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, ABSTRACT

Hopf ield neural net processors (NNP)
: n a v e been shown to be an interesting class
'.of faul t tolerant, parallel computers for

pattern recognition. In this paper, we
give some limited simulation results that
contrast the performance of the Hopfield
NNP, whose T-matrix is in sum-of-outer
products form, and the PrOjection NNP,
which uses an orthogonal prOjection onto
the linear space spanned by the library
elements. A Compact NNP is introduced
which promises good recall ability with a
low density of neuron interconnections.

I. I NTRODUCT I ON

S ince the introduction of neural
networks (NN) to the engineering community
by Hopfield (IJ, a number of applications
and variaties of the basic net have been
proposed. In th i s paper, we present both
the Hopfield and the PrOjection neural net
processors ( NNP > and compare performance
based on some limited simulation results.
The Pr o j ec t t o n NN (PNN). in which
Hopfields T-matrix, T~, is replaced by the
prOjection matrix, Tp , onto the linear
subspace spanned by the library elements,
is suggested by signal space concepts. In
addition to these baseline performance
comparisons, we present a reduced
complexity neural net, the Compact NN
(CNN), whose T-matrix is obtained from T H

b y quantizing far off-diagonal terms to
zero. Reorganization of the library
elements is a key point in the development
of eff icient nets of this type.

Th e research at the University of
Wa s h i n g t o n is supported by the Boeing
Elec t r o n i c s Company, High Technology
Cen t e r under contract LD2709.
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II. NONLINEAR NEURAL NET PROCESSORS

The usual setting is that we are
given L library elements F~a<f~, ••• ,f~).

in which each library element f~ is an N
vector whose elements are chosen from
(-l,+l). Defining the set VN
(Va(Vl' •••• VN)TI v(k) € {-1,+1},
kal,c, ••• ,N} we see that f~(VN' for all
~. We describe VN as the set of hypercube
vertices in RN with card(VN)=2

N•• Next,
assume we are given a probe vector p€RN.
The NNP seeks to find that f~€F~ such ~at

the LI!! distance, 11~ .. -plll!!, is a minimum.
The Hopfield NNP forms the matrix

\...

TH = -N IN + 1: f .. f .. T ( 1 )
~-1

where IN is the NxN identity matrix.
Notice that TH is the sum of outer
products of library . e l e me n t s , with the
diagonal elements set to zero. The
Hopfield iteration is to set vo=P and
iterate according to

(2)

until a fixed point v, satisfying
v=sgn(THv), is reached. Since v€V N, we
select v as our estimate of which library
element is closest to the probe p in
Hamming (or LI!!) distance. This NNP works
well when L < CN = N/(210gN) « N, that is
we operate the net below its capacity ~

(2L In general, the net m~y take many
iterations to converge--if it does so at
all. In addition, we are not guaranteed
that v(F~. Fixed points that are not
members of the or iginal set of library
elements F~ are known as false memories.
Also, it is not assured that every library
element f.. is a fixed point. A NNP for
which every library element is a fixed
point is said to have the input
veri~ication property. Note that the
Hopfield neural net is not optimal in the
sense that if we assume Pr(~=I)

Pr(~=L) IlL, p=f.. + n , n-MVN(O,cr 2I N ) ,

then the minimal probability of error
classifier implements
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min i IP-f~1 1 2 or when f~fjT
to

max pTf ...

This is the well-known matched filter
receiver [3J. Th e adva~tag~s of a NNP l~e

in areas othe r than ~Pt1mallty ~nder a min
PK cr i ter i o n and strict assumpt10ns on t~e

. t no i~e . The HNN is fault tolerant 1n
1 npu 0 f 0 t t O Othe 5en~e that 1 on 1n erconnec 10n 15

broken or if 1 neuron ~s "stuck at" a
ove n val ue, the net lS rem.rkably

~~5il.n t . Also, th. NNP solution does not
require d e t a i l e d assumptions about the
noi5. d i ~ t ri bu t i o n . For these reason~,

a nd because a neural net uses a large
number o f simple processors. NNPs are an
importan t c lass of parallel computers.

