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Digital implementations of a closed form 2-D bandlimited image extrapolation algorithm are presented for 
a number of elementary target images. The resulting figures of merit empirically verify the assumption that 
extrapolation is better near to where the image is known. Results of extrapolating a truncated image per- 
turbed by white Gaussian noise suggest a required SNR of the order of 10'0. 

I. Introduction 
In this paper, we present empirical results of the 

closed form 2-D extrapolation theory developed in Ref. 
1, Eq. (15). The algorithm is based on the I-D extrap- 
olation scheme proposed by Ger~hberg,~ and the cor- 
responding closed form discrete algorithm developed 
by Sabri and Steenaart.3 Stated simply, the extrapo- 
lation problem is to determine an image everywhere 
given information about the image over only a finite 
area. A priori knowledge of the image's bandwidth is 
also assumed. 

A number of bandlimited target images were created, 
and a square (N X N), N = 34 matrix of sample values 
i2 was formed. A smaller (m X m) square matrix LiT was 
then used as the truncated image. The extrapolation 
matrices were formed by the matrix inversion technique 
described in Sec. 7 of Ref. 1 except that the Hilbert 
transform low pass matrix4 was utilized in place of 
D-'Gn,,D, = X,Y. 

Each target function was chosen to explore a partic- 
ular aspect of the algorithm performance. 

11. Figures of Merit 
It is desirable to have a figure of merit to quantify the 

goodness of the extrapolation results. Let riE denote 
the extrapolation result. One obvious merit compari- 
son is 

and 1 1 ~ 1 1 ~  = (AIA). From the Cauchy-Schwartz in- 
equality 1 @ 1 5 1. 

This figure of merit, however, is insensitive to the 
goodness of the extrapolation near the truncated signal. 
An obvious alteration is to run the inner product sum- 
mation from the center of the matrix to a d X d square, 
where d ,< N. The matrices i2 and riE, however, are 
equivalent to UT within the m X m square. We remove 
this bias and write our final figure of merit as 

where 
dXd square 

(a JCE),,~ = C d ( i , j ) d ~ ( i j ) ,  
(m+l)X(rn+l)square 

and each square is centered. A value of @(d) near unity 
then dictates a good result. Under the assumption that 
the extrapolation is better near where the image is 
known, @(d) should be a monotonically decreasing 
function of d. 

Ill. Implementations 
The example implementations to follow are presented 

in pseudo 3-D plots. The bottom figure in each case 
corresponds to the target function. The center plot 
shows the truncated image, and the top plot is the ex- 
trapolation result. 

where for real valued matrices 
A. Example 1 

In Fig. 1, the target function is a 2-D sinc function, 
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where sincx = sinnxlnx. The sinc function was found 
to produce the most accurate reconstruction of any of 
the functions tried. In this example, the truncation 
aperture with width m = 5 passes less than half of the 
main lobe of the target sinc. From this the algorithm 
was able to recreate the target function with very high 
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accuracy over the entire 34 X 34 region. The figure of 
merit in Fig. 2 is monotonically decreasing with a min- 
imum value of 0.975. 

B. Example 2 
This group of figures depicts the extrapolation results 

for five sequentially shifted off-axis sinc functions. It 
was desired to see how the extrapolations would vary 
when different amounts of the signal energy are within 
the input. 

Figure 3 shows the extrapolation result when the 
center of the target sinc function was located at  point 
(2,32) in the x,y plane. The input is extremely low in 
energy. The extrapolated output is predictably poor. 

In Fig. 1, the target function has been moved closer 
to the center of the matrix along the diagonal. For this 
shift and all subsequent ones, the target function was 
moved three units in the positive x direction and three 
units in the negative y direction, 

Figure 5 shows the result of extrapolating the target 
sinc which has been moved yet closer to the center along 
the diagonal. There is still little energy available as 
input. A pronounced peak is forming toward the 
northwest corner. 

In Fig. 6, the target function has been shifted again. 
The extrapolated signal is beginning to look very much 
like the target function. The remarkable thing about 
this particular extrapolation is its accuracy in view of 
the small amount of energy that was passed as input. 
This aspect of extrapolation quality is not reflected in 
the figures of merit. The final extrapolation in this 
group is depicted in Fig. 7. 

Figure 8 is the figure of merit graph for the five pre- 
ceding cases. The lines corresponding to Figs. 3 and 4 
show better extrapolation close to the truncation ap- 
erture than do those corresponding to Figs. 5 and 6. 
Thus, even though a low percentage of the target func- 
tion was available, extrapolation near to the truncation 
is still good. Note that in each case $ ( d )  roughly de- 
creases monotonically. 

C. Example 3 

Recall that the extrapolation process entails an ex- 
trapolation along one axis followed by an extrapolation 
along the other axis. If the input aperture is an m X m 
square, for example, the first extrapolation would result 
in a horizontal or vertical strip of m extrapolated 
functions centered within the large matrix. The en- 
suring extrapolation would use those extrapolated 
values as input. The net result is that the centered 
vertical strip of width m and the centered horizontal 
strip of width m in the output matrix are direct ex- 
trapolations of the function within the input aperture, 
while the corners of the output matrix are extrapola- 
tions of the first extrapo1ation.l The centered sinc 
function is a nice signal to extrapolate because most of 
its structure lies along centered horizontal and vertical 
bands. The sinc function does not give a good indica- 
tion of the performance of the algorithm within the 
corner regions of the matrix, however. Therefore a 
rotated sinc was used as an input to study the extrapo- 

lation in these regions. The rotated sinc has most of its 
structure within the corner regions and is given by 

In Fig. 9, the truncation aperture was a 5 X 5 square 
which allowed most of the main lobe of the target 
function through. The area surrounding the main lobe 
has been reconstructed fairly well, but the corners have 
been extrapolated poorly. Figure 10 shows the figure 
of merit calculations for this example. The extrapo- 
lation is good over a 12 X 12 square, at  which point the 
quality of the result decays monotonically. As ex- 
pected, the results arenot as good as for the unrotated 
sinc. 

