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Abstract 
The discrete time detection of a known constant signal in additive white 
stationary Laplace noise is considered. The receiver operating characteristics 
of the Neyman-Pearson optimal detector are presented and compared with those of 
the linear detector. Also, some results obtained using a Gaussian approximation 
to the distribution of the test statistic are presented. 

1. INTRODUCTION 

The Gaussian distribution is a popular model for 

noise statistics, and it is valid in a wide 

variety of situations. However, in some cases, 

such as impulsive noise, this model may not be 

8atisfaCtory. Impulsive noise is typically 

characterized as noise whose distribution has an 

associated "heavy tail" behavior. That is, the 

probability density function (pdf) approaches zero 

more slowly than a Gaussian pdf. The references 

in [I1 and [21 give a summary of some forms of 

impulsive noise and situations where it arises. 

Certain forms of impulsive noise may be charac- 

terized by a Laplace distribution. That is. the 

pdf of the noise is given by 

f(,,) P + .-ylnl (1) 

Notice that this model has the "heavy tail" 

behavior associated with impulsive noise. The 

Laplace distribution is popular in statistics and 

many of its properties have been studied 131. 

Furthermore, it is used as a noise model in 

engineering studies. For example, Miller and 

Thomas 111 used Laplace noise in a numerical study 

of relative efficiency. Bernstein, et.al. [4] 

comment on the non-Gaussian nature of ELF atmos- 

pheric noise, and they give aplot of a typical 

experimentally determined pdf associated with such 

noise 14, Figure 101. This experimentally deter- 

mined pdf is similar to a Laplace pdf, and on a 

linear graph the difference is barely distin- 

guishable. Also, the limiting case of the Mertz 

model [ 5 1  for the amplitude distribution of impul- 

sive noise is identical to the distribution of the 

amplitude of Laplace noise [6]. Kanefsky and 

Thomas (71 considered a class of generalized 

Gaussian noises, obtained by generalizing the 

Gaussian density to obtain a variable rate of ex- 

ponential decay. The Laplace distribution is 

within this class of generalized Gaussian distri- 

butions. Also, Duttweiler and Messerschmitt [8] 

refer to the Laplace distribution as a model for 

the distribution of speech. 

In this paper we are concerned with the detection 

of a signal in Laplace noise. Recently, we inves- 

tigated the distribution funcrion of the test 

statistic which arises in this problem, and we 

obtained a convenient expression for it [6]. Here 

we use these results to investigate various aspects 

of the detection problem. In the followingsections 
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we,briefly state the problem and summarize some 

previous results. For large sample sizes, the 

Central Limit Theorem is often used to obtain an 

approximation to the distribution of the test 

-tatistic. We compare the results obtained using 

the actual distribution and using the approxi- 

mating Gaussian distribution. Then we consider 

the receiver operating characteristics of the 

Neyman-Pearson optimal detector. The popular but 

suboptimal linear detector is also considered and 

is compared to the optimal detector. 

2. PRELIMINARIES 

We consider testing for the presence or absence of 

a positive, constant signal s in additive, sta- 

tionary, white Laplace noise. The problem is 

modeled as the following hypothesis testing 

problem: 

Based on N independent identically distributed 

observations, we are to decide to announce that 

the signal is absent or present. . 

For this problem both the Neyman-Pearson optimal 

detector and the linear detector have the fol- 

lowing structure. The N observations are fed into 

the zero memory nonlinearity, g(.), whereupon they 

are summed to give the test statistic 

The test statistic is then compared to a threshold 

T from which a decision concerning the presence or 

absence of the signal is made. The choice of the 

threshold T determines the false alarm probability 
uand the detection probability 6. However, to 

determine this interrelationship, it is necessary 

to know the probability distribution of the test 

statistic t. This, in turn, depends on the non- 

linearity g(.). We will now consider two choices 

for the nonlinearity and will investigate the 

corresponding detector performance under various 

conditions. 

3. THE NEYMAN-PEARSON OPTIMAL DETECTOR 

By a Neyman-Pearson optimal detector we mean a 

detector which, for a fixed a, maximizes 6. The 

nonlinearity for the optimal detector in our pro- 

blem is well known [9] and is the amplifier- 

limiter given by the following expression: 

I ys, x. s 

g(x) = 2yx-ys, 0 5 x 5 s (2) 

-ys, x < 0 

Consider first the case where Ho is true; that is, 

no signal is present. If Xi has the Laplace die- 

tribution given in (I), then &(Xi) can easily be 

shown to have the following distribution function: 

1 1 x 1 V 
P,(~)(X)=~U(X+YS)+~~~ exp[-~(yx+v)I~(~)dv 

+ + e-YS u(x-Yx), 
where u(x) denotes the unit step function which is 

one for nonnegative x and zero otherwise, and G(x) 

denotes the gate function which is one for 

1x1 5 112 and zero otherwise. Let F~(O)(.) 

denote the distribution function of t for the 

optimal detector under No. Then 

FN ("(x) = fODFi!1 (x-V) dF1") (v). -- 
By a rather lengthy but straightforward procedure 

(61, it can be shown that* 

where e (.), the incomplete exponential, is defined k 

We now consider the signal present case, i.e. HI. 

We let FN(')(~) denote the distribution function 

of the test statistic under H1. Since the Laplace 

pdf is symmetric, it can be shown [ll that 

(x) = 1 - F:) (-x) . F~ ( 4 )  

*A typographical error (omission of a pair of 
brackets) in[6] has been corrected here. 