Of cour s e , if given the probe p, we
only wa n ted t o find the nearest library
element in SL. span{ f l' ... ,f L.) , the
linear subs p a c e spanned by the library
elemen t s , we would set v=T~p where T~ =
F(FTF)- l FT i s the projection onto the
sub~pace ~ and F=[f 1 : ••• :fL.J is the NxL
librar y element matrix. This suggests the
projec t i on NN ( PNN) whose i t e r a t i o n is
defined by

1n thi~ and other simulation studies i s
th.t the PNN often exhibits single-step
convergence. Table 1 shows that on the
average, the HNN can take many more
iterations than the PNN to converge to a
fixed point . It is not clear from this
data whether a majority of the neurons
were still changing after the first
i t e r a t i o n o r if it is only a small subset
of the N neurons that take a protracted
number of iterations to converge.

No . of
Iterations HNN PNN

10 0 0
9 5 0
8 2~ 0
7 14 0
6 40 10
5 101 19
4 139 51
3 204 161

2,1 252 539

TABLE 1 Hi s t o g r a m of t h e number of
i t e r a t i o n s requ ired for a fixed pt .

with Vo=p. This neural net has been
sugges t e d by [4J and is discussed in Marks
and At l a s [ 5 J . No analyt ical results such
as [2 J ar e available for the capacity of
the PNN, but limited simulation studies
show t h at the PNN usually converges to a
fixed poi nt in fewer iterations than a
HNN.

TABLE 2 False Memories

V n + l = sgn( T~vn ) (3)

HNN

PNN

No. of False
F b e d Po i nts

16

110

One mi gh t measure the overall
per f o r ma nce of a neural net processor by
its perfo r ma nc e in five basic areas:

( 1 ) Input verification
Are all li b r a r y elements fixed points?

( 2 ) False memories
How like l y i s it that we converge to an
eleme n t n o t i n FL. ?

( 3 ) Speed of convergence
How many it e r a t i o n s does it take to
reac h a fi xe d point?

( 4 ) Fault tolerance
( 5 ) I mp l e me n t a t i o n complexity.

Ar e a s (4) and (5) are addressed in section
I V. In sect ion III. we compare the HNN
a nd PNN b a s e d on ( 1) - ( 3 ) .

I I I . S I MULATION RESULTS ON THE HNN AND PNN.

Ba s e d on 780 independent simulation
tria ls with N=1 0 0 , and L=10, we fi nd that
the HNN and PNN bo th h a v e thei r merits ,
but in dif f e r e nt ar e a s . Th e resu l ts a r e
Su mma r i zed in Tables 1 and 2. In Table 1,
we see a histogram of the number of
iterati o n s required to reach a fixed point
f o r the PNN and the HNN. Our experience
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Note that ~ although the speed of
convergence of the PNN is much faster t h a n
that of the HNN, the probab ilit y of
landing at a false fixed point i s
increased. In Table 2, we show that of
the 100 2=10,000 possible states, the HNN
exhibits convergence to some 16+10=26
while the PNN converges to 110+10=120 ( in
780 trials). The FNN has the input
verification property, while this is not
guaranteed in the formulation of TH;i.e.,
that every library element is a fixed
point. Library elements are always fixed
points in the PNN by construct ion of Tp o

However, when L « N and the ne t i s
operated be low capac it y, th is will u s u a lly
be the case for TH as well. In all of our
simulations, the neural net i s operated
synchronously.

I V. THE COMPACT NEURAL NET

An i mpor t a n t i s sue in NNP des ign i s
t h e i mp l e me n t a ti on c o mpl exi t y.
Electronic, optical, and hyb r id net
architectures have b e e n pro posed . An
i mp o r t a n t complexity measure, r e g a r d l e s s
of i mp l e me n t a t i o n technology, i s t h e



min i IP-f~ 1 12 or when f ~ fJ T
~

max pTf ... .

This is th well-known matched filter
rece iver (3J. The adva~tag~s of a NNP l ~e
. areas other than optimallty under a min
~: cr i t e r i o n and strict assumptions on t~e
;npu ~ noi5e. T~e HNN · i ~ fault tole~ant ~n
the ~ense that 1f one i n t e r c o n ne c t i o n 15
broken or if 1 neuron is " s t u c k at" a
. iven value, the net is remarkably
gesilan t . Al so , the NNP solution does notr .
requ ir e det a i l e d assumptions about the
noi~. distribu t i o n . For these reason5,
and bec a u s e a neural net uses a large
number of s i mple processors. NNPs are an
impo r t a n t class of p a r a l l e l c o mp u t e r s .

