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A fuzzy set i8 a class of objects with a continuum of grades of
membership. Such a sel is characterized by a membership (charac-
teristic} function which assigns to each ohject a grade of member-
ship ranging between zero and one. The notions of inelusion, union,
intersectlon, complement, relation, convexity, etc., are extended
te such sets, and various properties of these notions in the context
of fuzzy sets are established. In particular, a separation theorem for
convex fuzzy sets iz proved without requiring that the fuzzy sets be
disjoint,

I. INTRODUCTION

More often than not, the classes of objects encountered in the real
physical world do not have precisely defined criteria of membership,
For example, the class of animals clearly includes dogs, horses, birds,
etc. as 1t8 members, and clearly excludes such objects as rocks, fluids,
plants, etc. However, such objects as starfish, bacteria, etc. have an
ambiguous status with respect to the class of animals. The same kind of

“ambiguity arises In the case of & number such as 10 in relation to the
“class” of all real numbers which are much greater than 1.

Clearly, the ‘““‘class of all real numbers which are much greater than
1, or “the class of beautiful women,” or “the class of tall men,” do not
constitute ciasses or sets in the usual mathematical sense of these terms.
Yet, the fact remains that such imprecigely defined ‘‘classes’” play an
important role iIn human thinking, particularly in the domains of pattern
recognition, communication of information, and abstraction,

The purpose of this note is to explore in a preliminary way some of the
basic properties and implications of a concept which may be of use in
dealing with “claszes’ of the type cited above. The coneept in question
is that of a fuzzy set,’ that is, a “class” with a continuum of grades of
membership. As will be seen in the sequel, the notion of & fuzzy set
provides a convenient point of departure for the construction of a con-
ceptual framework which parallels in many respects the framework
used in the ease of ordinary sets, but is more general than the latter and,
potentially, may prove to have a much wider scope of applicabibity,
particularly in the fields of pattern classification and information proc-
essing. Essentially, such a framework provides a natural way of dealing
with problems in which the source of imprecision is the absence of sharply
defined eriteria of class membership rather than the presence of random

variables,
We begin the discussion of fuzzy sets with several basic definitions,

[I. DEFINFTIONS

Lot X be a space of points (objeets), with a generie element of X de-
noted by x. Thus, X = [z].

* This work was supported in part by the Joint Services Electronics Program
(U.8. Army, U.8. Navy and U.8. Air Force) under Grant No. AF-AFQOSR-139-64
and by the National Science Foundation under Grant GP-2413.

' An zpplication of this coneept to the formulation of a elass of problems in
pattern classification ig deseribed in RAND Memorandum BEM-4307-PR, “Ab-
straction and Pattern Classifieation,” by R. Beliman, R. Kalaba and L. A. Zadeh,
(etoher, 1964, |
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FUZZY SETS

A fuzzy set (class) A in X is characterized by a membership (charac-
teristic) funection fi(x) which associates with each point’ in X a real
number in the interval [0, 1]," with the value of f,(z) at 2 representing
the “grade of membership” of x in A. Thus, the nearer the valie of

f4(x) to unity, the higher the grade of membership of 2 in 4. When A4

s a sci in the ordinary sense of the term, its membership function can
take on only two values 0 and 1, with fi(2z) = 1 or 0 according as x
does or does not belong to A. Thus, in this case f.(2) reduces to the

familiar characteristic function of a set A. (When there is a need to
- differentiate between such sets and fuzzy sets, the sets with two-valued

characteristic functions will be referred to as ordinary sets or simply sefs.)
flrample. Let X be the real line R’ and let 4 be a fuzzy set of numbers
which are much greater than 1. Then, one can give a precise, albeit
subjective, characterization of A by specifying f,(z) as a function on R".

- Representative values of such a function might be: f,(0) = 0; f a(1) = 0:

fa(5) = 0.01; F4(10) = 0.2; £,(100) = 0.95; f.(500) = 1.

