b = pa(y) for some x, y € X and some fuzzy set A.

There are many functions satisfying Axioms ¢l and c2. For any particular
fuzzy set A, different fuzzy sets can be said to constitute its complement, each
being produced by a different fuzzy complement function. In order to distinguish
the complement resulting from the application of the classical fuzzy complement
of Eq. (2.1) and these numerous others, the former is denoted in this text by A;
the latter, expressed by function ¢, is denoted by C(A), where

C: @(X\)ﬁ P(X)

is a function such that c{pa(x)) = pee(x) for all x € X.

Given a particular fuzzy complement ¢, function C may conveniently be
used as a global operator representing c¢. Each function C transforms a fuzzy set
A into its complement C(A) as determined by the corresponding function ¢, which
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assigns to elements of X membership grad.es in the .complement C(A). Thus each
fuzzy complement ¢ implies a corresponding function C. A
All tunctions that satisfy Axioms cl and c2 form.the most gen@ral clags )
fuzzy complements. It is rather obvious that the'exclpsnon or weakening of either
of these axioms would add to this class some functlon.s totally unagceptable (ails
complements. Indeed, a violation of Axiom cl would 1nc}ude fu'nctxons.that. 0
not conform to the ordinary complement for crisp sets. Axiom c2 is gssentlal since
we intuitively expect that an increase in the degree of rpembershlp in 2 fuzzy set
must result either in a decrease or, in the extreme case, 1n no change in the'degre.e
of membership in its complement. Let Axioms c1 and c¢2 be called the axiomatic
r fuzzy complements. ' .
Skelwlonn rjr?os{ czazlies ofppractical significance, it is desirable to consider various
additional requirements for fuzzy complements. Each of them reduces the ggneral
class of fuzzy complements to a special subc_lass. Two of the n}ost desirable
requirements, which are usually listed in the literature among axioms of fuzzy
complements, are the following;:

Axiom ¢3. c is a continuous function.
Axiom c4. c is involutive, which means that c(c(a)) = aforalla € [0, 11.

Functions that satisfy Axiom c3 form a special subclass of‘the gen'eral class
of fuzzy complements; those satisfying Axiom c4 are pecessarll}{ coptmuous as
well and, therefore, form a further nested subclass, as 1liustrate(.i in Fig. 2.1. The
classical fuzzy complement given by Eq. (2.1) is contained within the class of
i i lements. . _
mVOhngaemC[?l?spof general fuzzy complements that satisfy only the axiomatic skel-
eton are the threshold-type complements defined by

1 fora=t,
cla) = 0 fora>t,

where a € [0, 11 and 7 € [0, 1); ¢ is called the threshold of c. This function is
illustrated in Fig. 2.2(a). ' '

An example of a fuzzy complement that is continuous (Axiom c3) but not
involutive (Axiom c4) is the function

c(a) =31 + cos ma),

which is illustrated in Fig. 2.2(b). The failure of this function to satisfy the property

of involution can be seen by noting that, for example, ¢(.33) = 75 but ¢(.75)

= .15 # 33. ‘ .
One class of involutive fuzzy complements is the Sugeno class defined by

1 —a
[ + A

cala) =

£l

where A € (-1, »). For each value of the parameter A, we obtain one particular
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All fuzzy
complements
(Axioms c] and ¢2)

All functions ¢: [0, 1] - [0, 1]

Classical fuzzy c(a)
— complement
(Eq. (2.1))
0 " 1
a —¥»
(a)
All continuous All involutive 1.0
fuzzy complements fuzzy complements
(Axiom c3) (Axiom c4) 9
Figure 2.1. Tllustration of the nested subset relationship of 8
the basic classes of fuzzy complements. ’
7 \\
involutive fuzzy complement. This class is llustrated in Fig. 2.3(a) for several 6
different values of A. Note how the shape of the function is affected as the value s
of A is changed. For A = 0, the function becomes the classical fuzzy complement a)
defined by Eq. (2.1). 4 N
Another example of a class of involutive fuzzy complements is defined by \
.3
cwl@) = (1 — a™)'», .
2
where w € (0, «); let us refer to it as the Yager class of fuzzy complements. F igure
2.3(b) illustrates this class of functions for various values of w. Here again, chang- 1
. i i Figure 2.2. Examples of fuzzy com-
ing the value of the parameter w results in a deformation of the shape of the plements: (a) a general complement of
function. When w = 1, this function becomes the classical fuzzy complement of 0 123 4 5 6 7 8 9 10 the threshold type; (b) a continuous
cla =1 - a. . a-—» fuzzy complement c(a) = Y4(1+cos wa).
Several important properties are shared by all fuzzy complements. These (b) ma).
concern the equilibrium of a fuzzy complement ¢, which is defined as any value o
a for which c(a) = a. In other words, the equilibrium of a complement ¢ is that Theorem 2.1. Every fuzzy complement has at most one equilibrium.
degree of membership in a fuzzy set A equaling the degree of membership in the . et ;
. PP . . . complement. An equilibrium of ¢ is a
complement C(A). For instance, the equilibrium value for the classical fuzzy _P r oojf". Let c bf an arbitrary fuzzy p a
complement given by Eq. (2.1) is .5, which is the solution of the equation 1 — ¢ solution of the equation

= q. cla) = a =0,
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Figure 2.3. Examples from two classes.of involutive fuzzy complements: (a)
Sugeno class; (b) Yager class.
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where a € [0, 1]. We can demonstrate that any equation c(a) — a = b, where b
is a real constant, must have at most one solution, thus proving the theorem. In
order to do so, we assume that a; and a, are two different solutions of the equation
c(a) — a = b such that a; < ay. Then, since c(a;) — a1 = b and c{a,) — a»
= b, we get

cla;) — a; = clax) ~ az. 2.4)

However, because ¢ is monotonic nonincreasing (by Axiom ¢2), c(a;) = claz)
and, since a1 < a;,

cla) — a1 > claz) — a,.