Of course, i f given the probe p, we
only wa n t e d t o find the nearest library
elemen t i n SL span{fl., . . • ,fL), the
linear subspac e spanned b y t h e library
elemen t s , we wo u l d set v=T~p where T~ =
F(FT F )- l FT i s t h e prO jec t ion onto th e
sub5pac e ~ and F=(fl. : . . • : f LJ is the NxL
librar y el e me n t matrix. Th i s suggests the
pro jec t i o n NN ( PNN) whose i t e r a t i o n i s
defined by

in thi5 and other simula tio n 5tudies i s
that the PNN often exhibits single-step
convergence. Ta b l e 1 shows that on t he
average, the HNN can take many more
iterations t h a n the PNN to converge to a
fixed point. I t is not c l e a r from this
data whe ther a maj ority o f th e neurons
were still c h a n g i n g after the first
i t e r a t i o n or i f it is only a small subset
of the N neurons tha t t a ke a p r o tr a c t e d
number of it er a t i o ns to c onverge.

No. of
I t e r ati o n s HNN PNN

10 0 0
9 5 0
8 2~ 0
7 14 0
6 40 10
5 10 1 19
4 139 5 1
3 204 161

2, 1 252 539

TABLE 1 Hi sto gr a m of the nu mbe r o f
i t er at i o n s requ i red f or a fix ed pt.

with vo=p. Thi s ne ur al ne t h a s been
sugges t e d by [4] and i s d iscussed in Mar ks
and At l a s [5J. No a naly t ical results . suc h
as (2J are av a i l a b l e fo r the c a p a ci t y of
the PNN, but l i mi t e d s imula t ion studies
show that t h e PNN usua l ly converges to a
f ixed po int in fewer it e r ati o n s th a n a
HNN .

TABLE 2 False Memories

V n + l = sgn( T ~vn ) ( 3 )

HNN

PNN

No . o f Fa l s e
Fix e d Po i n ts

16

1 10

One might me a s ur e th e o ve r all
per f o r ma n c e of a n e ur a l ne t p rocessor b y
its performanc e in f ive basic areas :

(1) Input verif i c ati o n
Ar e al l l ibr a r y e lements f ixed po ints ?

(2) Fal s e memor ies
How li ke l y i s it t ha t we co n verge t o an
eleme n t not i n FL?

(3) Speed of convergence
Ho w ma n y i t e r a t i o n s d o e s it take to
r eac h a fix e d po int ?

(4) Fault tolerance
( 5 ) Implementa t ion c omp lex i t y .

Ar e a s (4) a nd (5) are addressed i n sect ion
I V. In sec ti on I I I, we compare the HNN
a nd PNN b ase d on ( 1)-(3).

III . S IMULAT I ON RESULTS ON THE HNN AND PNN.

Ba s e d o n 780 independen t s imulat ion
tr ia ls with N=100 , and L=1 0 , we find that
t he HNN and PNN both h av e th eir mer i ts ,
but i n d iff e r e nt a reas. Th e r e sul t s are
Summa r ized in Tab les 1 and 2. I n Table 1,
we s e e a hi sto g r a m of the n u mbe r o f
itera t ions required to reach a f ixed point
for t h e PNN and the HNN. Our e xperience
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Note that ~ althoug h the speed of
c o n v e r g e nc e of the PNN i s muc h faster than
t h a t of th e HNN, th e probab i l i t y of
landing at a f a l s e f ixed po i n t i s
i nc r e a s e d. In Ta b l e 2, we show that of
the 100 2= 10,000 poss ib le states , the HNN
exhibits c o nv e r g e nc e to some 16 + 10 =2 6
while the PNN converges t o 1 10 + 10 = 12 0 ( i n
780 t ri a l s). The FNN h a s the i np u t
ver if i cation property, while this is not
guaran teed in the f ormulati o n o f TH ; i .e. ,
t h a t e very li br a ry e lement i s a fi xe d
po int . Library elements a re always f i xe d
points in the PNN by co nstr uc t io n of Tp •

Ho we ver, wh e n L « N and th e ne t i s
operated below c a p a ci t y , t hi s wi ll usua lly
be the case for TH as we l l . In a ll of o u r
s imu la t i o ns, t h e neural net is operated
synch ronously .