D. Example 4 
A target function was created which consisted of a 

sum of four sinc functions arranged to look like a styl- 
ized face. Two sinc functions with equal widths in the 
x and y dimensions were positioned as eyes, a sinc 
function elongated in the y direction was centered and 
represents the nose, and a sinc function broad in the x 
direction was positioned below center for the mouth. 
Figure 11 shows the result of this attempt. The input 
aperture was a 7 X 9 rectangle which passed the nose 
and part of the mouth. The mouth extrapolated quite 
nicely. One eye is visible in the extrapolation and, al- 
though reproduced in the correct position, it has only 
about half the amplitude of the target eye. 
E. Example 5 

Every target function dealt with so far (except the 
rotated sinc) has been separable in x and y. Thus, 

was used as a target function. This function consists 
of a 2-D centered sinc added to a 2-D off-centered ro- 
tated sinc and a consinusoid along the diagonal. The 
spectrum consists of a rect function due to the sinc, an 
inscribed rotated rect due to the rotated sinc, and two 
delta functions due to the cosine term. The projection 
of the spectrum onto the (f, ,f,) plane is a square. The 
truncation aperture is a 7 X 7 square. 

The resulting extrapolation is shown in Fig. 12. The 
result is typical in that the area close to the aperture is 
reproduced well, while the area farther out is not. I t  
appears, however, that the cosine part of the target 
function has not been reproduced well. The figure of 
merit for this function is displayed in Fig. 13. It shows 
that the extrapolation is good over the 16 X 16 square 
area and then drops off monotonically. 
F. Example 6 

The low frequency consinusoid part of the target 
function in the previous example was not reproduced 
well in the extrapolation. It was decided to test spe- 
cifically the algorithm performance for low frequency 
signals by attempting to extrapolate a sinc function on 
a dc or zero frequency term. A consistent value of -0.6 
was added to each sampled value of the sinc function 
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Fig. 10. Figure of merit of the rotated sinc. 
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Fig. 9. Extrapolation of a rotated sinc. 
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Fig. 11. Extrapolation of a face. 
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Fig. 12. Extrapolation of a nonseparable image. 
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Fig. 14. Extrapolation of a sinc on a DC bias. 

Fig. 13. Figure of merit for the nonseparable image. 
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Fig. 15. Extrapolation of a noisy sinc: SNR = lo2. Note 
scale change on top figure. 
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Fig. 16. Extrapolation of a noisy sinc: SNR = lo4. Note 
smaller scale change. 
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Fig. 17. Extrapolation of a noisy sinc: SNR = lo6. Equivalent 
scales. 

and the resulting extrapolation is pictured in Fig. 14. It 
appears that the algorithm was unable to predict the 
presence of the bias term. The finite (x ,y )  aperture 
does not convey low frequency information well since 
only a fraction of the periods of these terms can be 
generated. 

G. Example 7 
The final set of figures illustrates the performance of 

the extrapolation algorithm when the input is perturbed 
by zero mean additive white Gaussian noise. The SNR 
was changed by specifying different variances for the 
Gaussian distribution. 

In Fig. 15, the output for a sinc perturbed by Gaussian 
noise is illustrated. The density function of this noise 
is given by 

where a2 is the variance. The signal to noise power ratio 
is 100(SNR = l/a2). The input is obviously very dis- 
torted, with only the main lobe of the sinc being even 
partially recognizable. The extrapolated 0-utput is 
extremely poor. Note the scale change caused by the 
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Fig. 18. Extrapolation of a noisy sinc: SNR = 108. 

high amplitude peaks in the corners of the output ma- 
trix. The horizontal and vertical strips corresponding 
to the first-order (direct) extrapolation have relatively 
low amplitude and could possibly be accurate, but the 
corners corresponding to the second order (indirect) 
extrapolations are wildly varying. This phenomenon 
was also found to be characteristic of extrapolations in 
which the bandwidth had been specified incorrectly. In 
either case, the noise, which ideally has components at 
all frequencies, generates an aliasing error. 

In Fig. 16, we have the results for a a of 0.01 and a 
signal to noise power ratio of 10,000. The input is dis- 
torted but substantially less so than in the previous case. 
The output exhibits the same characteristics as the 
preceding output, but it could be noted that the scale 
is different. 

Figure 17 shows the result for a standard deviation 
of 0.001 and a signal to noise power ratio of lo6. Visibly 
the input distortion is now undetectable. The output, 
however, still shows the same distortion as in the first 
two cases. Again, the amplitude of the output oscilla- 
tions has decreased. 

In Fig. 18, a is 0.0001, and the signal to noise power 
ratio has been increased by a factor of 100 to 108. The 
output now is finally starting to look like a sinc. 
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Fig. 19. Extrapolation of a noisy sinc: SNR = 10lO. 

Fig. 20. Figures of merit for the noisy sinc extrapolations in Figs. 
15-19. 

With a signal to noise power ratio of, 101°, the ex- 
trapolated output becomes as accurate as that for the 
unperturbed input in Fig. 1. Figure 19 illustrates this 
extrapolation. 

The figures of merit for the five extrapolations are 
graphed in Fig. 20. As expected, the more noise the 
worse the extrapolation. 

IV. Conclusions 

We have presented a number of implementations of 
a closed form extrapolation algorithm presented in Ref. 
1. The results are supportive of the proposition that 
extrapolation is better near to where the image is 
known. The well-established sensitivity of extrapola- 
tion algorithms to input noise5,6 was clearly demon- 
strated. 
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