This inequality contradicts Eq. (2.4), thus demonstrating that the equation must
have at most one solution. &

Theorem 2.2. Assume that a given fuzzy complement ¢ has an equilibrium
¢. which by Theorem 2.1 is unique. Then

a=<c(a) fandonlyif a=e,
and

a=cl{a) ifandonlyif a=e..

Proof: Let us assume that a < e.,a = e.,and a > e, in turn. Then, since
¢ is monotonic nonincreasing by Axiom ¢2, c¢(a) = c(e.) fora < e., c(a) = cle.)
fora = e., and c(a) = c(e.) for a > e.. Because c(e.) = e., we can rewrite
these expressions as c(a) = e., c(a) = e, and c(a) = e, respectively. In fact,
due to our initial assumption we can further rewrite these as c(a) > a, cla) = a,
and c(a) < a, respectively. Thus, a < e. implies c(a) = a and a = e, implies c(a)
= a. The inverse implications can be shown in a similar manner. &

Theorem 2.3. If ¢ is a continuous fuzzy complement, then ¢ has a unique
equilibrium.

Proof: The equilibrium e, of a fuzzy complement c is the solution of the
equation c(a) — a = 0. This is a special case of the more general equation c(a)
— a = b, where b ¢ [—1, 1] is a constant. By Axiom c1, c(0) — 0 = 1and c(1)
— 1 = —1. Since c is a continuous complement, it follows from the intermediate
value theorem for continuous functions* that for each b € [—1, 1], there exists
at least one a such that ¢(a) — a = b. This demonstrates the necessary existence
of an equilibrium value for a continuous function, and Theorem 2.1 guarantees
its uniqueness. &

* See, for example, Mathematical Analysis (second ed.), by T. M. Apostol, Addison-Wesley,
Reading, Mass., 1974, p. 85.
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The equilibrium for each individual fuzzy complement ¢, of the Sugeno class
is given by

VI + -1

for A # 0,
A

o VE+ A =1
= for)\=0(= 11m——-——~——>,
A—0

This is clearly obtained by selecting the positive solution of the equation
1 - e
1+ Xe, = Cen

The dependence of the equilibrium e, on the parameter \ is shown in Fig. 2.4.

If we are given a fuzzy complement ¢ and a membership grade whose value
is represented by a real number a € [0, 1], then any membership grade represented
by the real number “a € [0, 1] such that

c(?a) — a = a — cla), (2.5)

is called a dual point of a with respect to c.

It follows directly from the proof of Theorem 2.1 that Eq. (2.5) has at most
one solution for “g given ¢ and a. There is, therefore, at most one dual point for
each particular fuzzy complement ¢ and membership grade of value a. Moreover,
it follows from the proof of Theorem 2.3 that a dual point exists for each a € [0, 1]
when c is a continuous complement.

1.0

9

ec}‘
4
\ K\\_ .
2
1
0
-1 0 1 2 3 4 5

Figure 2.4. Equilibria for the Sugeno class of fuzzy complements.
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Theorem 2.4. If a complement ¢ has an equilibrium e, then
e. = €.
Proof: If a = e, then by our definition of equilibrium, c(a) = a atind thus
a — c(a) = 0. Additionally, if a = e, then ¢(‘a) = g and ¢(Ya) — “a = 0.
Therefore,
c(a) — Ya = a — c(a).

This satisfies Eq. (2.5) when a = 9a = e.. Hence, the equilibrium of any com-
plement is its own dual point. &

Theorem 2.5. For each a € [0, 1], “a = c(a) if and only if c¢(c(a)) = a,
that is, when the complement is involutive.

Proof: Let “a = c(a). Then, substitution of c(a) for “a in Eq. (2.5) produces
c(c(@) — cla) = a — cla).

Therefore, ¢(c(a)) = a. For the reverse implication, let ¢(c(a)) = a. Then, sub-
stitution of ¢{c(a)) for a in Eq. (2.5) yields

c(da) — Ya = clc(a)) — cla).

Because “a can be substituted for c(a) everywhere in this equation to yield a
tautology, Ya = c(a). B '

Thus, the dual point of any membership grade is equal to its complemen_ted
value whenever the complement is involutive. If the complement is not involutive,
then either the dual point does not exist or it does not coincide with the comple-
ment point.

These results associated with the concepts of the equilibrium and the dual
point of a fuzzy complement are referenced in the discussion of measures of
fuzziness contained in Chap. 5.

3 FUZZY UNION

The union of two fuzzy sets A and B is specified in general by a function of the
form

u [0, 1] x [0, 11— [0, 1].
For each element x in the universal set, this function takes as its argumen‘; the
pair consisting of the element’s membership grades in set A and in set B and yields

the membership grade of the element in the set constituting the union of A and
B. Thus,

paus(x) = M[MA(X), I-LB(x)]-

In order for any function of this form to qualify as a fuzzy union, it must
satisfy at least the following axioms:
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Axiom ul. u(0,0) = 0; (0, 1) = u(1,0) = u(l, 1) = 1, that is, u behaves
as the classical union with crisp sets (boundary conditions).

Axiom u2. ula, b) = u(b, a); that is, u is commutative.

Axiom u3. If ¢ = a' and b = b’, then u(a, b) = u(a’, b'); that is, u is
monotonic.

Axiom wd. u(u(a, b), ¢) = ula, u(b, ¢)); that is, u is associative.

Let us call this set of axioms the axiomatic skeleton for fuzzy set unions.

The first axiom insures that the function will define an operation that gen-
eralizes the classical crisp set union. The second axiom of commutativity (or
symmetry) indicates indifference to the order in which the sets to be combined
are considered. The third axiom is the natural requirement that a decrease in the
degree of membership in set A or set B cannot produce an increase in the degree
of membership in A U B. Finally, the fourth axiom of associativity ensures that
we can take the union of any number of sets in any order of pairwise grouping
desired; this axiom allows us to extend the operation of fuzzy set union to more
than two sets.

It is often desirable to restrict the class of fuzzy unions by considering var-
ious additional requirements. Two of the most important requirements are ex-
pressed by the following axioms:

Axiom uS. u is a continuous function.
Axiom u6. wu(a, a) = a; that is, u is idempotent.

