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The performance of Hopfield's neural net operating in synchronous and asynchronous modes is contrasted. 
Two interconnect matrices are considered: (I) the original Hopfield interconnect matrix; (2) the original 
Hopfield interconnect matrix with self-neural feedback. Specific attention is focused on techniques to 
maximize convergence rates and avoid steady-state oscillation. We identify two oscillation modes. Vertical 
oscillation occurs when the net's energy changes during each iteration. A neural net operated asynchronously 
cannot oscillate vertically. Synchronous operation, on the other hand, can change a net's energy either 
positively or negatively and vertical oscillation can occur. Horizontal oscillation occurs when the net 
alternates between two or more states of the same energy. Certain horizontal oscillations can be avoided by 
adopting appropriate thresholding rules. We demonstrate, for example, that when (1) the states of neurons 
with an input sum of zero are assigned the complement of their previous state, (2) the net is operated 
asynchronously, and (3) nonzero neural autoconnects are allowed, the net will not oscillate either vertically or 
horizontally. 

I. Introduction 
The neural network model of a content addressable 

memory (CAM) proposed by Hopfieldl has stirred 
great hterest in the optical and the signal processing 
communities. The model has been implemented both 
electronically and ~ p t i c a l l y . ~ ~  

In this paper, we contrast the performance of a Hop- 
field-type neural net for synchronous and asynchro- 
nous operation. We show, for example, that for syn- 
chronous operation, Hopfield's net can oscillate in the 
steady state and that the oscillation can be avoided by 
slightly altering the neural operation. Previously, 
these results have been observed empirically.ls5s6 
Asynchronous operation of the net, on the other hand, 
always results in a stable steady state when the neural 
threshold function is properly defind and nonzero au- 
toconnects are used. Use of nonzero neural autocon- 
nects also results in a net that converges faster than 
when zero autoconnects are used. This is true for both 
asynchronous and synchronous operations. Thus, in 
general, asynchronous implementation of nets with 
nonzero autoconnects have the best convergence prop- 
erties. Better convergence, however, does not neces- 
sarily imply better (or worse) steady-state accuracy. 
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II. Preliminaries 
Hopfield's model for a content addressable memory 

consists of a set of identical processing nodes (or neu- 
rons) with intensive pairwise interconnects. The neu- 
ron model proposed by Hopfield uses two state neu- 
rons. The state of each neuron depends on the states 
of the other neurons in the network. Other models 
also allow autoconnects (e.g., self-neural feedback). 
We consider the discrete time rather than the analog 
neuron model. 

Let the total number of the neurons in the network 
be L. The states of the L neurons can therefore be 
described by an L-tuplet v, each element of which is 
binary: either 0 or 1. The strength of the intercon- 
nects is represented by an L X L interconnect matrix T. 
The ijth element of T, tij, represents the strength of the 
interconnect between the ith and the jth neurons. Let 
(f,llS n I denote a set of binary library vectors (or 
memories). We begin formation of T by defining the 
library matrix of binary bipolar (-I,+ 1) elements: 

where lL is the L-tuplet with every element equal to 
one. Hopfield's interconnect matrix follows as7 

where the superscript T denotes matrix transposition, 
IL is the L X L identity matrix, and the 0 subscript 
denotes that the interconnect matrix T has a zero 
diagonal (i.e., no autoconnects). If on the other hand 
we allow autoconnects, the interconnect matrix is then 
simply 
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The To and T# matrices will be referred to as zero 
autoconnects (ZA) matrix and the nonzero autocon- 
nects (NZA) matrix, respectively. 

With vo as the vector of initial neural states, the 
network generates a sequence, V, of binary vectors 
either synchronously or asynchronously: 

A. Asynchronous Mode 

In the asynchronous mode of operation, only one of 
the L neurons is free to change state at a time: 

where 

By this definition, asynchronicity does not necessar- 
ily imply randomness. The neurons, for example, 
could fire periodically one at a time in sequence (i.e., m 
= 1,2,. . . ,L) and fit this definition of asynchronicity. 