It should be noted that, although the membership function of a fuzzy
set has some resemblance to a probability funetion when X isa countable
set (or a probability density function when X is a continuum ), there are
essential differences between these concepts which will become clearer
in the sequel once the rules of combination of membership functions and
their basic properties have been established. In fact, the notion of a
fuzzy set is completely nonstatistical in nature.

We begin with several definitions involving fuzzy sets which are

‘obvious extensions of the corresponding definitions for ordinary sets.

‘A fuzzy set is empty if and only if ifs menbership function is identically

zero on X.

Two fuzzy sels A and B arc equal, written as A = B, if and only if
fa(z) = fa(z) for all x in X. (In the sequel, instead of writing f,(z) =

Je(z) for all z in X, we shall write more simply fa = fy.)

The complement of a fuzzy set A is denoted by A’ and is defined by
f.-l‘ — 1."’f.-1- (1)

As m the case of ordinary sets, (he notion of containment plays a
central role in the case of fuzzy sets. This notion and the related notions

of union and 1ntersection are defined as follows.

Containment. A is contained in B (or, equivalently, A is a subsel of B,
or A 18 sinaller than or equal to B) if and only if f4 < fs . In symbols

ACBefi £ /. | (2)

Cnion. The union of two fuzzy sets A and B with respective member-
ship functions f.(z) and fa(x) is a fuzzv set C, writtenas ¢ = 4 U B,

whose membership function is related to those of 4 and B by

fe(@) = Max [f.(2), fa(2)), 1z X (3)

or, 1n abbreviated form

Je=fa ¥ [s. (4)

Note that U has the associative property, that is, A U (B U ) =
(A4 U B Uc.

Cominent. A more intuitively appealing way of defining the union is

* More generally, the domain of definition of f,(z) may be restricted to a sub-
set of X. - ‘
3 In a more general setting, the range of the membership function can be taken
to be a suitable partially ordered set P. For our purposes, it is convenient and
sufficient. to restrict the range of f to the unit interval. If the values of f, (x) are
interpreted as truth values, the latter case corresponds to a multivalued logic
with a eontinuum of truth values in the interval [0, 1]. |
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t, (x),fa(x)

- X
Fig. 1. Illustration of the union and intersection of fuzzy sets in R?

the following: The union of A and B is the smallest fuzzy set containing
both 4 and B. \Inre precisej;;, if.D i&—&ny fuzzy“set: which contains both

__.U.w_ —_— T

Tﬂ show that this deﬁmtmn is equwalent to ( 3) we note, first, that ¢
as defined by (3) contains both 4 and B, since -

Max{fs, fel 2 4

and

Max [f4, fs] 2 f5.

Furthermore, if ) 18 any fuzzy set containing both 4 and B, then |
Jo 2 fa
fo2fs

and hence

fo 2 Max [fa, f5] = f¢

which imiplies that ¢ < D. Q.E.D.

‘The notion of an intersection of fiizzy sets ean be defined in an analo-
gous manner. Spectfically:

Intersection. The mtersection of two fuzzy sets A and B with respective
membership functions f,(z) and fz(z) is a fuzzy set C, written as ¢ =
A N B, whose membnrship function is related to those of A and B by

fr-(:z:) = \[m [fq(l') falx)}], r & X, (5)

or, in abbreviated form

fe=1IxAfp. (8)

As In the case of the union, it is easy to show that the intersection of
A and B 1s the largest fuzzy set which is contained in both A and B. As
in the case of ordinary sets, A and B are disjoint if A ) B is empt}r
Note that N, like U, has th{, associative property.

