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Techniques for performing 2-D Mellin transforms have
been discussed and implemented by Casasent and Psaltis.1
After the procedure outlined in Refs. 2 and 3, Kellman and
Goodman 4 have demonstrated a coherent processor for per-
forming 1-D Mellin transforms. In this letter, we present a
method of performing 1-D Mellin transformation which re-
quires only an input placed adjacent a mask and an output
plane. The Mellin transformer presented herein is a specific
application of the 1-D coherent processors presented in Ref.
5.

The Mellin transform g(x) of a signal u(s) is defined as",2

g(x) u Q) (i2.(x/xo)1d

where the spatial constants, ~0 and x0 , are scaling factors in-
cluded for dimensional consistency. Mellin transformation
can be viewed as a linear space-variant operation with line-
spread function:

h(x;~) = T j2(x/xo)-l

where A(-) denotes the unit step function. The processor in
Fig. 1 is capable of performing generalized 1-D linear space-
variant operations.5 The relation of the T-mask amplitude
transmittance in plane P1 to the corresponding line-spread
function is5

T(fx;t) = exp [Id [x2 + (Xgfx)2 3' h(x;t) exp(j27rfx)dx.

(1)

exp - [x2 + (6efx)21 6 [fx+In J ]( ),

where 3(.) denotes the Dirac delta, e is the input-output plane
separation, and X is the wavelength of the spatially coherent
illumination. The spatial frequency f is measured by di-
viding the vertical displacement in plane P2 by XA.

The exponential term in Eq. (1) is recognized as the trans-
mittance of a positive lens of focal length e.6 The Dirac delta
term is approximated by a thin slit bent along the curve

fX = -In ('u ().
XO ~TO

The (/0) term is somewhat more troublesome to implement.
As is done in Ref. 5, however, we can omit it from the mask and

u(0) T(fX ;C)
x

g(x)

-f

Fig. 1. The single optical element coherent processor for performing
1-D Mellin transformation.

Fig. 2. Processor outputs for various unit pulse inputs. The Mellin
transform appears along the vertical axis in each case.

recognize that the processor will display the Mellin transform
of (Q/4o)u(Q) [rather than u)] along the x axis of the plane
P2.

To investigate the performance of the coherent processor,
Mellin transforms were performed on unit amplitude pulses
over the interval a S t < b. The resulting Mellin transform
is a sine type function with frequency n b/a. Keeping the
lower limit a constant and decreasing b give the outputs shown
in Fig. 2 (left-to-right).
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Fig. 3. Processor outputs for two unit pulses differing only in scale.
The excellent alignment of these outputs along the vertical axis

demonstrates the scale invariance of Mellin transformation.

To illustrate the input scale invariance of the Mellin
transform,' two separate pulses with common endpoint ratios
b/a were input into the processor. As can be seen in Fig. 3,
the resulting vertical axis profiles of the processor output are
well aligned. This is the desired result.

We have presented a coherent optical processor capable of
performing 1-D Mellin transformation with a single optical
element. This processor is less efficient in the utilization of
incident light than Kellman and Goodman's processor.4 It
does, however, have the advantages of simplicity of imple-
mentation, real-space compactness, and total elimination of
vignetting.
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The effect of movement of a rough coherently illuminated
body on speckle characteristics has been investigated both
experimentally and theoretically.1- Of interest to laser radar
applications is the far-field backscatter from rotating objects.
George3 developed a theory describing statistics of speckle in
terms of cross-correlations of two field detector outputs, each
tuned for one of two frequencies of light illuminating a ro-
tating body. The theory also considers rotational decorre-
lation and spectral broadening. The last consideration ac-
knowledges the Doppler effect, whereas, in the speckle sta-
tistics, rotation rates are assumed negligible.

The question therefore arises: under what conditions can
the Doppler effect be ignored when describing the far-field
speckle pattern? Obviously, even for a slowly rotating body,
the slight shift in wave number multiplied by the often great
distance to the observer can change the phase by many ra-
dians.

In this Letter simple criteria are derived (for a rough ro-
tating cylinder) to indicate when the Doppler effect is negli-
gible. The physical insight provided can be applied to more
complex shapes. We assume the Doppler-induced phase
changes are noticeable only over distances large compared
with the cylinder.