B. Synchronous Mode 

In the synchronous mode of operation, all neurons 
are free to change state in each iteration: 

or in vector form: 

where p performs a unit step operation on each ele- 
ment of Gk and Gk = Tvk. We denote the ZA and NZA 
versions by Gk and Gf, respectively. 

In both modes of operation, the sequence V usually 
stabilizes at some particular binary vector v, after a 
finite number of iterations. In particular, v, = ~[Tv,]. 
Ideally, v, is that library vector closest to vo in the 
Hamming sense. 

Ill. Convergence of Hopfield's Algorithm 
In this section, we consider the convergence of Hop- 

field's algorithm, performed both synchronously and 
asynchronously. In either case, we define an energy 
function of an L-dimensional binary vector v: 

Since v is binary, the energy has a lower bound: 

The energy of the neural net at the kth iteration is 
denoted by 

The corresponding energy change at this iteration is 

To calculate AEk, we define Ak as the state transition 
vector: 

Combining Eqs. (7)-(10) yields the energy transition 
expression when the states of the neurons evolve from 
Vk to Vk+l: 

We now investigate the nature of Ak for various cases. 

A. Asynchronous Mode of Operation 

If the iteration is carried out asynchronously, then 

where 

Case I: ZA Model 
With no autoconnects, the energy transition expres- 

sion is obtained by substituting Eq. (12) into Eq. ( l l ) ,  
with T = To: 

Case 11: NZA Model 
With the incorporation of autoconnects, we obtain 

In both the ZA and NZA models, AEk is always zero or 
negative: 

Ek+lI  E k .  (15) 

Since Ek 1 Emin for every vk E V, the sequence V must 
converge to some stable state v,, where 

In general, if the energy transition is maximized at  
each iteration, the required number of iterations for 
convergence should be reduced considerably. Con- 
vergence acceleration, however, does not imply in- 
creased steady-state accuracy. 

If v, is stable, then 

v, is said to be a locally stable state because generally 
more than one stable state exists with any given inter- 
connect matrix T. For example, if v, is a stable state, 
the complement of v, is also stable.1 Neural networks 
of the type considered can also oscillate in steady state. 
If the energy remains the same throughout, the oscilla- 
tion will be referred to as horizontal. Here, the net 
alternates between two or more states of equal energy. 
Vertical oscillation, on the other hand, results from 
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alternating between states, at least two of which have 
different energies. 

6. Synchronous Mode of Operation 
Now we iterate the Hopfield's algorithm synchro- 

nously. In accordance with Eq. (6), more than one 
neuron may change state simultaneously. Let ak be 
the set of indices of neurons that change state in the 
kth iteration: 

The transition vector Ak then follows as: 

Case I: ZA Model 
With the absence of autoconnects, we obtain the 

energy transition in this operating mode from Eq. (11): 

Replacing To by Eq. (2) and manipulating give 

where Mk is the cardinality of the set ak (i.e., the 
number of neurons that change state in the kth itera- 
tion). Since NMk is positive, the energy transition in 
Eq. (20) can be positive. The possibility of positive 
energy transition explains the vertical oscillatory be- 
havior occasionally exhibited when the algorithm is 
implemented in the synchronous mode.5~6 
Case 11: NZA Model 

Following the same procedure for the ZA case, we 
use Eqs. (19) and (20) using Tm rather than To. The 
energy transition expression follows as 

1 
AE$ = -A;G$ - A;T@A~ 

Here, AEf can never be positive because both terms 
in Eq. (21) are always negative. This negativity of the 
energy transition seems to provide good support for 
the NZA model over the ZA model in terms of vertical 
oscillation suppression. However, in the following 
section we will see that the NZA model can oscillate 
horizontally in the synchronous mode. 