The intersection and union of two fuzzy sets in R' are illustrated in
Fig. 1. The membership funetion of the union is comprised of curve seg-

ments 1 and 2; that of the interseetion is comprised of segments 3 and 4
~ (heavy lines). |

Comanent, Note that the notion of “belonging,”” which plays a funda-

mental role in the case of ordinary sets, does not have the same role in
the case of fuzzy sets. Thus, it 18 not meaningful to speak of a point x

“belonging’ to a fuzzy set A except in the trivial sense of f.(z) being
positive. Less trivially, one can introduce two levels e and 8 (0 < a < 1,
0 < 8 < 1, a > B) and agree to say that (1) “z belongs to 4" if
f4(z) = «; (2) “x does not belong to A’ if f.(z) < 8; and (3) “x has
an indeterminate status relative to AV if 8 < f4(x) < «. This leads to a
three-valued logic (Kleene, 1952) with three truth values: 7T
(falz) 2 ), F (fa(xz) = 8),and U (B < fa(z) < a).
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I SOME PROPERTIES OF |, . AND COMPLEMENTATION

With the operations of union, intersection, and complementation
defined as in (3), (5), and (1), it is easy to extend many of the basic
identities which hold for ordinary sets to fuzzy scts, As examples, we have

Ej % g;; :j; B g;}I)e Morgan’s laws | Eg
CNAUB) = (CNA)UW@NB) Distributive laws. (9)
CUMANB) =(cU4)N(cUB) (10)

- These and similar equalities can readily be established by showing
that the corresponding relations for the membership functions of A, 72,
and C are identities. For example, in the case of (7), we have

1 — Max [f_-[ ,fﬁ] = Min [1 —fA ] | _f.B] | (11)

which can be easily verified to be an identity by testing it for the {wo
possible cases: f.(z) > fu(z) and f,(2) < fa(z). |
Similarly, in the case of (10), the corresponding relation in {erins of

fa,fa,and fris: |

Max (fo, Min [, , fo] = Min [Max [fe, f.], Max [fe, fs]} (12)
which can be verified to be an identity by considering the six cases:
[4(2) > fa(2) > fol2), fa(2) > fol@) > Jal2), falx) > fala) > fo(z)
13(2) > fel@) > fu(2), [e(2) > [a(2) > fa(@), ful2) > folz) > fo(2).

kissentially, fuzzy sets in X constitute s distributive lattice with a O
and 1 (Birkhoff, 1948),

AN INTERPRETATION FOR UNIONS AND INTERSECTIONS

[n the case of ordinary sets, a set ¢ which is expressed In terms of a
family of sets Ay ,----, 4, -+, A, through the connectives U and N,
can be represented as a network of switches ay , T, ey, with A; 1N A4
and 4; U A; ecorresponding, respectively, to series and parallel combina-
tions of a; and «; . In the case of fuzzy sets, one ¢an give an analogous
interprelation in terms of sieves, Specifically, let fi(x),z =1, -+, m,
denote the value of the membership function of 4; at z. Associate with
Ji(x) a sieve S:(x) whose meshes are of size fi(x). Then, fi{z} v f{z)
and fi(x) A f;(x) correspond, respectively, to parallel and series eomi-
bimations of S(z) and S;{z), as shown in Fig. 2.
~ More generally, a well-formed expression involving 4,, -+, 4., U
and [1 ¢orresponds to a network of sieves Si(z), -+, 8.(z) which can
be found by the eonventional svnthesis techmques for switching cir-
cuits, As a very simple exanple,

Cr = [(.:“11 U Ag} ﬂ A;g] U .Aq, (13)

corresponds to the network shown in Fig. 3.
Note that the mesh sizes of the sieves in the network depend on z and

that the network as a whole is equivalent to a single sieve whose meshes
are of size fo(x). |

IV, ALGEBRAIC OPERATIONS ON FUZZY SETS
In addition to the operations of union and intersection, one can define
a number of other ways of forming combinations of fuzzy sets and re-
lating them to one another. Among the nore important of these are the
following. | |
Algebraic product. The algebraic product of 4 and B is denoted by .18
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. Si {x}
Sp(x) ~Sjx)

S] {x)

F1c. 2. Parallel and series connection of sieves simultating |J and [}

$,n) 5,4 (x)

33{:}

F1a. 3. A network of sieves E-im_ultatillg (hHix) v fo(xd] A fa(x)) v fu(x)

and is defined in 1erms of the membership functions of 4 and B bv the
relation

f.w = f.af.u . . | ( 14)
Clearly,
ABc ANE (15)

Algebraie sum’ The algebraie sun of 4 and B isdenoted by 4 + B
and is defined hy |

Jave = o + I {16

provided the sum fi + fy 18 less than or equal (o unity. Thus, unlike
the algebraic produect, the algebraic sum is meaningful only when the
condition f,(x) + fuxlr) £ 1 is satisfied for all x.