The electric field at the surface of the cylinder is given
by

a2(,0,0 - a) a(l,0,0 - a) expL4O(0,0 - a,l)] exp(jk Ar), (1)

where

Ar = p - p cos0,

a(l,0,0 - a) = aopr(1,0,0 - a),

(2)

(3)

in which ao is a scalar representing the incident electric field
amplitude, and pr(l,0, 0 - a) is the position-dependent surface
reflectivity (see Fig. 1). The symbol 0 represents a phase
change of light upon reflection due to roughness at length-
position and angular-position 0 for surface orientation a.
For small values of 0, 0 -2kh, where h is the deviation of the
surface from strictly cylindrical. For larger values of 0, 0
depends on 0. The reflectivity pr is assumed to vary slowly
compared with 0 so that the two values are essentially inde-
pendent.

Vs.

R

TO DETECTOR-

Fig. 1. Geometry for illuminated cylinder.
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The Rayleigh-Sommerfield diffraction theory5 gives the
far-field backscatter amplitude for a surface element ds as

dA(l,0,0 - a) = A a 2(1,0,0 - a) - exp(ik'r) cosO ds, (4)wheer
where

k' = (1 -v,/c) = k(1 -pw sin0/c) (5)

is the Doppler-modified wave vector. The symbols w and c
represent the angular velocity and speed of light, respectively.
Combining eqs. (1) and (4) gives

dA = - a exp(jo) exp(jkAr) - exp(jk'r) cos0 ds. (6)
AX r

Since r = R + Ar (Ar << R) and, for reasonable values of a,
k'Ar may be replaced by kAr, then

dA -R a exp(je) expUj(2kAr + k'R)J cos0 ds,
jXR

(7)

or

dA -i- exp(jkR)a exp(jo)
jXR

X exp Ik 2p(1 - cos0) + - 1)R cos0 ds. (8)

Defining the shape factor

F(0,y) - expUk[2p(1 - cos0) - ]} cos0, (9)

where

y = R(1 - k'/k) = puR sinO/c, (10)

the backscattered field amplitude at the detector is

A(a,w) = - exp(jkR) l I a exp(j)F(0,-y)d0 dl. (11)jXR JO _S

To be rigorous, it should be mentioned that F does not contain
all the effect of shape. The roughness phase 0 and pr also
depend to some extent on shape. However, F(0,,y) is the
factor that contains the Doppler effect.

The term ky in the argument of Eq. (9) represents a dis-
placement in phase which affects the speckle field. However,
the effect is only that of a minor change in shape if 0 < y << p,
or

0 < Ric <<1. (12)

Thus the statistics of the backscatter speckle field would be
essentially unaffected.

There is a more stringent condition for which even the in-
stantaneous speckle pattern is essentially unaffected, except
for apparent angular displacement. Proof follows: The
phase in Eq. (9) can be written as (2kp)( - cos - y/2p).
Since y/2p = wR sinO/2c << 1, the second factor in this phase
is very nearly 1 - cosO cos(cwR/2c) - sinO sin(coR/2c). Fur-
thermore, the phase term in Eq. (9) may be replaced by
(2kp)[1 - cos(0 - R/2c)] if 2hp multiplied by the approxi-
mation error of the second factor is much less than unity.
After expanding sine and cosine functions in the difference
between the second factor and its approximation, the condi-
tion for replacement becomes kp(wR/2c) 2 << 1, or

2ir p (wR 2
0_- I -I< 1. (13)

Thus, in this case,

F(O,,y) exp {i2kp 1 - cos ( 2p sin- I (14)

Let '/[2p sin0 = wRI2c Aa, a small angular increment.
Noting that p(l,O,0 - a), 0 (1,0,0 - e), and cos0 vary slowly
with 0 (although perhaps rapidly with 0 - a), the integrand
of Eq. (11) is very nearly

aop(l,0 - Aa,0 - a) exp[O(l,0 - Aa,O - a)F(O - Aa,O)
= aop(l,O',0' - a + Aa) expUO(l,0,0' - a + Aa)]F(0',0), (15)

where 0' 0 - Aa. Since F approaches zero near 0 = ix/2,
the integral limits of Eq. (11) may be changed to 0' = +7r/2
without significant effect on the integral. Thus

A(a,w) c aop(l,0' - a + Aa)
vo EO -/ 2

X expO(l,0',0' - a + Aa)]F(0',0)dO dl
= A(a - Aa,O),

where C = p/(jXR) exp(jkR). More explicitly,

A(a,w)- A a - , °) Q.E.D.