The axiom of continuity prevents a situation in which a very small increase
in the membership grade in either set A or set B produces a large change in the
membership grade in A U B. Axiom u6 insures that the union of any set with
itself yields precisely the same set.

Several classes of functions have been proposed whose individual members
satisfy all the axiomatic requirements for the fuzzy union and neither, one, or
both of the optional axioms. One of these classes of fuzzy unions is known as the
Yager class and is defined by the function

u(a, by = min[1, (a” + b")V"], (2.6)

where values of the parameter w lie within the open interval (0, «). This class of
functions satisfies Axioms ul through u$5, but these functions are not, in general,
idempotent. Special functions within this class are formed when certain values
are chosen for the parameter w. For instance, for w = 1, the function becomes

ui(a, b) = min[l, a + b];

for w = 2, we obtain

ur(a, b) = min[l, Va* + 5%

Sec. 2.3 Fuzzy Union a7

Since it is not obvious what form the function u,, given by Eq. (2.6) takes
for w — , we use the following theorem.

Theorem 2.6. Lim min[l, (¢” + b*)"*] = max(a, b).

Proof: The theorem is obvious whenever (1) a or b equal 0, or (2) a=b,
because the limit of 2/% as w — o equals 1. If @ # b and the min equals
(@ + b™)", the proof reduces to the demonstration that

lim (¢* + b*)* = max(a, b).
Let us assume, with no loss of generality, that a < b,andlet Q = (@ + 7% B
Then
. In(a” + b™)
IimInQ = hm——(——————.

Ww—>0 w—o

Using I’'Hospital’s rule, we obtain

. a”lna+b"Inb
lim In 0 = lim

Wb 0o W a” + b”

. (a/b)y*Ina +Inb
= lim =

In b.
Wroo (a/b)” + 1

Hence,

lim Q = lim(a” + b")"” = b (=max(a, b)).

It remains to show that the theorem is still valid when the min equals 1. In this

" case,

(aw + bw)l/w =1
or
a” + b =1

for all w € (0, ). When w — =, the last inequality holds ifa = lorb = 1 (since
a, b € [0, 1]). Hence, the theorem is again satisfied. B

The various functions of the Yager class, which are defined by different
choices of the parameter w, can be interpreted as performing union operations of
various strengths. Table 2.1(a) illustrates how the values produced by the Yager
functions for fuzzy unions decrease as the value of w increases. Ip_fact, we may
interpret the value 1/w as indicating the degree of interchangeablllty present in
the union operation u,,. The notion of the set union operation corresponds to the
logical OR (disjunction), in which some interchangeability bet\fveen the two ar-
guments of the statement A or B’ is assumed. Thus, the union .of two fuzzy
sets young and tall would represent the concept young or tall. With the Yager
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TABLE 2.1. EXAMPLES OF FUZZY SET OPERATIONS FROM THE YAGER CLASS.

(a) Fuzzy unions

b= 0 25 5 75 1 b= 0 25 5 75 1
a=1 1 1 1 1 1 a=1 1 1 1 1 1
751 .75 1 1 1 1 ISP 79 09 1 1

5 5 75 1 1 1 S5 56 71 9 1

251 25 | 5 75 1 1 250025 | 35 ) 56 | .79 1

0] 0 25| 5 75 1 0 O 251 .5 75 1

w = 1 (soft) wo=2

b= 0 25 5 75 1 b= 0 25 5 75 1
a=1 1 1 1 1 1 a=1 1 1 1 1 1
51 715 4 75 | 75 | .8 1 5075 75 | 75 TS 1
S .5 54 75 1 S5 .5 5 .75 1

250 25 27| .5 75 1 250 .25 1 25 5 75 1

0 0 251 .5 75 1 0| 0 2505 75 1

w =10 w — oo (hard)

(b) Fuzzy intersections

b= 0 25 5 75 1 b= 10 25 5 75 1
a=1 0 25 1.5 75 1 a=1 0 2501 5 75 1
51 0 0 25 1.5 75 5100 21| 441 651 .75

5 0 0 0 2505 S1 0 A 29 | 44 | S
257 0 0 0 0 .25 2500 0 1 21 .25

0| 0 0 0 0 0 0] 0 0 0 0 0

w = 1 (strong) w=2

b= 0 25 5 75 1 b= 0 25 5 75 1
a=1 0 25 5 75 1 a=1 0 25 5 75 1
500 251 5 300075 51 0 251 5 WARR VA

S5 0 251 46 | 5 .5 S1 00 2515 .5 S5
251 0O 20 25 25 | .25 251 0 25 25 25 25

0] 0 0 0 0 0 0] 0 0 0 0 0

w = 10 w — o (weak)
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fuzzy union for which w = 1, the membership grades in the two sets are summed
to produce the membership grade in their union. Therefore, this union is very
soft and indicates perfect interchangeability between the two arguments. On the
other hand, the Yager function for which w — o (the classical fuzzy union) per-
forms a very hard OR by selecting the largest degree of membership in either set.
In this sense, then, the functions of the Yager class perform a union operation,
which increases in strength as the value of the parameter w increases.

Some other proposed classes of fuzzy set unions along with the correspond-
ing class of fuzzy set intersections are given in Table 2.2. They are identified by
the names of their originators and the date of the publication in which they were
introduced. While we do not deem it essential to examine all these various classes
in this text, the information provided in Note 2.7 is sufficient to allow the reader
to pursue such an examination.

2.4 FUZZY INTERSECTION

The discussion of fuzzy intersection closely parallels that of fuzzy union. Like
fuzzy union, the general fuzzy intersection of two fuzzy sets A and B is specified
by a function ~

i:[0,1] x [0, 11— [0, 1].

The argument to this function is the pair consisting of the membership grade of
some element x in fuzzy set A and the membership grade of that same element
in fuzzy set B. The function returns the membership grade of the element in the

set A N B. Thus,
Rans®) = ilpax), peX)].

A function of this form must satisfy the following axioms in order to be
considered a fuzzy intersection:

Axiom il. (1, 1) = 1;i0, 1) = i(1, 0) = i0, 0) = 0; that is, i behaves as
the classical intersection with crisp sets (boundary conditions).