IV. Zero Input Problem 
A practical problem that occurs frequently in the 

operation of the Hopfield model is to decide the value 
of a neural state, Uk+l,rn, when Gk,rn is zero. We call this 
the zero input (ZI) problem. In the following, we 
resolve the problem in the context of maximizing the 
energy transition. 

A. Asynchronous Mode of Operation 

Case I: ZA Model 
For the ZA model, Gg,, = 0 in Eq. (13) results in an 

energy transition of 

There is no contribution to the energy transition re- 
gardless of whether the mth neuron changes its state. 
Case 11: NZA Model 

In the NZA model, the energy transition follows 
from Eq. (11) as 

If each neuron with a zero input-sum responds by 
complementing the state, vk+l,, = vk,,. then A:,, = 1. 
As a result, 

and the energy transition is maximized. 
Thus, when the ZI problem is encountered, the NZA 

model always offers a negative energy transition when 
we complement the neuron's state. In contrast, the 
energy transition in the ZA model stays the same 
whether the neuron's state changes. In this sense, the 
NZA model has a faster convergence rate than the ZA 
model for asynchronous operation. 

6. Synchronous Mode of Operation 

In the synchronous mode of operation, the ZI prob- 
lem may be encountered by more than one neuron 
simultaneously during the iteration. Denote the set of 
indices of neurons with zero input by 

Here, we only consider the specific situation when 

That is, the states of all the neurons which do not 
encounter a zero input sum remain unchanged. The 
energy transition then depends only on the states of 
the neurons which encounter the zero input sum. 
Since Gk = 0, Eq. (11) becomes 

where 

If one chooses to let the rest of the neurons with zero 
input stay at the same state, then 

Thus, AEk will be zero and there is neither a vertical 
improvement nor degradation to the convergence. 
Thus, changing the states of those neurons results in a 
nonzero (hopefully negative) energy transition. 
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Case I: ZA Model 
According to Eq. (25), the energy transition for the ' 

ZA model is 

If Ak is not a zero vector, then, with reference to Eq. 
(20) , 

Note that 1 1 is simply the number of nonzero ele- 
ments in the transition vector Ak. 

We now examine two schemes for state transition 
under the ZT problem and their effects on energy 
transition for ZA and NZA synchronous operation. 
Scheme I: Complementation 

In this scheme, we complement the states of all the 
neurons experiencing a zero input sum: 

The energy transition using this scheme follows as 

where Pk is the cardinality of the set Pk. AEf can 
either be positive, negative, or zero. Positive AEf is 
adverse to the convergence. In the case where AEf = 
0, the new transition vector will be 

Thus AEk+l = 0, as is AEiz+2, AEk+s, etc. These zero 
energy transitions thus correspond to repeat comple- 
mentation of the same set of ZI neurons. The net thus 
locks in horizontal oscillating between two binary vec- 
tors v, and vb, where 

Neither vector is a locally stable state. The oscillation 
has been observed to occur many times about a locally 
stable point.l>5 
Scheme 11: State Hardening 

One possible way to reduce the magnitude of the 
positive term in Eq. (28) is to complement only some of 
the ZI neurons. The ZI scheme suggested by Macu- 
kow and Arsenault6 fits this description. Their ZI 
scheme is to harden the states of the ZI neurons at +1 
regardless of what their last states are. Specifically, 
for j 6 Pk, 

The energy transition follows as 

where Qk is the number of nonzero elements of the 
state transition vector Ak. As with full complementa- 
tion, AEf can be negative. We do, however, avoid the 
problem that can cause horizontal oscillation in the 
case of ZA full complementation. Macukow and Ar- 
senault6 demonstrate this nonoscillatory nature em- 
pirically. 
Case 11: NZA Model 

According to Eq. (25), the energy transition of the 
NZA model is 

which is recognized as 

We immediately recognize that the energy transition 
in the NZA model is never positive. In the following, 
we will apply the two schemes for zero thresholding 
previously discussed and investigate their behavior. 
Scheme I: Complementation 

From Eq. (33), the energy transition corresponding 
to full complementation is never positive. However, 
AE:is zero when Ak is orthogonal to every column of 
the library matrix F (i.e., FTAk = 0). For this reason, 
the net can oscillate for the same reason that the ZA 
model can oscillate. 
Scheme 11: State Hardening 

Again, the energy transition given by Eq. (33) is 
never positive. If we use this scheme of thresholding 
the zero input sum, the net will not oscillate horizon- 
tally. 