(16)

(17)

To summarize, (1) whenever the transverse velocity of the
backscatter speckle field at the detector is much less than the
speed of light [see inequality (12)], the effect on speckle sta-
tistics is slight because the rotating object appears to have only
minor shape distortion. The Doppler-induced frequency
spread is, of course, still detectable. (2) If the square of the
ratio (transverse speckle velocity/c) multiplied by the number
of wavelengths in the object radius is much less than unity [see
Inequality (13)], any one-look sample of the speckle field is
practically unaltered (as well as its statistics). There will be
a small apparent angular displacement, however, in addition
to the rotation during the transit time R/c. Consider the
example for a rough cylinder with c = 2r rad sec-, R = 500
km, X = 10-6 m, and p = 1 m. Note that wRIc = 1.05 X 10-2,
which is much less than unity. Thus the speckle statistics,
i.e., average intensity and contrast, are not significantly al-
tered. However, since (R/c) 2p/X 102, which is greater than
unity, any one-look speckle sample is altered in addition to
the small angular displacement.

Appreciation is expressed to B. D. Guenther for his helpful
critique of an early draft of this communication.
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In an optical fiber the complex interaction of mode de-
pendent loss and mode coupling eventually leads to some
steady-state (uniform with length) distribution of power
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among the propagating modes of the fiber. To make a mea-
surement that will adequately characterize the behavior of the
optical fiber under normal operating conditions, it is impor-
tant that the mode set launched resemble this steady-state
distribution. Otherwise the processes that are going on in the
regions of the fiber near the launch point will not be typical
of the fiber as a whole. In particular, the launching of
cladding modes, leaky modes, and extremely lossy higher
order propagating modes (marginal bound modes) must be
minimized' There are several approaches to solving this
problem, for example, (1) the excitation conditions, i.e., the
beam spot size, energy distribution, and divergence (N.A.) can
be carefully controlled.' This is a deterministic approach that
must be applied individually to each fiber. As such it is a
lengthy process. (2) A single set of (nominal) excitation
conditions can be used for a given class of fibers together with
mode strippers (sometimes called mode eliminators or filters)
that not only remove the energy in the cladding modes but also
eliminate leaky modes and highly lossy (marginal) higher
order bound modes. This latter procedure would allow the
standardization of measurement conditions. In this Letter
we concentrate on the usefulness of mode eliminators in ob-
taining meaningful loss measurements.

There are several mode stripper designs that have been used
in an attempt to remove unwanted power from the fiber before
measurement. Among these are: (1) Passing the fiber over
black paper, black felt, or a similar material that is saturated
with a fluid with refractive index somewhat above that of the
cladding. The fiber may or may not be bent or pressed down
into the mode stripper material. If the fiber is kept straight
in its passage through the mode stripper, only the cladding
modes will be affected. (2) Threading the fiber through an
S-shaped channel of appropriate dimensions filled with index
fluid. To eliminate coating effects the fiber can be stripped
of its coating material in its passage through the mode strip-
per. Arrangements in which the fiber is bent around a linear
array of pegs2 should give results similar to the S-shaped mode
stripper. Passing the fiber through a grating mode scrambler,
i.e., through opposing sets of teeth that impress microbends
of properly chosen period, 3 is another method that has been
used to approach steady-state conditions on a fiber quickly.

Our measurements indicate that S-shaped or multiple
curvature mode strippers are particularly effective in elimi-
nating power launched into unusually lossy modes. Specifi-
cally, we have used a calorimeter 4 ' 5 to measure the loss vs
beam position on the fiber face" 9 of several fibers using dif-
ferent mode stripping techniques. The fibers were manu-
factured to have a parabolic core profile with a maximum N.A.
of 0.23, a core diameter of 55 Am, and a cladding diameter of
110 gm. The experimental arrangement is shown in Fig. 1.
Different sets of modes were launched by focusing (using a
1oX microscope objective) an unexpanded 633-nm laser beam
onto the fiber end face at various values of the core radius.
This produced a beam spot diameter of approximately 7 ,m
with an N.A. of 0.06 (measured at the 1/e 2 power points). For
beam and fiber axes parallel, this excites a group of modes
centered about a mode with principal mode number m given
by m/M = (r/a) 2 , where M is the total number of bound modes
and a is the fiber core radius. 7 A short ('0.5-m) and a long
('100-m) segment of fiber were used between the mode
stripper and the calorimeter to compare the loss immediately
after launch with the loss .100 m down the fiber. Several S-
shaped mode stripper designs were tried with results similar
to those shown in Figs. 2 and 3. The data reported here are
for a design found effective for the class of fibers being mea-
sured: three regular semicircular grooves of 2.5-cm radius

1\" MIRROR

MODE STRIPPERS

GALVANOMETER OX /
633 ,.. CHOPPER MICROSCOPE T LENGTH

H*Z~~~SR~r~...4~ I OBJ ECTIVE r , O IEH.-N. *LA SER FIBEROsJE VEr ~ i -__

4% ' ~~ ( )CALORIMETER
4%

BEAM
SPLITTER

SCREEN |CALIBRATED

POWER ET E R

Fig. 1. Experimental arrangement used to measure the effect of
different mode strippers. The input length of fiber was either 0.5 m

or 100 m.
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Fig. 3. Same as Fig. 2 but 100 m after launch.

connected to form a serpentine channel that was filled with
nd = 1.47 index fluid and through which the uncoated silica-
clad fiber was threaded.