Axiom i2. ia, b) = i(b, a); that is, i is commutative.
Axiomi3. Ifa=a’andb=»b', theni(a, b) <i(a',b');thatis,iis monotonic.
Axiom i4. i(i(a, b), ¢) = i(a, i(b, c)), that is, i is associative.

The justification for these essential axioms (the axiomatic skeleton for fuzzy set
intersections) is similar to that given in the previous section for the required
axioms of fuzzy union.

The most important additional requirements for fuzzy set intersections,
which are desirable in certain applications, are expressed by the following two

axioms:
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TABLE 2.2. SOME CLASSES OF FUZZY SET UNIONS AND INTERSECTIONS.

Sec. 2.4 Fuzzy intersection

The implications of these two properties for fuzzy intersectio
basically the same as those given in the previous section for fuzzy unions.
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Axiom i5. i is a continuous function.

Axiom i6. i(a, @) = a thatis, i is idempotent.

n operations are

Some of the classes of functions that satisfy Axioms i1 through i4 are shown

in Table 2.2. Let us examine one of these—the Yager class, which is defined by
the function

iva, by = 1 — min[l, (1 — @™ + (1 — b)Yy, 2.7

where values of the parameter w lie in the open interval (0, «).

For each value of the parameter w, we obtain one particular fuzzy set in-
tersection. Like the Yager class of fuzzy unions, all the functions of this class
are continuous but most are not idempotent. For w = 1, the function of Eq. (2.7)

is defined by
ia,b) =1 —-min[l,2 —a — bl;
for w = 2, we obtain
ir»(a, b) = 1 — min{l, V(1 — af + (1 = b7,
similar values are obtained for other finite values of w. For w — to, the form of
the function given by Eg. (2.7) is not obvious and, therefore, we employ the
following theorem.

Theorem 2.7. Lim i, = lim (1 — min(l, (1 — @) + 1 - "™
= min(a, b).
Proof: From the proof of Theorem 2.6, we know that

lim min{t, [(1 — @ + (1 = )*1"*] = max[l - a, 1 - bl

Thus, i-(a, b) = 1 — max{l —a, 1 — b). Let us assume, with no loss of generality,
thata = b. Then, 1 —a=1— b and

iwla,b) = 1 — (1 —a) = a

Hence, i.(g, b) = min(a, b), which concludes the proof. &

As is the case with the functions in the Yager class of fuzzy unions, the
choice of the parameter w determines the strength of the intersection operations
performed by the Yager functions of Eq. (2.7). Table 2.1(b) illustrates the in-
creasing values returned by the Yager intersections as the value of the parameter
w increases. Thus, the value 1/w can be interpreted as the degree of strength of
the intersection performed. Since the intersection is analogous to the logical AND
(conjuction), it generally demands simultaneous satisfaction of the operands of A
and B. The Yager intersection for which w = 1returns a positive value only when
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the summation of the membership grades in the two sets exceeds 1. Thus, it
performs a hard intersection with the strongest demand for simultaneous set mem-
bership. In contrast to this, the Yager function for which w — o, which is the
classical fuzzy set intersection, performs a soft intersection that allows the lowest
degree of membership in either set to dictate the degree of membership in their

intersection. In effect then, this operation shows the least demand for simultane-
ous set membership.

2.5 COMBINATIONS OF OPERATIONS

It is known that fuzzy set unions that satisfy the axiomatic skeleton (Axioms ul
through u4 given in Sec. 2.3) are bounded by the inequalities

max(a, b) = u(a, b) = umax(a, b), (2.8)
where

a whenb = 0,
Umax(a, b) = 4b whena = 0,
1 otherwise.

Similarly, fuzzy set intersections that satisfy Axioms il through i4 (given in Sec.
2.4) are bounded by the inequalities i

imin(a, b) = i(a, b) = min(a, b), (2.9)
where
a whenb =1,

Imina, b) = 4b whena = 1,
0 otherwise.

I

The inequalities u(a, b) = max{(a, b) and i(a, b) = min(a, b) are often used
as axioms for fuzzy unions and intersections, respectively, instead of the axioms
of associativity. However, these inqualities as well as those for umax and imin can
be derived from our axioms as shown in the following four theorems.

Theorem 2.8, Forall a, b € [0, 1], u(a, b) = max(a, b).

Proof: Using associativity (Axiom u4), the equation

u(a, w(0, 0)) = wu(u(a, 0), 0)

is valid. By applying the boundary condition u(0, 0) = 0 (Axiom ul), we can
rewrite this equation as

u(a, 0) = u(u(a, 0), 0).

Assume now that the solution of this equation is u(a, 0) = a 3 a. Substitution
of a for u(a, 0) in the equation yields « = u(a, 0), which contradicts our as-
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sumption. Hence, the only solution of the equation is u(a, 0) = a. Now, by
monotonicity of # (Axiom u3), we have
u(a, b) = u(a, 0) = a,
and, by employing commutativity (Axiom u2), we also have
ua, b) = u(b, a) = u(b, 0) = b.

Hence, u(a, b) = max(a, b). B

Theorem 2.9. For all a, b € [0, 1], u(a, b) = umax(a, b).

Proof: When b = 0, then u(a, b) = a (see the proof of Theorem 2.8) and
the theorem holds. Similarly, by commutativity, when a = 0, then ula, b) = b,
and the theorem again holds. Since u(a, b) € [0, 11, it follows from Theorem 2.8
that u(a, 1) = u(l, b) = 1. Now, by monotonicity we have

u(a, b) < u(a, 1) = u(l, b) = 1.
This concludes the proof. &

Theorem 2.10. For all a, b € [0, 1], i(a, b) = min{a, b).

Proof: The proof of this theorem is similar to that of Theorem 2.8. First, we
form the equation

ia, i(1, 1)) = i(ia, D, 1)

based on the associativity of i. Then, using the boundary condition i(1, 1) = 1,
we rewrite the equation as

ia, 1) = i(i(a, D, 1.
‘The only solution of this equation is i(a, 1) = a. Then, by monotonicity we have
i(a, b) = i(a, 1) = a,
and by commutativity
i(a, b) = i(b, a) = i(b, 1) = b,
which completes the proof. B

Theorem 2.11. For all a, b € [0, 1], i(a, b) = iminla, b).