IV . THE COMPACT NEURAL NET

An import ant i s sue i n NNP d e sign i s
the i mpl e mentation c omp lex it y .
Elect ronic , opt ica l, a nd h y b r i d net
arc h itect u res h ave be en pr o p o s e d . An
i mp o r t a n t complex ity me a sur e , r e g a rdless
o f i mp l e me n t a t i o n t e chnol o gy, i s t h e



:igure 1 Ri n g Archi tecture

~o t i c e that t h e design wraps around so
ch at neuron i s connected t o neuron
( i + 1 ) mo d ( N) . A r i n g arch itecture
:or r esponding t o the T -matr i~ shown in (4 )
lS shown in Fi g ur e 1.

A HNN who s e T-ma t r i ~ i s all zero
e~cept for t h e 1 upper and lower
jiag o n a l s , can be eff iciently i mp l e me n t ed
Jsing a ri n g ar ch i t ec t ur e , This i s
i l lustrated i n equation (4) where X
s i g n i f i e s a n on z e r o elemen t and N=4 .

(5 )

Co n verged
3
192
289
276
235
2 0 4

G

--+
--+
-++
+++
-+
+-

+--

No.
3
192
300
300
300
300

F

+--

- - +
- - +
- +-
+--
+++
-++

D
o
1
2
3
4
5

Tab le 3 Co n v e r g e nc e of probe vectors
a t di st a nc e D from l i b r a ry

Notice that +1 or -1 components now appe r
in bursts. We have used a greedy algorithm
to determine this rearrangement. Th
algorithm starts at row i=1 and make 1
pass through the data to i e64. Most of
the rows of G are close in a Hamming
sense, e)(cept for i= l and i=64. This
affects recall ability of these
components, but i s an artifact of our
rearrang ment algorithm. No attempt has
be n m de a t this t ime to utilize the
bursty structure of the library elements
in order to develop a more fault tolerant
compact neural net. Remember that th
Hopfield Neural Net is already fault
to 1erant by des i gn. In th CNN, we e)(pec t
t h a t er ror correct ing c o d e techniques can
be applied. Some simulation results for
N~64 and L=3 and 1 i t e r a t i o n are shown in
Tab le 3 .

In all of our studies, we have found
t h a t a s ingle iteration of V~_ l

sgn(Tcv~), where Tc is the CNN T-ma tri~ ,

is sufficient fo r convergence of a
majority of the neurons. Thus, for probe
p, we decide that v=sgn(Tcp) was
transmitted. More iterations may increase
recall performance, at the e~pense of
implem ntation comp le~ity .

An e~ample of the library element
matri~ F and its rearrangement G is shown
in (5). Here, L=3 and N=10. THese values
are used for illustration and were not
used in any of our simulations . Notice
that -1,+1 components appear randomly
distributed.

(or,possibly, we allow only a fi~ed n~mber
of iterations for ease of implementatlon),
and the output sent through th inv rs
permutation (if really n cessar~) to
obtain our best estimate of which library
element was transmitted, given the
rece ived (d istorted) probe vector as data .

(4 )
X~ [V (1>]o v (2)
X v(3)
o v (4)

o
X
o
X

X
o
X
o

Tv

"he questi on arises Which matri~ T i s
e a s t aff ec t e d by Quantization of outer
~lements t o z ro ? Although we have ne
analytical pr~of (in the sense of least
)erformance degradation), we seek T
natr ices who s e element s are largest near
:he ma in di a g o n a l and smallest f r from
:he the d i a g o n a l . At Ie s t in t h i s way