Measurements were taken on several fibers with a range of
loss values. Those reported below were for a sample with a
633-nm loss of 12.6 dB/km and 820-nm loss of 5.3 dB/km.
The results are as follows: (1) For a short length of fiber
preceding the calorimeter, the effect of the different mode
strippers was pronounced. As shown in Fig. 2, the S-shaped
mode strippers were consistently effective in eliminating ex-
tremely lossy higher order modes. The others passed varying
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amounts of power in such modes as evidenced by the sub-
stantially higher loss following the strippers when the fiber
was excited near the core-cladding boundary. Carefully
pressing the fiber into black felt using a reasonably heavy
weight was not so good as using the S-shaped mode stripper;
in addition, the exact amount of mode elimination achieved
was not completely reproducible. The grating mode scram-
bler performs its function of spreading the propagating energy
out into a broad range of modes quite efficiently. However,
for the case where substantial energy is already in the higher
order modes, the measurements indicate that the mode
scrambler couples more of this energy into unusually lossy
modes. (2) When a long length of fiber precedes the calo-
rimeter, the type of mode stripper used makes little difference.
Shown in Fig. 3 are plots of the loss vs r/a value for the ex-
treme cases where no mode stripper was used and where the
efficient S-shaped mode stripper was used. A comparison of
Figs. 2 and 3 reveals that the short length loss results using an
S-shaped mode stripper are similar to the long length results
using any mode stripper. It should be noted that the 100-m
length of input fiber used to obtain the results reported was
coated fiber (uv-cured polymer) wound under nonzero tension
on a plastic spool. As such it has a certain amount of added
microbending loss that preferentially attenuates higher order
modes. Such a length was usually sufficient to filter out the
unusually lossy modes. In cases where care was exerted to
minimize microbending loss (use extremely low loss fiber
unwound in a large container), longer lengths were necessary.
The point is, however, that the S-shaped mode strippers
eliminate the unusually lossy modes immediately.

One thing should be made clear; the S-shaped mode strip-
pers themselves do not establish a steady-state power distri-
bution. When designed as indicated before, they provide
little mode mixing (as shown in near-field pattern measure-
ments) and affect only cladding, leaky, and higher order bound
modes. Their function is to eliminate these unusually lossy
modes that are launched whenever there is power incident
near the core-cladding boundary and that are never present
in the steady-state modal distribution. Hence in combination
with a set of (nominal) excitation conditions that launches a
power distribution approximating the steady state, the S-
shaped mode stripper can aid in approaching steady-state
conditions on a fiber quickly. Loss measurements taken with
several test sets adjusted to launch a power distribution ap-
proximating the steady state (for example, by matching the
short length and long length far field radiation patterns) were
lower by anywhere from a few tenths of a dB/km to over 1
dB/km (at 0.82 ,m) when the S-shaped mode stripper was
used compared with results when the other mode-stripping
methods were used. The lower figures agreed well with those
measured using the procedure in which the excitation condi-
tions are carefully chosen for each individual fiber [i.e., pro-
cedure (1) mentioned at the beginning of this Letter]. It
should also be understood that subtle effects may occur over
several kilometers of fiber that were not found from these
experiments and that larger effects niay occur when measuring
extremely lossy fiber with very strong differential mode at-
tenuation, i.e., the S-shaped mode stripper does not eliminate
enough of the unusually lossy modes to yield a highly accurate
loss figure. This latter group of fibers will probably be diffi-
cult to measure by any technique and will have either a
sharply reduced or peculiarly shaped acceptance angle pro-
file.