Proof: The proof is analogous 10 the proof of Theorem 2.9. Wben b. ;— é,
then i(a, b) = a (see the proof of Theorem 2.10) and the theorem 1s satisiied.
Similarly, commutativity ensures that whena = 1, i(a, b) = b zfnd the the?orem
holds. Since i(a, b) € [0, 1], it follows from Theorem 2.10 that i(a, 0) = i(0, b)
= 0. By monotonicity,

i(a, b) = {0, b) = i(a,0) = 0

and the proof is complete. B
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We can see that the standard max and min operations have a special sig-
nificance: they represent, respectively, the lower bound of functions u (the strong-
est union) and the upper bound of functions i (the weakest intersection). Of all
the possible pairs of fuzzy set unions and intersections, the max and min functions
are closest to each other. That is, for all a, b € [0, 1], the inequality

max(a, b) — min(a, b) = |a — b | = u(a, b) — i(a, b)

is satisfied for any arbitrary pair of functions u and i that qualify as a fuzzy set
union and intersection, respectively. The standard max and min operations there-
fore represent an extreme pair of all the possible pairs of fuzzy unions and in-
tersections. Moreover, the functions of max and min are related to each other by
DeMorgan’s laws based on the standard complement ¢(a) = 1 — a, that is,

max(a, b) = 1 — min(1 — a, 1 — b),
min(a, b) = 1 — max(1 — a, 1 — b).

The operations #max and imi, represent another pair of a fuzzy union and a
fuzzy intersection which is extreme in the sense that for all a, b € [0, 1], the
inequality

Umax(@, b) — imin(a, b) = u(a, b) — i(a, b)

is satisfied for any arbitrary pair of fuzzy unions « and fuzzy intersections i. As
is the case with the standard max and min operations, the operations #max and

imin are related to each other by DeMorgan’s laws under the standard complement,
that is,

U@y ) =1 — famin(l — @, 1 — b)»
imin(a, b) =1 — Umax(l — a, 1 = b).

The Yager class of fuzzy unions and intersections, discussed in Secs. 2.3
and 2.4, covers the entire range of these operations as given by inequalities (2.8)
and (2.9). The standard max and min operations are represented by w — o, and
the #max and imin Operations at the other extreme are represented by w — 0. Of
the other classes of operations listed in Table 2.2, the full range of these operations
is covered only by the Schweizer and Sklar class (with p — o for the standard
operations and p — —o for the other extreme) and by the Dombi class (with
N — o representing the standard operations and A — 0 the other extreme).

The standard max and min operations are additionally significant in that they
constitute the only fuzzy union and intersection operators that are continuous
and idempotent. We express this fact by the following two theorems.

Theorem 2.12. u(a, b) = max(a, b) is the only continuous and idempotent
fuzzy set union (i.e., the only function that satisfies Axioms ul through u6).
Proof: By associativity, we can form the equation

u(a, u(a, b)) = u(u(a, a), b).
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The application of idempotency (Axiom u6) allows us to replace u(a, a) in this
equation with a and thus to obtain

A
u(a, (u(a, b)) = (ila, b).
Similarly,
u(u(a, b), b) = u(a, u(b, b)) = u(a, b).

Hence,

u(a, u(a, b)) = u(u(a, b), b)
or, by commutativity,

u(a, u(a, b)) = u(b, u(a, b)). (2.10)

i i i i isfied. Let a < b and
When a = b, idempotency is applicable and Eq. (2.10) is satisfie
assume that u(a, b) = o, where a # a and a # b. Then, Eq. (2.10) becomes

ula, o) = u(b, o).

Since u is continuous (Axiom u5) and monotonic nondecreasing (Axiom u3) with
u(0, @) = o and u(l, o) = 1 (as determined in proofs of Theorems 2.8 and 2.9,
respectively), there exists a pair a, b € [0, 1] such that

u(a, o) < u(b, o)

and, consequently, the assumption is not warranted.® Assunr}e now. tl?a} u(a, b)
= g = min(a, b). This assumption is also unacceptable, since it violates tl'{e
boundary conditions (Axiom ul) when a = 0 and b = 1. The final pos'51.b111ty is
to consider u(a, b) = b = max(a, b). In this case, the boundary conditions are
satisfied and Eq. (2.10) becomes

u(a, b) = u(b, b);

that is, it is satisfied for all a < b. Because of commutati_vity, the same argur_nent
can be repeated for a > b. Hence, max is the only function that satisfies Axioms
ul through u6. W

Theorem 2.13. i(a, b) = min(a, b) is the only continuc_)us apd idempot_ent
fuzzy set intersection (i.e., the only function that satisfies Axioms il through i6).

Proof: This theorem can be proven in exactly the same way as Theorem
2.12 by replacing function « with function i and by applying Ax1orps il through
i6 instead of Axioms ul through u6. The counterpart of Eq. (2.10) is
i(a, i(a, b)) = i(b, i(a, b)).

We use the same reasoning as in the proof of Theorem 2.8, albeit with different
boundary conditions (Axiom il instead of Axiom ul) to conclude that i(a, b)
= min(a, b) is the only solution of this equation. W

* This is a consequence of the intermediate value theorem for continuous functions.
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The operations of complement, union, and intersection defined on crisp sub-
sets of X form a Boolean lattice on the power set P(X), as explained in Sec. 1.5;
they possess the properties listed in Table 1.1 (or, in the abstracted form, in Table
1.4). The various fuzzy counterparts of these operations are defined on the power
set P (X)—the set of all fuzzy subsets of X. It is known that every possible selection
of these three fuzzy operations violates some properties of the Boolean lattice on
P(X). Different selected operations, however, may violate different properties of
the Boolean lattice. Let us examine some possibilities.