1 ~ - ~1 II i s ma~ imized, when T J is the
)riginat T =T~ With all but the j upper and
lo we r sub ( s u per ) d iagonals set to zero .
lu t wha t freedom do we h a ve i n the des ign
)f T , gi v e n that we follow the Hopfield
"ecipe (I)? Th e answer i s t h a t we c a n
" arr a n g e , o r permute, the elements of
!very f .. to obtain g O' wher e q t r )
r .. (n( i ) a nd ( n ( 1 ), .. . ,n(N» i s any
le rmu t a t i o n o f ( l, . .• ,N) . An y pro b e
'e c t o r t h a t we receive would be permuted
Ipon arriva l, inp ut to t he mod if ied o r
omp a c t NNP, a fi~ed point reached

connec t i v i t y of the NNP . Spec ifica l ly,
both T~ a nd T~ pr v iously defined ar, in

ner a l , dense N~N matrices. T~, of
90ur s e , h a s zer o d iagonal e l@men ts-- th t
~s, t he Hopfield NNP uses no auto (or se lf)
i nter c o n ne c t ions. As N i nc r e a s e s , i t
b co mes inc r e a s i n g l y d i fficult to layout
a den s e l y i n t e r c o n n e c t e d ne t . F o r this
reaso n , we have investigated Compact
N u r a l Net s (C NN ) in wh ich elements of th
T-mat r i ~ f a r fr o m the d iagonal a re set to
z r o o I n thi s section, and i n all of our
stud i e s of th e CNN to date, we restr ict
ourse l v e s to t h e Hopfield f or mu l a ti o n and
le t T=T~ .
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that as the Hamming distance ( D)
Notice t he probe and the nearest library
between inc r e a s e s , the percentage of
.lement

ts that converge correctly
• 1~;::5es . Although the quantization of
de t T has som e effect, we feel that the
T... 0 e . b s 1 . glrimary reason 1S ecau e on y a Sln e
p t i o n i s allowe d. I n any event, thel t e r a
de rada t i on is ~ radual and no ~ h resho ld

fg t i s vi s l b l e , a t least i n these
ef ec . .
limited s i mu l a t 10ns. In Table 4, we llSt
• summar y of s o me further resu lts on the

entage of p r ob e s that correctly
~~~~erged , par a me t r i c . in N,l and the
numbe r of ne ighbor s (d lagonals) used i n
the CNN .

N l No. of X Converge
Nei ghbor s

32 3 1 0.99
32 3 2 0.99
32 4 1 0.77
32 4 2 0.60
64 3 1 1.00
64 - 3 2 1.00
64 4 1 0.92
64 '+ 2 0.89
64 5 I 0 . 6 3
64 5 2 0.3~

Table 4 Percenta ge of Correct Convergence
for th~ Com~ ec t N~ur al Net

For e~amp l e , when the number of neighbors
is 2, a total of 4 off-diagonals is used
in Te • These r e s u lt s are also taken after
• si ng l e i t e r a t i o n . We f ind a strong
relati o ns h i p with t h e capac ity results of
[2J.

V.CONCl US I ONS

In conclusi o n , we have p resen t some
lim i t e d s imulati o n r e s u l t s t h a t contrast
the differenc e s between the Hopfield NN
and t h at sugg e ste d by matched filter
theo r y , t he Pr oj e c ti o n NN. Th e fact that
the PNN exhibit s a large number of false
memor i e s i s a great disadvantage in many
appl i c a t i o ns . Ho we ve r, simulat ions of NNP
tha t use lar ge numbers of neurons,
say. N= 10 . 00 0 , ma y yet show the i mpo r t a nc e
of the speed a d v a n t a ge s of the PNN.

373

VI . REFERENCES

1 . J.J.Hopfield,Proc. Natl. Acad. Sc i.,
USA. vo l. 79,pp.2554-2558, 1982 .

2. R.J .McEliece.E.C .Posner ,E.R.Rodem ich .
and S.S.Venkatesh ," The Capacity of the
Hopfield Associat ive Memo ry " ,subm i t ted to
IEEE Tr a ns . on I nfo r ma t i o n Th e o r y .

3 . H.L .Van Trees,Oetection,Estimation.and
Modulation Theory. Part I,Wiley: New
York,pp.257-271.

4 . l.Personnaz,I .Guyon,G.Dreyfus, " I n f or ma t i o n
S t o r a g e and Retrieva l in Spin-Glass
like Neural Networks ",J.Physique lett. ,
vol.46 (1985) l-359-l-365 .

5. R.J .Marks, II and l.E .Atlas. "Conten t
Addressable Memor ies: A Rela tionsh ip
Between Hopfield 's Neural Net and AN
I t e r a ti ve Matched Filter". submitted to
IEEE Trans. on Circuits ~nd Systems.


	1
	2
	3
	4
	5
	6