In making measurements characterizing optical fibers, for
example, a two-point loss measurement, initially it appears
a good idea to use a long length of the fiber itself as an input
mode filter. This would provide a more uniform with length

(i.e., steady-state) power distribution in the fiber being
characterized. This wastes valuable fiber, however, since this
reference piece would be cut off and probably discarded. It
is possible to use the same long piece of input fiber for all
measurements taken, i.e., a single length of fiber that is typical
of the fibers being measured. In this case, however, one must
be aware not only of uncertainties due to imperfect splices but
also of the added loss (i.e., the launching via the splice of ex-
cessively lossy modes) due to inherent parameter mismatch
resulting from the manufacturing process.10 Hence it is
convenient to bring about an approximation of the uniform
power distribution as quickly as possible. Proper adjustment
of all excitation variables for each fiber measured can theo-
retically accomplish this at the cost of increased measurement
time. As an alternative, a reasonable one-time-only adjust-
ment of launch conditions based on a typical (nominal) fiber
can be made together with the use of efficient mode strippers
to eliminate many unusually lossy cladding, leaky, and mar-
ginal bound modes. The measurements presented here in-
dicate that S-shaped or multiple curvature mode strippers
filled with index-matching fluid are effective in performing
this function.
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The spectral radiant exitance of a blackbody or Planckian
radiator can be characterized by a single number, its absolute
temperature. Blackbody radiation simulators depart from
theoretical blackbodies in one or more of several ways: (1)
they have less than unity emittance (due to geometry and/or
surface material); (2) they are spectrally selective (nongray);
(3) they are non-Lambertian; (4) they are nonisothermal. In
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case (1), the spectral radiant exitance can be fully character-
ized by two numbers, a temperature and an emittance. We
use the definition of emittance as the ratio of exitance to that
from a Planckian radiator, reserving the word emissivity for
a characteristic of a pure material. In cases (2) and (3), a
single temperature along with a table, curve, or equation of
emittance as a function of wavelength or angle will generally
suffice for all but the most accurate work. This assumes that
the emittance variation is independent of temperature. If,
however, a blackbody radiation simulator is not isothermal
(case 4), no combination of a single temperature and a chart,
table, or equation of emittance can predict the spectral radiant
exitance at other than a single nominal temperature. The
radiation must be characterized as a superposition of several
blackbody radiators, each modified to account for the spectral
surface characteristics and the geometrical factors.

To first demonstrate this fact, the following simple nu-
merical method was used:

(1) Take two, equal, black ( = 1) areas, one with a positive
AT from some average temperature and the other with an
equal but negative AT from the same temperature (e.g., T =
500 K, AT = 10 K, therefore Ti = 490 K, T2 = 510 K).

(2) Calculate the total radiant exitance from each area
using the Stefan-Boltzmann law (oT4) and sum to get the total
radiant exitance of the composite surface.

(3) Find a single temperature T, corresponding to the
total radiant exitance calculated in step (2).

(4) Find the total radiant exitance for a blackbody at
T.

(5) Calculate the spectral radiant exitance for each of the
two temperatures T and T, and for the sum of the spectral
radiant exitances for T, and T2-

This procedure was carried out with the aid of a Tektronix
4051 calculator, and the results for one series of calculations
are shown in Table I. Using a AT of 10 K and an average
temperature of 500 K, the total radiant exitance error is small,
less than 0.5%. The errors incurred in the spectral radiant
exitance are strongly dependent upon wavelength. The plot
shown in Fig. 1 has X/Xm on the abscissa and the percent error
incurred upon assuming that T is correct on the ordinate.
Note that the errors for large XT are also quite small, but the
errors for small XT become significant. Fortunately for most
applications, blackbody radiation simulators are not often
used at wavelengths shorter than X/Xm = 0.4; therefore, the
errors incurred are generally less than 10% if AT < 2 K.

A more analytical approach yields essentially the same
conclusions. If we start with the Planck equation,

MA = cl [exp(C2/T) - ]-1,

and let c2 /XT be denoted as x, then

MX1 = cl [exp(x,) - ]-',

MA2 = 5 [exp(x 2 ) - -1,X5

for the two equal areas. Let the sum of the spectral radiant
exitances be MT. Then

MAT = MA1 + MA2 , (3)

and this reduces to

MxTI= c[ exp(x,) + exp(x2) 2 (4)
X5 exp(x + X2) - exp(x,) - exp(x2 ) + 11

Now set this exitance equal to that from another blackbody
with twice the area at temperature Tc:

Table I. Spectral and Total Radiant Exitances of a Blackbody Radiation
Simulator with Two Isothermal Zones, T1 = 490 K and T2 = 510 K

WL (m) (Ml + M2)/2 M at T (corr) M at T (avg)

1 1.3776E-8 1.2114E-8 1.1907E-8
2 6.8315E-4 6.6529E-4 6.5958E-4
3 1.0666E-2 1.0573E-2 1.0513E-2
4 2.7669E-2 2.7582E-2 2.7464E-2
5 3.8196E-2 3.8161E-2 3.8030E-2
6 4.0200E-2 4.0204E-2 4.0088E-2
7 3.7173E-2 3.7196E-2 3.7103E-2
8 3.2217E-2 3.2245E-2 3.2174E-2
9 2.7027E-2 2.7054E-2 2.7001E-2