Absolute difference. The absolute difference of A and B is denoted by
| A — B| and is defined by

fraom = i Ja — Jui.
Note that in the case of ordinary sets | 4 — B| reduces {o the relative
complernent of A M Bin 4 UB, |

Convex combination. By a convex combination of two vectors f and ¢
i3 usually meani a limear combination of f and g of the form
Af -+ (1 — A)g, imn which 0 = A £ 1. This mode of combining f and ¢
can bhe generalized to fuzzy sets in the following manner.

Let A, B, and A be arbilrary fuzzy sets. The conver combination of
A, B, and A 18 denoted by (4, B; A) and is defined by the relation

(A, B; A) = A4 + A'B (17)

where A’ is the complement of A. Written out in terms of membership
functions, (17) reads

famanler) = falz)fd(x) + [1 — falx)lfs(z), r ¢ X. (18)

A basic property of the convex combination of A, B, and A 1s expressed
hy __
ANBc (A, B;Ayc AUBR  forall A (19}

' The ﬂu:ﬂ of the algebraic product isthesnm 1 @ B= (4" B) =4+ 8B — AH.

(This was pointed out by T, Cover.) Note that for ordinary se1s [ and the alge-
hraie produet are equivalent operations, as are |J and &.
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This property is an immediate consequence of the inequalities
Min [fa(2), fa(x)] £ Ma(z) + (1 — AN)fs(z)
< Max [fa(x), fa(®)], =€ X (20)

which hold for all A in [0, 1]. It 1s of interest to observe that, given any
fuzzy set C satisfying A N B ¢ < A U B, one can always find a fuzzy
set. A such that ¢ = (A4, B; A). The membership function of this set 13

given by

felz) — fa(x)
fal®) — fu(z)’

Fuzzy relation. The concept of a relation (which is a generalization of
that of a function) has a natural extension to fuzzy sets and plays an
important role in the theory of such sets and their applications—just
as it does in the case of ordinary sets. In the sequel, we shall merely de-
fine the notion of a fuzzy relation and touch upon a few related concepts.

Ordinarily, a relation is defined as a set of ordered pairs (Halmos,”
1960); e.g., the set of all ordered pairs of real numbers x and y such that
.z 2 ¥. In the context of fuzzy sets, a fuzzy relation m X 18 a fuzzy set in

TR

falx) = r € X. (21)

-
" e T 7 e T R
T e et T

the prﬂduct space X X X. For examﬂf the rela.tmn denoted by z >> v,
z,y € R', may be regarded as a fuzzy set A in R®, with the membership
function of A, f1(z, y), having the following (subjectlve) representative
values:fd(lﬂ, 5) = 0;f.(100, 10) = 0.7; f.(100, 1) = 1, ete.

More generally, one can define an n-ary fuzzy relation in X as a fuzzy
set A in the produect space X X X X --- X X. For such relations, the
membership funetion is of the form fi(x,, -+, x.), where z: € X,
i=1, -, n | ’

In the case of binary fuzzy relations, the compesition of two fuzzy re-
lations 4 and B isdenoted by Be A and is defined as a fuzzy relation in X
whose membership funetion is related to thosc of A and B by

fﬂﬁﬁd(irj f)") = Suprr }‘Ii“ [f-‘l('r: ”)rfﬁ'(ﬂr y)]'

Note that (he operation of composition has the associative property

Ao(Bo() = (Ao B)oC.