It can be easily verified that the standard fuzzy operations satisfy all the
properties of the Boolean lattice except the law of excluded middle A U A = X
and the law of contradiction A N A = J. These operations are said to form a
pseudo-complemented distributive lattice on P(X). We know from Theorems 2.12
and 2.13 that the max and min operations are the only operations of fuzzy union
and intersection that are idempotent. This means, in turn, that none of the other
possible operations of fuzzy unions and intersections form a lattice on % (X). Some

of them, however, satisfy the law of excluded middle and the law of contradiction,
which for fuzzy sets have the form

ula, c{a)) =1 and ia, c(a)) =0
for all a € [0, 1]. These latter operations are characterized by the following
theorem.

Theorem 2.14. Fuzzy set operations of union, intersection, and continuous
compiement that satisfy the law of excluded middle and the law of contradiction
are not idempotent or distributive.

Proof: Since the standard operations do not satisfy the two laws of excluded
middie and of contradiction and, by Theorems 2.12 and 2.13, they are the only
operations that are idempotent, operations that do satisfy these laws cannot be

idempotent. Next, we must prove that these operations do not satisfy the dis-
tributive laws,

u(a, Kb, d)) = i(u(a, b), ua, d)) 2.11)
and
i(a, u(b, d)) = u(i{a, b), ila, d)). (2.12)

Let e denote the equilibrium of the complement ¢ involved, that is, c{e) = e.
Then, from the law of excluded middle, we obtain

ue, c(e)) = ule, ) = 1;
similarly, from the law of contradiction,
i(e, c(e)) = ile, &) = 0.
Then, by applying e to the left hand side of Eq. (2.11), we obtain
ule, i(e, €)) = u(e, 0).
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i i ‘ he requirement that c(0) = 1
We observe that e is neither 0 nor 1 because of t
and c(1) = 0 (Axiom c1). By Theorem 2.8 and Theorem 2.9, we have u(e, 0)

= e and, consequently,
ule, ife, e)) = e (# 1.

Now we apply e to the right hand side of Eq. (2.11) to obtain
i(u(e, e), u(e, €)) = i1, 1) = 1

i istributi is violated.
This demonstrates that the distributive law (2.1.1) is vio
l Let us now apply e to the second distributive law (2.12). By Theorems 2.10

and 2.11, we obtain
i(e, ule, ) = ie, ) = e (0,
and
u(ite, e), i(e, €)) = u(0, 0) = 0,
which demonstrates that Eq. (2.12) is not satisfied. This completes the proof. &

It follows from Theorem 2.14 that we may, if it is des.ired, preserve Fhe Iav(\;
of excluded middle and the law of contradiction in our choxge of f_uzzy union an
intersection operations by sacrificing idempoten.cy e}nd dlstrlbthlty, T};le r;:l/grse
is also true. The context of each particular application determines which of these
options is preferable.

It is trivial to verify that #max imin» and the standard complement s_atis_fy thef
law of excluded middie and the law of contradiction. Another combination O
operations of this type is the following:
u(a, by = min(l, a + b),
ila, b) = max(0, a + b — 1,
ca) =1 — a.
As previously mentioned, these operations do not fo‘rrr} a lattic? on QP(X). o t
Given two of the three operations u, I, and ¢, 1t 18 soqletlmes desxra' f? do
determine the third operation in such a way Fhat DeMorgan’s laws are satistied.
This amounts to solving the functional equation
cufa, b)) = ilcla), c(b)) (2.13)
with respect to the unknown operation. When ¢ is continuous and involutive, we
have
ula, b) = clilc(a), c(b))] (2.14)

and
ia, b) = clu(c(a), c(b)]. (2.15)
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Example 2.1.

Given u(a. b) = max(a, b) and c(a) = (1 — a*)"2, determine i such that DeMorgan’s
laws are satisfied. Employing Eq. (2.15), we obtain

i(a, b) — (1 _ L{Z[(l . 02)1/2, (1 _ bZ)l/Z])l/Z
— (1 . maXZ[(l . aZ)l/Z’ (1 _ bZ)l/Z])l/Z'

Solving Eq. (2.13) for ¢ is more difficult and may result in" more than one
solution. For example, if the standard max and min operations are employed for
u and i, respectively, then every involutive complement satisfies the equation.
Hence, max, min, and any of the Sugeno complements (or Yager complements)
defined in Sec. 2.2 satisfy DeMorgan’s laws.

For the sake of simplicity, we have omitted an examination of the properties
of one operation that is important in fuzzy logic—fuzzy implication, =. This
operation can be expressed in terms of fuzzy disjunction, \/, fuzzy conjunction,
/\, and negation, ~, by using the equivalences

a>b=aVb or a>b=ab.

By employing the correspondences between logic operations and set operations

defined in Table 1.5, the equivalences just given can be fully studied in terms of
the functions )

u(c(a), b) or c(i(a, c(b))).

Different fuzzy implications are obtained when different fuzzy complements ¢ and
either different fuzzy unions u or different fuzzy intersections i are used.

2.6 GENERAL AGGREGATION OPERATIONS

Aggregation operations on fuzzy sets are operations by which several fuzzy sets

are combined to produce a single set. In general, any aggregation operation is
defined by a function

h:[0,117"— [0, 1]

for some n = 2. When applied to n fuzzy sets A;, A, . . . , A, defined on X, h
produces an aggregate fuzzy set A by operating on the membership grades of each

x € X in the aggregated sets. Thus,
RaC) = Al (0, pa®), . . ., pa, ()
for each x € X.
In order to qualify as an aggregation function, 4 must satisfy at least the

following two axiomatic requirements, which express the essence of the notion

of aggregation:

Axiom hi. 40,0, ..., 0) = 0 and RO, 1, ..., D) =1 (boundary

~ conditions).
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Axiom h2. For any pair (a; | i € N,) and (b; | i € N,,), where a; € [0, 1]‘and
b; € [0, 11, if a; = b; for all i € N,,, then h(a; | i € N,) = h(b;|i € N,), that is, &
is monotonic nondecreasing in all its arguments.

Two additional axioms are usually employed to characterize aggregation
operations despite the fact that they are not essential:

Axiom h3. 1/ is a continuous function.

