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Fig. 1. Proposed implementation of convolution. 

Y 
a ( m )  

Fig. 2. Classical implementation of convolution. 

era1 and much more efficient than the classical architecture of  
Fig. 2 ,  F o r  the special case of G F ( 2 n ) ,  the  architecture can be  
simplified even further since addition may be performed with 
simple XOR gates and each clock in the ROM will process pre- 
cisely one bit of each c ( m  - k). Thus, the computation time 
of each period is a small fragment of the time required with 
the classical architecture of Fig. 2. 

IV. CONCLUSIONS 

A novel and, in theory, optimal method for  the  computation 
of cyclic convolutions in Galois fields has been presented. A 
simple calculation will show, for  example, that for N = 3, p = 2, 
n = 4, the  present method requires three multiplications, while 
that in  [ 5 ]  requires four. As another example, if N = 5, p = 2 ,  
n = 2, the present method requires seven multiplications against 
the ten multiplications required in [ 5 ] .  An important differ- 
ence, however, is that the method in [5 ]  requires n o  bit-by-bit 
calculation, while the present method does. This disadvantage 
can be eased by using special software or  hardware such as 
proposed in Section 111. 
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An FIR Estimation Filter Based 
on the Sampling Theorem 

DMITRY RADBEL A N D  ROBERT J. MARKS, I1 

Abstract-The estimation of noise-perturbed bandlimited stochastic 
signal samples by FIR filtering is considered. The mean-square error of 
the estimate is used as the criterion of performance. We contrast three 
types of filters: all-pass, a sampling-theorem-based filter, and the mini- 
mum mean-square error (Wiener) filter. Although the Wiener filter is 
linearly optimal, its design requires detailed knowledge of the processes' 
second-order statistics. The sampling theorem filter does not. For large 
signal-to-noise ratios and large filter orders, the two filters perform 
nearly identically asymptotically. Furthermore, we demonstrate that 
for a fixed filter order, there exists an optimal sampling rate which de- 
creases with increasing signal-to-noise ratio. 

The classical Whittaker [ 1 ] -Shannon [ 2 ]  sampling theorem 
states that if a signal has a maximum frequency of W Hz, then 
it can be characterized exactly by an infinite number of the  
sampled values of the signal spaced equadistantly 1/2W seconds 
apart. In practical situations, we can estimate the  signal f rom 
a large bu t  finite amount of noise-contaminated samples. 

A number of papers have appeared that deal with bounds of 
the truncation error magnitude for noiseless deterministic 
signals. Let us  mention the fundamental papers of Yao and 
Thomas [ 3  ] , Brown [ 4 ]  , and Piper [ 5  1. Our paper treats the 
signal stochastically and deals with truncation (and noise) 
error using a mean-square error (rather than error magnitude) 
as a measure of the restoration performance. We explore the 
cleaning of data samples with F I R  filters based on  the sam- 
pling theorem and the Wiener filter. Although the latter is op- 
timal in minimizing mean-square error (MSE), its implementa- 
tion requires detailed knowledge of the processes' second-order 
statistics. The truncated sampling theorem (ST) approach 
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does not. For large signal-to-noise ratios (SNR's) and filter R g ( t  - r )  = E[E(t)$(r)] 
order, the two algorithms perform nearly the same. 

For a fixed filter order, we demonstrate the existence of a level 

sampling rate which, for the ST estimate, minimizes the MSE. g2 = ~ ( ( 0 ) .  
Sampling below this rate greatly increases the noise contribu- 
tion to  error through severe aliasing. Sampling above the rate, We assume that the noise and signal are uncorrelated: 
on the other hand, decreases the information contributed from 
each sample. We also show that,  in certain instances, increasing 

E [ i ( t ) [ ( ~ ) i  = 0. 

the SNR of the samples does not  contribute significantly to  As a consequence, the observed signal 
estimate improvement. 

g ( t )  = ect) + t ( t 1  
11. PRELIMINARIES 

Let 1 ( t )  denote a real zero-mean wide-sense stationary ran- 
dom process with autocorrelation 

R[(t - r> = E[e(t)  f ( r ) l  

where E denotes the expectation value operator. Let 1(t) be 
bandlimited in the sense that there exists a W such that 

R (7) = e (u) exp ( j 2 n u ~ )  du 

where the power spectral density (PSD) is 

has autocorrelation 

R,(T) = Rp(7) + R t ( r )  

and a signal-to-noise ratio of -- 
SNR = e 2 / E 2  

where the signal level is 

p = Rp(0).  