In short, when zero thresholding is encountered by a 
number of neurons, one should change the states of 
some of those neurons rather than stay at  the previous 
states. In the ZA model, sometimes these changes 
may retard the convergence or may even lock the net in 
vertical or horizontal oscillation. In the NZA model, 
the change of states never adversely affects the conver- 
gence and vertical oscillation cannot occur. To re- 
move the possibility of horizontal oscillation, one may 
either (a) change the states of a partial number of 
neurons, or (b) operate the net asynchronously. 

V. Examples 
We present three examples of application of the two 

thresholding schemes discussed above to both the ZA 
and NZA models. We use the same examples used by 
Macukow and Arsenault6. 
Example 1: 

STORED VECTORS 

F , = 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1  

F 2 = 0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 , 0 0 0 1 1  

F 3 = 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0  

F , = 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0  
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INPUT VECTOR 

vo contains the first seven elements of f4. 
Results: 

Zero Autoconnect (ZA) Model 
Thresholding Total number of Steady-state 

schemes -2hEk iterations vector 

( 1 )  Complementation +64,0,+8 
(2 )  State hardening +64,+8 

Nonzero Autoconnect (NZA) Model 
Thresholding Total number of Steady-state 

schemes: -2hEk iterations vector 

( 1 )  Complementation +84,+12 
(2)  State hardening +98 

Example 2: 
Same as example 1, except the input vector contains 

only the first four elements of f4: 

INPUT VECTOR 

Result: 

Zero Autoconnect (ZA) Model 
Thresholding 

schemes: 
Total number of Steady-state 

-2hEk iterations vector 

( 1 )  Complementation +32,+48,0,+48 
( 2 )  State hardening +56,+24,+8 

False state 
f4 

Nonzero Autoconnect (NZA) Model 
Thresholding Total number of Steady-state 

schemes: -2hEk iterations vector 

( 1 )  Complementation +96,+24 3 f4 
( 2 )  State hardening +96,+24 3 f4 

Example 3: 

STORED VECTORS 

INPUT VECTOR 

vo is a partial version of rl. 
Result: 

Zero Autoconnect (ZA) Model 
Thresholding Total number of Steady-state 

schemes: . - 2 m k  iterations vector 

- (1)  Complementation +18,0,0,0,. . Oscillation 
(2)State hardening +42 2 f 1 

Nonzero Autoconnect (NZA) Model 
Thresholding Total number of Steady-state 

schemes: -2hEb iterations vector 

(1) Complementation $41 2 f 1 
(2) State hardening +41 2 f 1 
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In terms of the-number of iterations and the steady- Table I. Summary of Results 

state behavior, all three examples show that the NZA 
model always performs better than the ZA model, and 
the state hardening scheme performs better than the 
complementation scheme. 

We summarize our results in Table 1. 

VI. Conclusion 
We have contrasted the performance of Hopfield's 

neural net model operating in asynchronous and syn- 
chronous modes. From an energy transition and sta- 
bility perspective, the model performs better in the 
asynchronous mode. The net always converges to 
some locally stable state. In the synchronous mode, 
the net may sometimes lock in oscillation. Therefore, 
locally stable states cannot be guaranteed in the syn- 
chronous mode. The net also performs better in the 
asynchronous mode when a zero neural input situation 
is encountered. We have also considered the incorpo- 
ration of autoconnects in the model. In either mode of 
operation, the net performs better when autoconnects 
are incorporated. All these results show that the Hop- 
field model performs the best when the net is operated 
asynchronously and the autoconnects are used. 
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