Fuzzy sets mmdduced by mappmgs [.et T be a mappmg from X to a
space Y. Let B be a fuzzy set in ¥ with membership function fu(y).
The inverse mapping 77 induces a fuzzy set A in X whose membership
function 1s defined by

Faota) = fuly), ey (22)

for all .« in A" whieh are mapped by 7' into .

Consider now a converse problem in whieh A is a given fuzzy set m X,
and T, as hefore, is a mapping from X to . The question is: What is
the mvmhvmhlp function for the fuzzy set in ¥ which s induced by
this mapping?

If 7 is not one-nne, then an ambiguity arises when two or more dis-
tinet poins in X, say oy and ay, with different grades of membership
in A, are mapped into the same point y in Y. In this case, the question
is: What grade of membership in B should be assigned 10 42

To resalve 1his ambigaity, we agree to assign the larger of the two
grades of membership 1a 4. More gencrally, the membership funetion
for B will be defined by

-~

Jaly) = Max a1, 00), y <ot (24

where T77(y) is the set of points in X which are mapped o y by 7.
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convex fuzzy set - non-convex
\ wﬂ:zy sef
ke
X

Fic. 4. Convex and nenconvex fuzzy sets in E?

VL CONVEXNITY

As will be seen in the sequel, the nofion of convexity can readily he
extended 1o fuzzy sels in such 2 way as to preserve nany of the prop-
ertics which it has in the context of ordinary sets. This notion appears
to he particularly useful in applications involving pattern classihcation,
oplimization and related problems.

In what follows, we assume for concreteness that X 18 a real Euclidean
space E".

DEFINITIONS
Cﬂnuﬂmﬂy A fuzzy set A is conver if and only 1f the sets T, deﬁned by

Imlf*i(ﬂ:) = } (24)

are convex for all « in the interval (0, 1).
An alternative and more direct definition of convexity is the follow-

ing’: A is convex if and only if | |
falrzy + (1 — M)ag] 2 Min [fa(21), Ja(22)] (23)

for all z, and 2, in X and all » in [0, 1}. Note that this definition does not
imply that f4(z) must be a convex function of . This is illustrated in
Fig. 4 forn = 1.

To show the equivalence between the above definitions note that if A
is convex in the sense of the first definition and ¢ = fi(1) £ fi(22),
then z, € Toand Ax; + (1 — M)z € T, by the convexity of T . Henece

fuha, + (1 — A)z] 2 a = falz) = Min [f.q(h),fj(mz)]-

Conversely, if A is convex in the sense of the second definition and
a = fi(z1), then T, may be regarded as the set of all points z, for which
Ffu(z) = filx). In virtue of (25), every point of the form.
Ay + (1 — Mae, 0 = A £ 1, s also in Iy and hence T's 18 & convex
set. Q.K.D. |

A basie property of convex fuzzy sets is expressed by the

TreoreEM. If A and B are convex, so is their mters&ctwn

Proof: Let ¢ = A {1 B. Then
Feldey 4+ (1 — Azl
= Min [falrz, + (1 — Mz, foldzs + (1 — M=)l (26)

Now, since A and B are convex

Fabas + (1 = M)2a) 2 Min [f4(21), fa(z2)] -
feldey 4+ (1 — Mze] Z Min [fa(z1), fa(2s))
and hence ' -
efA 1 ~ A)axs)
Felne: + ( )] (28)

> Min [Min [f.(x1), f2(z2)}, Min [fa(z1), fa(z2)]]

5 Thiz way of expressing convexity was suggested to the writer by his colleague,
E. Berlekamp.
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or equivﬁlently
felAer + (1 — A )]

(29)
= Min [Min [f.(x,), fo(z;)], Min [f.a(ifz)rfﬂ(#?i)]]

and thus __
FelAzy 4+ (1 ~ X)x] = Min [fe(21), felxs)). Q. E. D. (30)

Boundedness. A fuzzy set A is bounded if and only if the sets T', =
(T | f4(x) 2 o} are bounded for all & > 0; that is, for every & > 0 there
exists a finite R(a) such that lz{ £ R(a) for all z in r,. -