Let {8(n/2B)I-w< n < be jnput  into a ( 2 N  + ljst-order 
FIR filter whose output values [ f(n/2B)I-w < n < m} are esti- 
mates of the samples ( [ (n /2~)I -oo  < n < w}. In general, 

(g)  = ($1 h [ m - n l  
n = - N  

Let 2 B  denote a sampling rate not  less than 2 W and define where h [ - ]  is the filter's impulse response. Without loss in 
the sampling rate parameter generality, we will examine the estimate at the origin: 

r =  W/B< 1. 

We form the estimate 

(1) where we have assumed that h is even. The measure of the 
filter's performance will be the MSE: 

A 

where sinc ( y )  = sin ( ~ y ) / ( n y ) .  Then f! ( t )  and /?(t) are equal €(Ar)  = E [  jl(O) - [ (0)12 1 . (7) 
a t  all values of time in the mean-square sense: 

Three choices of h [.I and their corresponding MSE's will be 
E[ 11(t) - r(t)12 I = 0. (2) now considered and later contrasted. 

Note, in particular, that since sinc(n) = 6, = Kronecker delta, 
we have a stronger equality at the sample point locations: A. Sample Point Estimute (SYE) 

Motivated by (3), we might choose 

since ~ [ ( r )  has a bandwidth 2W, we are motivated to  form for  which t a ( 0 )  =g(O) .  Indeed, the result is exact in the ab- 
an alternate estimate by passing (1) through a filter unity on sence of the presence of noise, 
Jul < W and zero elsewhere. The result is 

A 

f r ( t )  f ( t )*  2 w sinc ( 2  ~ t )  ea(N) = E [  - If(0) - g(0>I2 I 
w 

= r ) s i n c -  m). 
n = -  

=E". 

(4) 
B. Sampling Theorem (ST) Estimate 

The estimate here is also equal to  the sampled process in the 
mean-square sense: 

E [  If(t) - fr(t)12 I = 0. (5) 

Unlike the unfiltered case in ( I ) ,  the estimates at the sample 
point locations here are generally dependent on all the samples 
of the process. 

111. SIGNAL SAMPLE ESTIMATION 

Let g(t) denote a real zero-mean wide-sense stationary noise 
waveform with autocorrelation 

Motivated by (4) for t = 0,  an alternate estimate is 

This corresponds to  hb [ n ]  = u sinc (un) and is essentially an 
FIR filter obtained by retaining 2 N  + 1 sample values of the 
impulse response of an ideal low-pass filter. From ( S ) ,  the esti- 
mate is asympotically optimal in the absence of noise. 

In the presence of noise, the error for the truncated estimate 
of the sample at the origin is, in general, 
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IV A .  Sample Point Estimate 
eb(N) = E [  If(0) - r g(&) sinc(rn)l21 

n  = - N  
The concept of truncation does not apply here. The MSE 

noise is given in (8). 

B. Sampling Theorem Estimate 

For the ST estimate, the resulting error in ( 10) is separable 
into components due to  truncation and data noise: 

eb(N) = ET (N)  + ~ D ( N )  

where subscript T refers t o  truncation and D to  data noise. 
sinc (m) sinc (rm). (10) From(10) ,  

After some tedious but straightforward manipulation, the fol- N  

lowing more computationally attractive iterative form results: eT(N)  = Re(0) - 2r sinc (rn) 
n = - N  

fb(lV+ 1) = e b ( N )  - 4r  Re (N2i - I) i n c  r ( N  + 1) 

+ 2r2  sinc ' r ( ~  + 1) R 0 + R? --- 
[.(I (21;'Bt211 

n - m  

n = - N  m = - N  

sinc (rn) sinc (rm). 