Eqs. (3) and (4) thus completely determine the 

performance of the Neyman-Pearson optimaldetector. 

4. THE LINEAR DETECTOR 

By a linear detector, we mean a scheme such as 

that described previously, but where the func- 

tion g(.) is g(x)=x. That is, the test statistic 

is simply the sum of the observations. The linear 

detector is Neyman-Pearson optimal for Gaussian 

noise and is a comonly used detector. 

Consider the signal absent case, i.e. no. In this 

situation, the test statistic is given by 

where, again, the X are independent identically i 
distributed random variables with the pdf of 

Equation (1). Thus, the pdf of t, pN('), is 

obtained from N-1 convolutions of the Laplace pdf 

with itself. This is given by 13, p. 241 as 

After a straightfornard integration [lo], we 

obtain G?) (x) ,  the distribution function of the 

test statistic of the linear detector under H 0' 

In the signal present case, the test statistic is 

given by N 
t X i + N s ,  

i-1 

where, once again, the Xi are independent iden- 

tically distributed random variables with the 

density function of Eq.(l). Let G;)(x) denote 

the distribution function of the test statistic 

of the linear detector under H1. Then we have 

G;) (x) = G?) (x - N8) . ( 6 )  

Equations ( 5 )  and (6) completely determine the 

performance of the linear detector. 

5 .  M E  GAUSSIAN APPROXIMATION 

In non-Gaussian detection problems of the type 

considered in this paper. the derivation of an 

expression for the distribution function of the 

test statistic for the Neyman-Pearson optimal 

detector is frequentlya mathematically intractable 

problem. In many such cases, for sufficiently 

large N, an appeal is made to the Central Limit 

Theorem to arrive at an approximation for the dis- 

tribution function of the test statistic. Thus it 

is instructive in the present case to compare the 

exact results with those resulting from the 

Gaussian approximation. 

Let X be a random variable with the density func- 

tion of Eq.(l). Let g( . )  be the optimal non- 

linearity given by Eq.(2). Then 

EI~(X)I = I g(x) + e'yIxI dx . 
A straightforward integration yields 

Etg(X)I = 1 - ys - e-YS . 
Similarly, we get 

-ys 2 Y e - ~ I ~ I  d, VAR[g(X)I = .fIg(x) - 1 + Ys + e I 7 
= 3 - ze-YS - hys e-YS - .-2ys . 

Thus the mean and variance of t under Ho are, 

respectively, 

E (t) = N[1 - ys - e-YS] = m 0 

Using the relation in Eq.(4), it follows that the 

corresponding values under H1 are given by 

E1ttI = -EOlt) = -m 

VARl[tl - VARO[t] - o2 . 
Let 1:) (x) and 12) (x) denote, respectively, the 

Gaussian approximations to the distribution func- 

tions of the test statistic under Ho and HI. Then 

and 

where 

Let a and BG, respectively, denote the false G 
alarm probability and the detaction probability 

resulting from the Gaussian assumption. Then we 

have 



In practice, one may use Eq.(7) to set the value 

of the threshold T. For example, if ys-1, N=15, 

and the desired false alarm probability is 0.3, 

the Gaussian approximation yields a threshold of 

approximately 1.208 and a detection probability of 

approximately 0.628. However, using Eqs.(3) and 

(4) we find that for this threshold, a -0.02 

and B = 0.91. In fact, for a =  0.3, we find that 

the actual detection probability is greater than 

0.99. Thus, in this case, the Gaussian approxi- 

mation is extremely conservative. In Table I we 

compare the aitual values of a and B for the 
optimal detector against 4: and Bc for several 
values of T when N=25 and ~ ~ 0 . 5 .  It is seen 

from the table that, in this case, the Gaussian 

approximation is not very good (even though N-25). 

3.024 0.007 0.308 0.443 0.487 

1.512 0.035 0.356 0.696 0.540 

0.000 0.123 0.407 0.877 0.593 

-1.512 0.304 0.460 0.965 0.644 

-2.016 0.384 0.477 0.978 0.660 

Table I. Exact values of aand B and those 
resulting from the Gaussian approxi- 
mation, for several values of the 
threshold; ys-0.5, N-25. 

6. DETECTOR PERFORMANCE 

One popular way to describe the performance of a 

detector is by the presentation of the receiver 

operating characteristics. In this section we 

give some examples of the receiver operating 

characteristics of the Neyman-Pearson optimal 

detector. 

Figure 1 illustrates how the performance of the 

optimal detector varies with the numberof samples. 

Figure 2 illustrates how this performance varies 

with the signal strength. Figures 3 and 4 com- 

pare the performance of the optimal detector to 

that of the linear detector for different values 

of the parameters. More detailed studies may be 

made using the results presented in the earlier 

sections. 
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Figure 1. Performance of Optimal Detector fo r  
ya-0.3 and Different Values of N. 

Figure 2. Performance of Optimal Detector fo r  
N-10 and Different  Values of ys. 

Figure 3. Performance of Optimal Detector 
Compared to  Performance of Linear 
Detector, N-10, 8-1, yi0.5. 

Figure 4. Performance of Optimal Detector 
Compared t o  Performance of Linear 
Detector, N=20, s i0.3,  yil. 
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