10 2.2325E-2 2.2349E-2 2.2309E-2
11 1.8331E-2 1.8351E-2 1.8320E-2
12 1.5041E-2 1.5058E-2 1.5035E-2
13 1.2372E-2 1.2386E-2 1.2367E-2
14 1.0218E-2 1.0230E-2 1.0215E-2
15 8.4825E-3 8.4917E-3 8.4803E-3
16 7.0805E-3 7.0880E-3 7.0789E-3
17 5.9439E-3 5.9502E-3 5.9428E-3
18 5.0182E-3 5.0234E-3 5.0174E-3
19 4.2604E-3 4.2647E-3 4.2597E-3
20 3.6365E-3 3.6402E-3 3.6360E-3

SUM 0.32654 0.32651 0.32569

At T, = 490 K, total radiant exitance Ml = 0.3268 W-cm- 2 .
At T2 = 510 K, total radiant exitance M2 = 0.3836 W-cm- 2 .
Average radiant exitance (0.5 ea) = 0.3552 W-cm 2 .
Temp. corresponding to 0.3552 W-cm- 2 = 500.3 K.
Average temperature = 500 K.

0

0

LOGIO AIA (MAX)

(1)

Fig. 1. Errors in spectral radiant exitance of a nonisothermal
blackbody radiation simulator vs X and AT.

(2a)

(2b) 2c, [exp(xc) - 1]-1 = [
X5 X 

exp(x) + exp(x 2) - 2
exp(xl + X2) - exp(x,) - exp(x2) + 1 I

(5)

and this reduces to

2 exp(x, + X2) - [exp(x,) + exp(x2)]
exp(xc) = exp(x,) + exp(x2) - 2 (6)

Letx 2 = x + Ax and xl = x - Ax [where Ax = (-c 2/XT2 )AT],
then Eq. (6) becomes

exp(x,) = 2 exp(x) - [exp(Ax) + exp(-Ax)]
[exp(Ax) + exp(-Ax)] - 2 exp(-x)

(7)
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Fig. 2. Variation in temperature observed with optical radiation
pyrometer across the aperture of a 23° conical cavity blackbody ra-

diation simulator.

[Note: if Ax is reduced to zero, exp(xc) approaches exp(x)
as expected.] The percent error is

100 [1 - exp(xc) (8)

exp(x) cosh(Ax)J(8
This equation was used to calculate the data in Fig. 1.

The impetus for this study arose from the use of a vintage
1960 commercial ir radiation reference source for calibration
of an optical pyrometer and an ir thermograph. This unit is
factory rated at +5 K absolute accuracy and has a stated
emittance of 0.99 i 0.01. When operated at its maximum
rated temperature of 10000C, a gradient along the walls was
easily seen with the unaided eye. Measurements were made
with an optical radiation pyrometer, and the results are shown
in Fig. 2, a graph of the temperature as a function of position
across the 2.54-cm cavity opening. Note that the hottest area
is at the center of the 23° conical cavity and is about 9900C.
Near the edge of the aperture, the temperature is about 940'C.
The total radiance near the edge is 81.3% of the center radi-
ance. The ratio of spectral radiances from the edge to the
center as a function of wavelength is shown in the fol-
lowing:

wavelength (,um) 0.5 1 2 3 5 10

ratio (edge/center) 0.214 0.462 0.679 0.771 0.850 0.905

Several conclusions can be drawn from these results.
Foremost is that great pains must be taken to ensure that the
blackbody radiation simulator is indeed isothermal under
every conceivable working condition. This can be achieved
by using a spherical' rather than a cylindrical or conical cavity
shape, or by other procedures in the cavity designs. If it
cannot be made isothermal over its entire surface (for exam-
ple, if you are stuck with a unit similar to the one described
above), make sure that you test the radiance distribution as
a function of angle before using it, especially when testing a
low F/# system; then use only the area which is isothermal.
If this is not feasible, the only recourse is to measure the
temperature distribution and perform the superposition as
described above.

I would like to thank W. L. Wolfe and F. 0. Bartell for their
helpful discussions.
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The most widely used detector of optical radiation is the
silicon photodiode. The physics of this device is well under-
stood, and its technology is quite advanced. It is based on the
p-n junction in silicon, which has been the subject of intense
and thorough study because of its widespread application in
solid state electronics and solar cells.