N  Using ( 2 ) ,  one can easily demonstrate that this error approaches 
+ 2 r 2  s i n c r ( N + l )  zero as N tends to  infinity. The error due t o  the data noise is 

n = - N  N  N  n - m  

.[R. (n +2Ng+ 7 + R. (n -22- 1 sinc (m) 
so(N) = r 2  C R t  (=) sinc (m) sinc (rm). 

a = - N  m = - N  

(1 1) 
( 1  6) 

with initialization 

~ ~ ( 0 )  = (1 - Y ) ~  Rf (0 )  + r Z  RE(()) 

C. FIR Wiener Filter Estimate 

,- , 
Note that (1 1) and (1 2) can similarly be decomposed t o  pro- 

vide iterative relationships which are more computationally 

2) attractive. Asymptotically, we can write ( 1  6) as [ 101 

Lastly. we consider the impulse response in (6) that,  for fixed 
N ,  minimizes the error in (7). The minimum MSE estimate re- = lim eb(N) 

N + m  
sults in the familiar FIR Wiener filter [ l l ] .  The impulse re- 
sponse of this filter can be found as solution of the linear cO 

equations sinc (rk) 
k = - m  

(1 7 )  

N 
N (13) w h e r e , i n ( l @ , w e l e t k = n - m , N + m a n d w e h a v e u s e d t h e  

sampling-theorem-based identity 

By exploiting the Toeplitz nature of the matrix of coeffi- 
cients, several efficient recursive procedures can be used for 2 (m) r(k - n, = (rk). 
solving this system of equations. We will mention the Levinson n  = - m  

and Robinson algorithms [61 and Durbin's recursive procedure TWO closed form special cases of (17) are worthy of note. ~f 
[ 7 ] .  ~n algorithm to  compute coefficients o f  the FIR wiener the correlation duration of the noise is less than the sampling 
filter was recently proposed by Manolakis e t  al. [ 8 ]  . interval, the noise is sample-wise white: 

Due to  symmetry (and by previous assumption), h ,  is even 
and thus can be found be solving N + 1 equations only. 

Use of the solution of (1 3) yields R, (&) =pan. (1 8)  

The corresponding (minimum) MSE is 
-. 

Then ( 17) becomes 
(14) - 

f D ( ~ )  = r  t2. 
The noise level is thus reduced by the sampling late  ratio. For  
a Laplace autocorrelation with parameter a, - 

(15) ~ ~ ( r ) = i ~ e ~ ' ~ ' ,  

( 17) becomes [ 141 

IV. MSE or* ESTIMATES 
- 

For a given filter, the sources of estimation error are data 2 i2  sinh (5) tan (T) 
noise and truncation. In this section, the MSE of the estimates eD(-) = - Q tan [ - ] . (20) 
is analyzed for each of the three estimates. The filters are as- 71 

sumed to  be ideal. 
cosh (5) 
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We return t o  the truncated estimate analysis. For  sample- 
wise white noise, ( 16) becomes 

Obviously, f D ( N  + 1 )  > e D ( N ) .  The error due t o  data noise 
generally increases when the noise has roughly a uniform or 
predominately low-frequency dominated PSD. For  low SNR, 
eb(0) may be smaller than eb(=). For  example, for sample- 
wise white noise from (1 2) and (1 9), this happens when 

C. FIR Wiener Filter 

Even with efficient algorithms, the numerical solution of the 
FIR Weiner filter for large N is difficult. The solution can be 
obtained in closed form for the noncausal linear filter [ 9 ]  

where 

and 

The corresponding MSE is 

W 

du. 

For white noise, the  result is 

1 - 
~ c ( " >  = - r  t2 .  

1 
I + -  

SNR 

Fig. 1. Truncation and data noise errors in ST estiamte for SNR = 10. 
1, 2, 3: truncation error for uniform PSD signal. 4 ,5,6:  truncation 
error for triangular PSD. 7, 8, 9: data noise error for sample-wise 
white noise. 

Fig. 2. Mean-square error in ST estimate for uniform PSD signal and 
Laplace autocorrelation noise with r = 0.5, SNR = 100. 1) a = 0.5 W. 
2) a = 6 W. 3) Sample-wise white nosie (a = -=). 

( 2  and triangular PSD: 

It is easy t o  see that for SNR >> 1,  (22)  is very close t o  t h e  
corresponding limit of the ST estimation in ( 1  9). Note that 
ec (N)  is not separable into signal and noise errors as is eb(N) .  