If A 18 a bounded set, then for each ¢ > () then exists a hyperplane &
such that f.(z) = € for all z on the side of # which does not contain
the origin. For, consider the set I', = iz | fi(z) 2 ¢. By hypothesis,
this set is contained in a sphere § of radius f2(e). Let H be any hyper-
plane supporting S. Then, all points on the side of H which does not
contamn the origin lie outside or on S, and hence for all such points
fd(ir) s e |

LEmma., Let A be a bounded Juzzy set and let A1 = Sup, Ta(z).
(M will be referved io as the maximal grade in A.) Then there ts at leqst
one point x, at which M 13 essentially atlained in the sense that, for each
e > U, every spherical neighborhood of x, contains points in the set Q(¢) =
(| fa(z) 2 M — e.

Proof® Consider a nested sequence of bounded sets Ty, Iy, -«
where I'y, = {z|fu(z) 2 M — M/(n+ 1),n =12 ..., Note that
[ 18 nonempty for all finite n ag a consequence of the definition of M
as M = Sup, f.(x). (We assume that M > 0.) -

let x, be an arbitrarily chosen point m Iy, n = 1,2 ..., Then,
Ty, Tz, * -+, 18 & sequence of points in a closed bounded set T, . By the
Bolzano-Weierstrass theorem, this sequence must have at least one
limit point, say x,, in I, . Consequently, every spherical netghborhood
of x, will contain infinitely many points from the SequUence x, , Ty, - - - |
and, more particularly, from the subsequence T4y, Ty, -, where
N = M /e. Since the points of this subsequence fall within the set Q(¢) =
{z [ falx) 2 M — ¢, the lemma is proved.

Strict and strong convexity. A fuzzy set A is strictly convex if the sets
e, 0 < « = 1 are strictly convex ( that 18, if the midpoint of any two
distinet points in T, lies in the mterior of T, ). Note that this definition
reduces to that of striet convexity for ordinary sets when A is such a e,

A fuzzy set 4 is strongly conver if, for any two distinet, points xz; and 7, ,
and any X in the open interval (0, 1)

f‘.,[h;rl + (I — };):I?g] > :\[]H Uﬂ (-'.t]_;]:lf_,{(xﬂ}].

Note that strong convexity does not imply striet eonvexity or vice-versa.
Note also that if 4 and B are hounded, so is their union and intersection.
sSimilarly, if 4 and 77 are strictly (strongly) convex, their intersection
Is strictly (strongly) convex. -

Let A be a convex fuzzy set and let M — Sup, f4(x). If 4 is hounded,
then, as shown above, either M is attained for some r, 8ay T, , or there
18 at least one point x, at which A7 is cssenfially attained in the sense
that, for each ¢ > 0, every spherical neighborhood of z, contains points
in the set Q{e) = iz | M — fi(z) £ €. In particular, if 4 is strongly
convex and zo is attained, then z, is unique. For, if M = f, (zy) and
Al = fi(xy), with 2; # z,, then Ja(z) > M for z = 0.5z, - 0.52; ,
which contradicis 7 = Max, Falx).

More generally, let C{4) be the set of all pomts in X at which A7 is
essentially attained. This set will be referred to as the core of A, In the

case of convex fuzzy sets, we can assert the following property of ¢ (A4}

 This proof was ﬂﬁggested by A.J .. Thomasian,
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THEOREM. [f A is a convex fuzzy set, then its core 18 a convex set.

Proof: It will sufice to show that if 1/ is essentially attained at x,
and x; , 1 # 1o, then it is also essentially attained at all x of the form

=?\.’I}u+(l—h).’l¢1,0§?\.5_1. |

To the end, let P be a ﬂylinder of radius ¢ with the Ime passing through
Ty and xz, as its axis. Let 1y’ be a point in a sphere of radius e centering
on Zo and " be a point in a Ephere of radius e centering on z; such that
fulzs) = M — eand fiolz) = M — ¢. Then, by the convexity of A,
for any point u on the segment xz, #; , we have fd( )= M — e Turther- |
more, by the convexity of P, all points on z, z,” will lie in P. .