When a silicon photodiode is used to measure optical ra-
diation in absolute units, its calibration is not based on the
physics of silicon. Instead the calibration is based on the
thermal physics of either blackbody radiatorsi or electrical
substitution radiometers.2 The highest accuracy currently
demonstrated for either of these techniques is on the order of
one-tenth of 1%,3 and it was achieved only with considerable
difficulty. The accuracies achieved in more routine calibra-
tions do not approach this level.4 5 For this reason, and be-
cause silicon technology is so highly advanced, it has been
suggested that calibrations of comparable or even higher ac-
curacy could be obtained directly from the electrical and/or
optical characteristics of the photodiode itself. In fact, in the
red portion of the visible spectrum the sum of the specular
reflectance and the external quantum efficiency of shallow
junction silicon photovoltaics falls within a few tenths of 1%
of unity. Therefore, all that is needed is a physical model that
describes the small defect in the internal quantum efficiency
of this type of device, and which is in a form suitable for high
accuracy applications. The remainder of this Letter will be
devoted to this task.

It is convenient to divide the typical silicon photovoltaic
detector into four regions: the antireflection coating; the front
diffusion region; the bulk region; and the rear diffusion region.
The following analysis is restricted to wavelengths for which
negligible radiation is absorbed in the antireflection coating.
This condition is satisfied throughout the visible and near ir
by grown SiO 2 coatings, but not by vacuum deposited coatings
of the same material.6

Within the front diffusion region, the doping concentration
and minority carrier diffusion length vary by many orders of
magnitude. The exact nature of these variations is not readily
determined, so neither analytic nor numerical solutions of the
minority carrier diffusion equation can be used. However,
the contribution of this region to the internal quantum effi-
ciency at wavelength X can be expressed as

0 F
EF = fFexp(-a~x)aP(X)dx, (1)

where x is the distance into the silicon material, F is the depth
of the front diffusion region, a is the spectral absorption
coefficient (we have suppressed the functional dependence
on X), and P(x) is the collection efficiency distribution func-
tion. In other words P(x) is the probability that an excess
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minority carrier generated at position x will cross the junction
before recombination.

In the bulk region, the doping concentration and minority
carrier diffusion length are both independent of position, and
analytic solutions for the contribution of this region to the
internal quantum efficiency have been published. 7 The
present treatment is further restricted to wavelengths for
which negligible radiation is absorbed in the rear diffusion
region. Therefore, this region makes no direct contribution
to the detector's quantum efficiency. However, it makes an
important indirect contribution by repelling the minority
carriers away from the rear electrode where recombination
would take place.8

Two unstated assumptions are implicit in the photovoltaic
model that we are using. First, every supra-bandgap photon
absorbed in the silicon must result in the creation of exactly
one electron-hole pair. Second, the absorption coefficient
of the silicon in the front diffusion region must be identical
to that in the bulk region and, therefore, independent of
doping level. The internal quantum efficiency can now be
calculated subject to the assumptions stated above by adding
Eq. (1) to the contribution from the base region (see Ref. 7)
with the rear surface recombination velocity set equal to zero
to describe the effect of the rear diffusion region. The result
can be put in the form

I = 1 + L (-l)na ( n )/n!
n=1

+ exp(-'aF) I ahBL
I/aL)2 aL

]exp(-aB) sech(B/L)[ ( )2 (2)

where

(xn) = fo xnp(X)dx, (3)

and where B is the thickness of the bulk region, L is the mi-
nority carrier diffusion length, and the prime in Eq. (3) rep-
resents differentiation with respect to x. To obtain Eq. (2)
in the form shown, it is necessary to integrate Eq. (1) by parts,
to expand the exponential in a Taylor series, and to inter-
change the order of summation and integration. The quantity
P(F) has been set equal to one in Eq. (2). This is a very good
approximation because F is chosen such that P(F) is a maxi-
mum. This occurs to the rear of, but very near to, the junc-
tion, where the lifetime is of the order of 1 msec, and the time
required to sweep a minority carrier across the junction is less
than l0-10 sec.9,1O

Equation (2) can be used to establish an ab olute radio-
metric scale based only on relative radiometric measurements.
Let Xi, X2, and X3 be wavelengths in the vicini0 of 400 nm, 750
nm, and 950 nm, respectively. For a shallow junction pho-
todiode, the infinite sum in Eq. (2) is accurately approximated
by the first term in the sum, and the two ratios dX,)/dX2) and
eA3)/0(X2) uniquely determine L and (x), subject to the as-
sumption that F, B, and the spectral dependence of a (X) are
known. An iterative solution is required. Once L and (x)
are determined, the absolute spectral dependence of e(X) can
be calculated. The key idea is that the ratios e(X1)/dX2) and
E(X3 )/E(X2) can be determined from relative radiometric
measurements, yet through Eq. (2), they establish a scale of
the absolute quantity e(A).