A. Performance Comparison 

Fig. 1 illustrates the contribution of the data noise t o  eb(N)  
for  sample-wise white noise. The contribution of truncation is 
also shown for a signal with a uniform PSD: 

- 

P 
e S ( u )  = --- rect 
2W 

( 2 2 )  Note that the triangular case converges quicker. Roughly, 
when compared t o  the uniform spectrum, the triangular spec- 
trum contains a greater amount of low frequencies, and thus 
results in a "smoother" signal. 

Also note  that the truncation error approaches zero slower 
for higher sampling rates. Roughly, for high sampling rates, 
the ( N  + 1)st sample is highly correlated with the Nth sample. 
Thus, not  much more information is gained for  the estimate. 
Similarly, for  fixed N, a large sampling rate corresponds to  
small intervals. As N increases for fixed r ,  it thus takes more 
samples t o  get t o  the truncation error's asymptotic value of zero. 

Interestingly, e T ( N )  is not a monotonically decreasing func- 
tion of N .  Rather, it has clear periodic maximums and mini- 
mums whose locations depend only o n  r. 

Fig. 2 illustrates e b ( N )  for Laplace autocorrelation noise. 
The asymptotic values from (20)  are also shown. 

The MSE for both ST and FIR Wiener estimates is shown in 
Fig. 3 .  Clearly, the FIR Wiener filter gives better results by 
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N 

Fig. 3. Mean-square error in ST and FIR Wiener filter estimates for 
SNR = 100 and sample-wise white noise. 1, 3, 4 ,6 :  r = 0.2; 2 ,s :  r = 
0.8. 1 ,  2, 4, 5: signal with uniform PSD. 3, 6: signal with triangular 
PSD. 1, 2, 3 st: 4, 5 ,6  Wiener. 

Fig. 5. Sampling theorem estimate: optimum sampling rate ratio versus 
NMAX for a uniform PSD signal and sample-wise white noise. 

0.8 

0.6 

r ~ p t  0.4- 

Fig. 4. Mean-square error versus r for N < NMAX, sample-wise white 
noise, SNR = 100. 1-4: signal with uniform PSD, N M  = 20,40, 
60, and 80, respectively. 5: signal with triangular PSD, NMAX = 20. 
6: nontruncated estimate (NMAX = -). 

- 
S.N. R =I00 

- 1 

design. The asymptotic performance is nearly reached with 
N = 10-1 5. Note that although the ST gives a n  asymptotically 
better estimate than does the SPE estimate, ea(N) < eb(N) for 
low N .  

B. Optimal Samplzng Rates 

From previous observations, e T ( N )  is generally a decreasing 
function of r with N fixed. We also know that  f D ( N )  usually 
exhibits just the opposite behavior: it increases [ l o ] .  There- 
fore, we can conclude that the total MSE 

may have a minimum at  some sampling rate for fixed N .  A 
plot of eb(N)  versus r is shown in Fig. 4 for various N <  
NV*x. For  NMAx sufficiently high, the curves have distinct 
minimums a t  points we will denote by rqpt. We can define rpp! 
at a given NMAx as the sampling rate ratio which gives u s  mini- 

mum eb(N)  with N not  exceedingNMAX. The horizontal line 
is the SPE error. For  this example, for  the ST t o  give a better 
estimate than the SPE, N must roughly exceed 20. 

A sketch of rOpt versus Nma, is shown in Fig. 5 for two 

S.N.R. (dB) 

Fig. 6. Sampling theorem estimate: mean-square error versus SNR for 
sample-wise white noise. Signal with uniform PSD: 1) r = 0.2, 
NMAX = 20. 2) r = 0.2, N w  = 40. 3) r = 0.5, NMAX = 20. 4) r = 
0.5, NMAx = 40. Signal with triangular PSD: 5) r = 0.2, NMAX = 
20. 6) r = 0.2, N M ~ ~  = 40. Nontruncated estimation: 7) r = 0.2. 8) 
r = 0.5. 

SNR's for sample-wise white noise. Clearly, with N fixed, 
higher SNR's have higher rOpps. This is understandable: a high 
SNR means that the truncation error dominates the total MSE 
in (23). As  N +rn, rOpt decreases. 

This is not  necessarily the case for a noise with a PSD of 
limited extent.  Here, an increase in the  sampling rate above 
some limit does not lead to a decrease in  e D ( ~ ) .  