Now let z be any pomt i the segment z4r; . The distance of thls pmnt
from the segment z, z; must be less than or equal to ¢, since xy'z; les
in £2. Consequently, a sphere of radius e centering on z will contain at
least one point, of the segment z, 2,” and hence will contain at least one
point, say w, at which f,(w) = M — e This establishes that M is es-
sentially a.ttamed at x and thus proves the theorem., .

CoroLrary. If X = E and A is strongly convez, then the pont ot
which M 15 essenlially attnined s unique.

Shadow of a fuzzy set. Let A be a fuzzy set in E™ with membership
function fa(x) = fi(x1, - -+, z.). For notational simplicity, the notion
of the shadow (projection) of A on a hyperplane H will be defined below
for the speeial case where H is a coordinale hyperplane, eg., H =
x| 2, = 0}.

Specifically, the shadow of A on H = . | £y = 0} 1s defined to be a
fuzzy set Sy(A) i K" with fy,.,(2) given by

f-"FH{AH(*E) - fn‘!'u(-'l}(,‘t'l » T T *Eﬂ) - Sup X f'l(rl y T r‘IﬂJ[

Note that 1his definmition is consistent with (23).

When A is a convex fuzzy set, the following property of 8g(4) is an
nnmediate conscquence of {he a.hﬂw definition: If A is a convex fuzzy
set, then its shadow on any hyperplade is also a convex fuzzy set.

An interesting property of the shadows of two convex fuzzy sels is

expm&%ed by the following unpluatmn
Sy(A} = Sp(Bhyforall H =4 = B,

To prove this agsertion,” 1t is sufficient to show that if there exists a
poitnt, say ., such that f,(x) # fﬂ(;t:u), then their exisis a hyperplane
H such that fe,(20") # fq”m}(’rn , where a,” is the projection of

rg on H.

~ Suppose !.ha.t Jfa(xe) = a > fo{ry) = B. Since B is a convex fuzzy set,

the set I'y = {x | fu{x) > B} is convex, and henee there exists a hyper-
plane / supporting T's and passmg through x,. Let H be a hyperplane
orthogonal 1o F, and let 2,* be the pm]evtmu of xy on H. Then, since
fa(z) = ﬁ for a.ll r on F, we have f.gﬂm(:cu ) £ f. On the other hand,
Fouy(2o') 2 a. Consequently, Fagm (%o ) 3% fagiar(2™), and smularly
for the case where @ < 8.

A somewhat more general form of the above assertion is the following:

- Let A, but not necessarily B, be a convex fuzzy set, and let Sp(A4d) =
Skl B) for all H. Then A = conv B, where conv B is the convex hull of
- B, that is, the smallest convex set containing B. More generally, 8,(4) =
SH(B) for all H implies conv 4 = conv B.

Separation of convex Juzzy sets. The classical separation theorem for
ordinary convex sets states, in essence, that if 4 and B are disjoint con-
vex sets, then there exists a separating hyperplane H such that 4 1s
on one sude of H and B is on the other side,

It is natural to inquire if this theorem ean be extended to convex fuzzy

"This proof is bhased on an idea RURgCS sted by (0. Dantzig for the case where
A oaned g ure ordinary convex sets.
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sets, without requiring that 4 and 2 be disjoint, since the condition of
disjointness is much too restrictive in the case of fuzzy sets. Tt turns
out, as will be seen in the sequel, that the answer to this question is in
the affirmative. | - |

As a preliminary, we shall have to make a few defimtions. Specifically,
let A and B be two bounded fuzzy sets and let H be a hypersurface in
£" defined by an equation h(x) = 0, with all points for which hiz) 20
belng on one side of H and all points for which 2{x) = 0 being on the
other side.* Let Ky be a number dependent on H such that Jalz) = Ky
on one side of  and fa(z) £ Ky on the other side. Let M, be Inf X, .
The number Dy = 1 — My will be called the degree of separation of A
and B by H. |

In general, one is concerned not with a given hypersurface H, but
with a family of hypersurfaces {H,}, with A ranging over, say, E”. The
problem, then, is to find a member of this family which realizes the
highest possible degree of separation.