Since the iterative solution procedure and error analysis are
somewhat involved, their details are beyond the scope of this
paper. The results, however, are quite encouraging. An
uncertainty of less than ±0.25% of value is predicted around

750 nm, based on the estimate that Dash and Newman's ab-
sorption coefficients are good to ±10% of value and that +0.2%
of value is possible in relative radiometric measurements.
The former estimate is based on the agreement between Dash
and Newman's"i data and Philipp's12 later redetermination,
and the latter reflects the author's experience with this type
of measurement. Future research should decrease both
uncertainties substantially.

The physics behind the proposed procedure will now be
reviewed. One plus the infinite sum in Eq. (2) is a general-
ization of the dead layer model of Lindmayer and Allison.6"13
It reduces to exp(-at) if, and only if, P'(x) is the Dirac delta
function, (x - t). This is equivalent to the conventional dead
layer model wherein the collection efficiency P(x) is zero for
x < t, but unity for x > t. The advantage of the generalized
model is that it allows for arbitrary variations of the collection
efficiency distribution in the front diffusion region and is
therefore more realistic.

The quantities (x ), F, B, and L are of the order of 15 nm,
100 nm, 300 ,m, and 1 mm, respectively, for shallow junction
photodiodes with long minority carrier lifetimes in the bulk
region. In this case, the internal quantum efficiency is ac-
curately approximated by the much simpler equation

s y = 1 - at - BaL2, (4)

where t has been set equal to (x) to establish the relation to
the dead layer model.

Table I compares values of calculated from Eq. (4) with
those calculated from Eq. (2) assuming a true dead layer. It
can be shown that if P(x) is a nondecreasing function of x in
the front diffusion region, exp(-at) and 1 - at are, respec-
tively, upper and lower bounds to one plus the infinite sum
appearing in Eq. (2), provided that at << 1. Therefore, the
differences that appear in Table I at the short wavelengths are
bounds to the variation arising from different (nondecreasing)
functional forms for P(x) in the front diffusion region. Thus,
for shallow function photodiodes, the dead layer model is
considerably more accurate than might have been expected
on the basis of the highly idealized form of P(x) that is the
basis of the model. The differences in Table I at the long
wavelengths are due to inadequacies in the approximations
leading to Eq. (4).

Dash and Newman's data on the absorption coefficient of
silicon" were used in preparing Table I, and their values are
summarized in the table. Notice that the absorption coeffi-
cient of silicon decreases by over 2 orders of magnitude from

Table I. Spectral Dependence of Internal Quantum Efficiency of Typical
Shallow Junction Si'iicon Photodiode

Quantu efficiency Absorption
Eq. (2) Eq. (4) coefficient

Wavelength (rigorous)/ (approximate) (Em')

400 0.899 0.8936 7.09
450 0.9Xo6 0.9649 2.33
500 0,9835 0.9834 1.09
550 0.9888 0.9887 0.723
600 0.9926 0.9925 0.456
650 0.9940 0.9939 0.349
700 0.9954 0.9953 0.225
750 0.9959 0.9957 0.156
800 0.9957 0.9955 0.100
850 0.9945 0.9940 0.0588
900 0.9921 0.9910 0.0356
950 0.9859 0.9851 0.0206

Note: t = 15 nm, F = 100 nm, B = 300 gm, and L = 1 mm.
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400 nm to 950 nm, and that the third term in Eq. (4) is negli-
gible at short wavelengths, whereas the second term is negli-
gible at long wavelengths. Thus it is reasonable to talk about
a short and a long wavelength defect mechanism in the pho-
todiode's internal quantum efficiency. The former is asso-
ciated with the dead layer and the latter with the bulk re-
gion.

Notice also that Eq. (4) has a maximum value of 1 - (2/
L)(Bt)"/ 2 and that it occurs at the wavelength for which a =
(1/L)(B/t)1"2 . At this wavelength, both mechanisms con-
tribute equally to the defect in the internal quantum effi-
ciency. The same nominal values that were used in com-
puting Table I yield a value of 0.9958 as the maximum value
of Eq. (4) and 0.141 m-1 as the value of a for which the
maximum occurs. This corresponds to a wavelength around
760 nm. All the above results apply rigorously to Eq. (4) and
approximately to Eq. (2).

I acknowledge useful discussions about this topic with A.
Russell Schaefer.
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