C. The Dependence o f  MSE on SNR 

An increase in S-NR decreases the normalized error due t o  
data n o i s  eD(N)/f2 and leaves the normalized truncation error 
eT(N)/e2 the  same. Clearly, after some point,  a further in- 
crease in SNR will havean  insignificantly small effect o n  the  
normalized .MSE, eb(N)/f2.  Then, for a high SNR, 

The family of curves eb(N) versus SNR for various r and 
NMAX is shown in Fig. 6. Each curve follows the line for  N -t 

at  low SNR (when eD >> eT), and then flattens. At some 
SNR, the ST estimate becomes worse than SPE, i.e., the data 
filtering only worsens the quality of our estimation. 
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VI. CONCLUSIONS 

The FIR Wiener filter gives much better results than a simple 
FIR ST estimate. Its disadvantage lies in the  fact that coef- 
ficients of the Wiener filter are parameterized by assumed statis- 
tical models for signal and noise. A change in signal and/or 
noise statistics requires filter recalculation. When the actual 
signal and noise PSD's deviate from nominal, the performance 
of  the  Wiener filter will deteriorate. It  is desirable, then,  t o  
have a filter which performs well over classes of possible signal 
and noise PSD's. For  a detailed discussion of robust signalpro- 
cessors, the interested reader is referred to  papers by Kassam, 
Lim, and Poor [ 1 2 ] ,  1131. 

Conclusions regarding FIR ST estimate can be summarized 
as follows. 

1) For  fixed (or  limited) IV and fixed SNR, there exists some 
optimal finite sampling rate which gives minimum MSE for  the 
estimate. Sampling above or below this rate will increase MSE. 

2) Asymptotically (high SNR, high N ) ,  the ST and optimal 
Weiner filter perform identically. Indeed, a minimum MSE 
solution for N -+ co and SNR -+ co is the sampling theorem 
[ I S ] .  

3) Under certain conditions (high SNR, low N), the FIR ST 
estimate gives a worse estimate of the signal than input samples 
directly. [ e b ( N )  > ea (N) I .  

4)  Unlike the noncausal N -+ co filtering, there is some point 
where a further increase in the SNR does not significantly im- 
prove the filter performance. 
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Image Design: Generation of a Prescribed Image 
Through a Diffraction-Limited System 

with High-Contrast Recording 

SOHEIL I. SAYEGH, BAHAA E. A. SALEH, 
A N D  KAREN M. NASHOLD 

Abstract-Image restoration involves the recovery of an image which 
has been distorted by a given imaging system. "Image design," on the 
other hand, aims at determining the input image which when distorted 
by an imaging system (eg., a display device) becomes a desired pattern. 
The image design problem is encountered in the design of masks for - 
microphotography, microlithography, laser printing, and aids for the 
visually impaired. In this correspondence, we solve the "image design" 
problem using linear programming techniques for the case of an imaging 
system modeled by a band-limited linear system followed by a nonin- 
vertible point nonlinearity. 
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This paper investigates a new image processing problem, 
which may be called "image design" (or,  perhaps, "image syn- 
thesis"). Consider a nonideal imaging system, e.g., a micro- 
filming camera, a laser printing system, o r  an image display de- 
vice. An "input" image is fed t o  the system and the "output" 
image is generated (displayed). The goal of image design is to  
determine the input image that  generates a prescribed desired 
output  image. 

An example of some ad hoc image design procedures which 
have been adopted in the past by the microprinting and micro- 
photographic industry are the corrections usually made in the 
original masks. These corrections are deliberately introduced 
t o  compensate for the distortions caused by the microcamera 
itself. Serifs are introduced around corners t o  remove rounding 
effects, and sharp local reductions of thickness are made in 
intersecting lines to  prevent the formation of fillers [ I ] ,  [ 2 ] .  
For  instance, Kodak recommends the addition of triangular 
serifs t o  corners. the dimension of which were determined by 
a process of trial and error 121. 

At first sight it appears that this problem of "image design" 
is mathematically identical t o  the well-known problem of image 
restoration, the difference between them being mainly one of 
motive. One subtle difference, however, has to  d o  with the 
existence of a solution. In  an image restoration problem, the 
measured output  results from an actual, albeit unknown. input.  
In the absence of measured error or noise, at least one solution 
must exist. In an image design problem, on  the other hand, it 
is possible that no input image is able t o  produce the desired 
output  image. Therefore, in image design, a problem of great 
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