A special case of this problem is one where the H, are hyperplanes in
E”, with X ranging over E™, In this cage, we define the degree of separa-
bility of 4 and B by the relation

D=1—~M (31)

where ) | |
M = Infgl, (32)

with the subseript A omitted for simplicity.

Among the various assertions that can be made concerning D, the
foliowing statement? is, in effect, an extension of the separation theorem
to convex fuzzy sets. | o

TaroREM. Let A and B be bounded convex fuzzy sets in E”, with mazimal
grades M , and M p , respectively [M . = Sup, fi(z), My = Sup. fz(x)].
Let M be the maximal grade for the intersection A N B (M = Sup. Min-
[fs(x), fa(x)]). Then D = 1 — M. -

C'omment. In plain words, the theorem states that the highest degree
of separation of two convex fuzzy sets A and B that can be achieved
with a hyperplane in £" is one minus the maximal grade in the inter-
section A4 1N B, This is illustrated in Fig. 5forn = 1.

Proof: It 18 convenient to consider separately the following two cases:

(1) A = Min (M, , M) and (2} M < Alin (M4, Mpz). Note that the
latter case rulesout 4 € Bor B C 4. | .
- Case 1. For conereteness, assume that A1, < M, ,sothat M = A, .
Then, by the property of bounded sets already siated there exists a
hyperplane H such that fu(z) < M for all x on one side of H. On the
other side of H, f,(z) < M because f(x) < A, = M for all z.

It remains to be shown that there do not exist au M < M and a
hyperplane H' such that f,(x) < A7 on one side of H and f3(2) < M’
on the other side.

This follows at once from the following observation. Suppose that
such # and A’ exist, and assume for coucreteness that the core of A
(that is, the set of points at which A, = M is essentially attained) is
on the plus side of H'. This rules out the possibility that f.(z) < A’
for all z on the plus side of H', and hence necessitates that falz) = M’
for all # on the minus side of /', and fa(z) < M’ for all z on the plus
side of H'. Clonsequently, over all z on the plus side of H’

Sup, Min [f.(z), fa(z)] £ M’ |
and likewise for all z on the minus side of H’. This implies that, over all

® Note that the sets in question have ¥ in common.
¥ This statement is hased on a snggestion of k. Berlekamp.
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hyperplane H {point)
Fic. 5. IHustration of the separation theorem for fuzzy sets in B?

z1n X, Sup, Min [fu(x}, f5(z)] £ M’, which contradicts the assumption
that Sup. Min [f.{(z), fe(z)] = M > M’

Case 2. Consider the convex sets Ty = {x|f.(z) > M} and Ty =
x| fa(z) > M}. These sets are nonempty and disjoint, for if they were
not there would be a point, say u, such that f.(u) > M and folu) > M,
and hence fyng(u) > M, which contradicts the assumption that M =
Bup, fans(x).

Since I'y and T are disjoint, by the separation theorem for ordinary
convex sets there exists a hyperplane H such that I', is on one side of &
(say, the plus side) and I'y is on the other side (the minus side). Fur-
thermore, by the definitions of I'y and T'z, for all points on the minus
side of H, fa{z) < M, and for all points on the plus side of I, fale) = M,

Thus, we have shown that there exists & hyperplane H which realizes
1 — M as the degree of separation of A and B. The conclusion that &
higher degree of separation of A and B cannot be realized follows from
the argument given in Case 1. This concludes the proof of the theorem.

The separation theorem for convex fuzzy sets appears to be of particu-
lar relevance to the problem of pattern diserimination. Tts application
to thig class of problems as well as to problems of optimization will be
explored in subsequent notes on fuzzy sets and their properties.
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