Axiom hd. % is a symmetric function in all its arguments, that is,
h(ai| i € Nn) = h(ap(,-)| [ € Nn)

for any permutation p on N,,.

Axiom h3 guarantees that an infinitesimal variation in any argument of /2
does not produce a noticeable change in the aggregate. Axiom h4 reflects j[he
usual assumption that the aggregated sets are equally important. If this assumption
is not warranted in some application context, the symmetry axiom must be
dropped. .

We can easily see that fuzzy unions and intersections qualify as aggregatlop
operations on fuzzy sets. Although they are defined for only two arguments, thelr
property of associativity guaranteed by Axioms u4 and i4 provides a mecharpsm
for extending their definition to any number of arguments. Henge, fuzzy unions
and intersections can be viewed as special aggregation operations that are sym-
metric, usually continuous, and required to satisfy some additional boundary con-
ditions. As a result of these additional requirements, fuzzy unions and intersec-
tions can produce only aggregates that are subject to restrictions (2.8) and (2.9).
In particular, they do not produce any aggregates of a4, as, . . . , a, that produce
values between min(a, a2, . . ., a,) and max(a,, as, . . . , a,). Aggregates that
are not restricted in this way are, however, allowed by Axioms hl through h4;
operations that produce them are usually called averaging operations. .

Averaging operations are therefore aggregation operations for which

min(a;, az, . . ., a,) = h(ai, as, . . ., a,) = max(ag, dz, . . ., ap). (2.16)

In other words, the standard max and min operations represent boundarie§ be-
tween the averaging operations and the fuzzy unions and intersections,
respectively.

One class of averaging operations that covers the entire interval between
the min and max operations consists of generalized means. These are defined by
the formula

1/
ay + a5 + - + aj;
htx(ala az, . . ., an) = ( : - n ) > (217)

where o € R (o # 0) is a parameter by which different means are distinguished'.
Function A, clearly satisfies Axioms hl through h4 and, consequeptly, it
represents a parameterized class of continuous and symmetric aggregation op-
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erations. It also satisfies the inequalities (2.16) for all o € R, with its lower bound

h-wlai, az, ..., a,) = min(a,, az, . . . , a,)
and its upper bound

holay, az, ..., a,) = max(a:, az, . . ., a,).

For fixed arguments, function 4, is monotonic increasing with a. For o — 0, the

function %, becomes the geometric mean

holay, az, . .., a,) = (a; - as - a,)";
furthermore,

h-i(ay, az, . .., a,) =

is the harmonic mean and

1
hiay, az, ..., a,) = ;(al +ax; + -+ a,)

is the arithmetic mean.

Since it is not obvious that 4, represents the geometric mean for o — 0, we
use the following theorem. ’

Theorem 2.15. Let 4, be given by Eq. (2.17). Then,

lim i, = (a, - ay -+ a,)".

>0

Proof: First, we determine

lim In A, = lim Inaf + a$ + - + a) — Inn

a=>0 a—0 63

Using I"Hospital’s rule, we now have

) . aflna s P
lim In s, = lim & 1+ asina, + + a, In a,
a—>0 a—>0 ag + a% + oo o+ aﬁ

Ina, + na, + - + Ina,
n

= In(a; - az - a,)"".
Hence,

lim ha = (al t Ay an)”". ]

o—>0

When it is desirable to accommodate variations in the importance of individual
aggregated sets, the function 4, can be generalized into weighted generalized
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means, as defined by the formula

n 1/
h(x(alaa27'":an;WI’WZ""’wn) N <2 Wia;'l) ’ (218)

i=1

where w; = 0 (i € N,) are weights that express the relative importance of the
aggregated sets; it is required that

E w; = 1.

i=1
The weighted means are obviously not symmetric. For fixed arguments and
weights, the function A, given by Eq. (2.18) is monotonic increasing with a.

The full scope of fuzzy aggregation operations is summarized in Fig. 2.5.

Included in this diagram are only the generalized means, which cover the entire
range of averaging operators, and those parameterized classes of fuzzy unions
and intersections given in Table 2.2 that cover the full ranges specified by the
inequalities (2.8) and (2.9). For each class of operators, the range of the respective
parameter is indicated. Given one of these families of operations, the identification
of a suitable operation for a specific application is equivalent to the estimation of
the parameter involved.

Dombi Dombi
0 N o 0 —t— N —<— 0

Schweizer/Sklar Schweizer/Sklar
~00 —P—— p —P—— oo 00 rf—— P —f—— —cO

Yager Yager
0 —»— W —»— o o —— W —=— 0

Generalized means
—00 e (P OO

min min max max
- ~ A v U v v
Intersection Averaging Union
operations operations operations

Figure 2.5. The full scope of fuzzy aggregation operations.
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NOTES

2.1.

2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

In the seminal paper by Zadeh [1965a], fuzzy set theory is formulated in terms of
the standard operations of complement, union, and intersection, but other possi-
bilities of combining fuzzy sets are also hinted at.

The first axiomatic treatment of fuzzy set operations was presented by Bellman and
Giertz [1973). They demonstrated the uniqueness of the max and min operators in
terms of axioms that consist of our axiomatic skeletons for # and i, the axioms of
continuity, distributivity, strict increase of u(a, a) and i(a, a) in a, and lower and
upper bounds u(a, b) = max(a, b) and i(a, b) = min(a, b). They concluded, however,
that the operation of fuzzy complement is not unique even when all reasonable
requirements (boundary conditions, monotonicity, continuity, and involution) are
employed as axioms. A thorough investigation of properties of the max and min
operators was done by Voxman and Goetschel [1983].

The Sugeno class of fuzzy complements results from special measures (called
A-measures) introduced by Sugeno [1977]. The Yager class of fuzzy complements
is derived from his class of fuzzy unions defined by Eq. (2.6) by requiring that
A U C(A) = X, where A is a fuzzy set defined on X. This requirement can be ex-
pressed more specifically by requiring that u,,(a, ¢,(a)) = 1for all a € [0, 1] and all
w > 0.

Different approaches to the study of fuzzy complements were used by Lowen [1978],
Esteva, Trillas, and Domingo [1981], and Ovchinnikov [1981, 1983]. Yager [1979b,
1980a] investigated fuzzy complements for the purpose of developing useful mea-
sures of fuzziness (Sec. 5.2). Our presentation of fuzzy complements in Sec. 2.2 is
based upon a paper by Higashi and Klir [1982], which is also motivated by the aim
of developing measures of fuzziness. :

The Yager class of fuzzy unions and intersections was introduced in a paper by
Yager [1980b], which contains some additional characteristics of these classes. Yager
[1982b] also addressed the question of the meaning of the parameter w in his class
and the problem of selecting appropriate operations for various purposes.

The axiomatic skeletons that we use for characterizing fuzzy intersections and unions
are known in the literature as triangular norms (or t-norms) and triangular conorms
(or t-conorms), respectively [Schweizer and Sklar, 1960, 1961, 1983]. These concepts
were originally introduced by Menger [1942] in his study of statistical metric spaces.
In current literature on fuzzy set theory, the terms #-norms and z-conorms are used
routinely.

Classes of functions given in Table 2.2 that can be employed for fuzzy unions and
intersections were proposed by Schweizer and Sklar [1961, 1963, 1983], Hamacher
[1978], Frank [1979], Yager [1980b], Dubois and Prade [1980b], and Dombi [1982].
Additional theoretical studies of fuzzy set operations were done by Trillas, Alsina,
and Valverde [1982], Czogala and Drewniak [1984], Klement [1984], and Silvert
[1979]. A good overview of the various classes of fuzzy set operations was prepared
by Dubois and Prade [1982a]; they also overviewed properties of various combi-
nations of fuzzy set operations [Dubois and Prade, 1980b].

The issue of which operations on fuzzy sets are suitable in various situations was
studied by Zimmermann [1978a], Thole, Zimmermann, and Zysno [1979], Zimmer-
mann and Zysno [1980], Yager [1979a, 1982b], and Dubois and Prade [1980b].
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i i fuzzy implication operators.
2.9, One class of operators not covered in this book are
They were extensively studied by Bandler and Kohout [1980a, b] and Yager [1983b].
2.10. An excellent overview of the whole spectrum of aggregation opera‘_uons on fuzzy
sets was prepared by Dubois and Prade [1985a]; it covers fuzzy unions and inter-
sections as well as averaging operations. In another paper, Dub.01s and ?rad@ [1984b]
presented a similar overview in the context of decision-making applications. The
class of generalized means defined by Eq. (2.17) is covered in a paper by Dyckhoff
and Pedrycz [1984].
EXERCISES
*2.1. Using Sugeno complements for A = 1, 2, 10 and Yager complements forw =1, 2,
3, determine complements of the following fuzzy sets:
(a) the fuzzy number defined in Fig. 1.2;
(b) the fuzzy sets defined in Exercise 1..3;
(c) some of the fuzzy sets defined in Fig. 1.9. ,
~3.2. Does the function c¢(a@) = (1 — @)” qualify for each w >0 as a fuzzy complement?
Plot the function for some values w > 1 and some values w < 1. .
2.3. Prove that the Sugeno complements are monotonic nonincreasing (Axjom ¢2) for all
e i how that
<2.4. Show that the Sugeno complements are involutive for all A € (—1, »). Show tha
the Yager complements are involutive for w € (1, ®). .
%.5. Show that the equilibria e, for the Yager fuzzy complements are given by the
formula
e., = (/2.
Plot this function for w € (0, 10]. o .
%2.6. Prove that Axioms ul through u5 (or il through i5) are satisfied by all fuzzy unions
(or intersections) in the Yager class. . . .
v2.7. Prove that the following properties are satisfied by all fuzzy unions in the Yager
class: & e, D = 1
a) unla, 0) = a; ula, 1) = 1; .
Ec; uwga a) = a; (@) if w=w’', then u,.(a, b) = u,(a, b);
{e) lim u(a, b) = Umax(a, D).
w—0 . )
¢ 2.8. Prove that the following properties are satisfied by all fuzzy intersections in the Yager
class: ® i D '
@) iv(a, 0) = 0; iy(a, 1) = a; . _
© ivla, a) =a; (@) if w = w’', then i,(a, b) = iw(a, b);
(e) hm iw(aa b) = imin(aa b)
w—0
12.9. Show that u,.(a, c,,(a)) = 1 for all ¢ € [0, 1] and all w > 0, where u,, and c,, denote
the Yager union and complement, respectively (Note 2.3).
%3 10. For each class of fuzzy set unions and intersections defined in Table 2.2 and several

values of the parameter involved (values 1 and 2, for instance), determine mem-
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2.11.

2.12.

2.13.
2.14.

2.15.

2.16.

2.17.

2.18.
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bership functions of the respective unions and intersections in a form similar to Table
2.1,

For each of the classes of fuzzy unions defined by the parameterized functions in
Table 2.2, show that the function decreases with an increase in the parameter.

For each of the classes of fuzzy intersections defined by the parameterized functions
in Table 2.2, show that the function increases with any increase in the parameter.

The proof of Theorem 2.13 is outlined in Sec. 2.5. Describe the proof in full detail.

Show that the following operations satisfy the law of excluded middle and the law
of contradiction:

(@) Umax; imin, €(@) = 1 ~ a;

M) wa, b) = min(l, a + b), i(a, b)) = max(0,a + b — 1),c(a) =1 — a.

Show that the following operations on fuzzy sets satisfy DeMorgan’s laws:

(a) Umax » imins C(a) =1- a;

(b) max, min, ¢, is a Sugeno complement for some \ € (~1, «);

(¢) max, min, ¢, is a Yager complement for some w € (0, »);

Determine the membership function based on the generalized means (in a form similar
to Table 2.1) fora = -2, —1, 0, 1, 2; assume only two arguments and, then, repeat
one of the cases for three arguments.

Show that the generalized means defined by Eq. (2.17) become min and max op-
erations for « — —o and a — oo, respectively.

Demonstrate that the generalized means %, defined by Eq. (2.17) are monotonic
increasing with a for fixed arguments.
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