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Abstract 

In this paper, Artificial Neural Networks techniques (ANN's) are 
explored as a tool to assess the dynamic security of power 
systems. The basic role of ANN'S is to provide assessment of the 
system's stability based on training examples from off-line 
analysis. Such an assessment would be useful as an operations 
aid. In essence, ANN'S interpolate among the planning analysis 
data. 

This paper contains the results of a study to assess the capability 
of ANN's to "learn" from off-line stability analysis results and give 
accurate stability assessments when queried with data 
representing the current system status. The important feature of 
the result is that correct stability assessments are provided by the 
ANN not only when it is queried with an element of the training set 
of data but also at other operating conditions. 
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Introduction 

This paper exptores the suitability of using artificial neural 
networks (ANNs) for on-line security assessment as an operator 
aid. Specifically, here we are concerned with security relative to 
dynamic stability. The basic concept is to use off-line "operations 
planning" data to explore the region of system security in a space 
of critical operating variables. These variables then serve as inputs 
to an ANN which is trained with this off-line data to yield the proper 
response; "secure" or "insecure". The trained ANN could then be 
used on-line, i.e. it could be fed with the on-line values of the input 
variables and yield a warning to the system operator if the system 
is ih the insecure region. An important feature of ANNs that is 
fundamental to this approach is that they can interpolate among 
the training cases to give an appropriate response for cases 
described by neighboring inputs. 
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The security assessment problem results from the constantly 
changing behavior of a power system. Many of these changes can 
be anticipated, e.g. changing load patterns. However, others, such 
as a line outage, happen without warning. We can think of the 
system's operation as being represented by a large set of key 
system variables. The system operating "state" is then a point in 
this high dimensional variable space. Changes in system 
operation correspond to moving this state in the "operating space." 

Some regions of this space represent satisfactory system behavior 
where all constraints are met (e.g. thermal limits of lines), system 
generation is distributed for good economy and the system is 
stable and would remain stable in the face of all probable 
disturbances. Such regions are said to represent the "normal" 
operating states [l]. Other regions, the "alert" states, represent 
situations where realistic disturbances, if they occur, will cause 
constraint violations and could lead to instabilities. A system in a 
normal state is called "secure" while one in an alert state is 
"insecure." 

Operators monitor the system and attempt to assure that the 
system remains secure. The attentive operator can identify some 
pending problems and take corrective action. But identifying these 
problems is difficult, even impossible in many cases given the 
present system monitoring ability. Ideally, the operator would like 
to be able to "view" the point representing a system in a normal 
operating state and observe when it approaches a security 
boundary, i.e. when it approaches alert states. Unfortunately, such 
a tool does not exist. However, we suggest that it may be possible 
to develop on-line aids which will give the operator some of this 
assistance. 

In this paper we are concerned with operator aids for identifying 
regions of dynamic, or steady state, instability. For steady state 
stability analysis it is appropriate to examine the eigenvalues of a 
linearized version of the system model, linearized about the 
assumed operating point. Hence, to examine many operating 
points, the nonlinear model must be linearized and analyzed for 
each point. A model representing the complete system that 
concerns a typical operator is much too large for an on-line 
linearization and eigenvalue analysis. Even reducing the model 
using dynamic equivalents yields a large model and one that may 
be unreliable for large classes of disturbances [2,3]. Hence, on-line 
aids must probably be built using off-line analysis. That is, 
"operations planners" are able to invest the time necessary to 
analyze a number of "critical" cases. If these cases suitably explore 
the secure and insecure regions (the normal and alert states), then 
the operator can use them as a guide. 

While this approach is currently used, at least in principle, it is not 
really satisfactory for a number of reasons such as: (1) To be 
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complete, the number of cases which must be examined is very 
large; (2) The system is never actually operating at the states that 
were examined so the operator must interpolate among cases; (3) 
The operator must have a way of cataloging and retrieving the 
appropriate cases for the current system state, and this must be 
done quickly! 

This description of a desirable operator aid suggests that pattern 
recognition might be suitable [4]. Indeed, some such attempts 
have been made for security assessment in the case of transient 
stability. Pang, et.al. [5] developed a pattern recognition system to 
identify secure and insecure states. Results on a modestly sized 
system showed approximately a 90% correct classification rate for 
a single fault location. Hakimmashhadi and Heydt [6] showed they 
could improve the rate of correct classification when they included 
a function of the transient energy in the patterns. Yamashiro [7] 
used two carefully chosen features which represented transient 
energy and margins. Good classification results were obtained 
with a very simple discriminating function. All these studies were 
able to find classifiers which gave good results for small systems 
and single fault locations. There have been no attempts to scale or 
generalize them. 

An ANN is rather similar, in principal, to a pattern recognition 
system. However, there is a fundamental difference. The basic 
steps in building a pattern recognition system are to determine the 
patterns and features required, specify the class of functions used 
for recognition and then identify the free parameters [4]. The 
complexity of the relationships that can be modeled depends on 
the features used and on the prespecified class of discriminating 
functions. In other words, there must be considerable prior 
knowledge about the functional relationships that are to result. 

On the other hand, building an ANN requires selecting appropriate 
input and output variable sets, an appropriate architecture 
(neurons and interconnection structure) and an appropriate 
training algorithm. Here, complexity is determined by the number 
of neurons in the network and the functional relationships used for 
interconnections. The ANN'S effectiveness results because the 
number of neurons may be large and the interconnections may be 
nonlinear. Further, the functional dependencies between input and 
output need not be prespecified but, rather, they evolve during the 
training process and can be highly complex. 

The approach of this paper to use an ANN as an operator aid for 
monitoring security relative to dynamic stability is motivated by the 
fact that ANN'S have demonstrated the ability to store very 
complex relationships when applied to signal processing or 
classification problems [all]. They have also modeled complex 
relationships in power systems as demonstrated by Sobajic and 
Pao who used an ANN to identify the critical clearing time for 
transient stability for a single fault in a small power system [12]. 

To obtain satisfactory performance from an ANN, it is necessary to 
have an appropriate structure (inputs, outputs, neurons and 
interconnections), an appropriate training algorithm and a 
sufficient set of training cases. We illustrate this approach with an 
example which trains an ANN to recognize the region of steady 
state stability for a 9 bus system involving 3 machines. For this 
small system, we find very promising behavior from an ANN 
consisting of 50 to 80 neurons depending on the number of input 
variables. Though this example is small, we find it encouraging 
because the system model is mathematically complex. We 
present this example after a discussion of the basic principles of 
ANN'S. 

Artificial Neural Network Classifiers 

Artificial neural networks (ANN'S) loosely resemble the architecture 
and algorithmic performance of their biological counterparts. 
Generally, an ANN can be defined as a highly connected array of 
elementary processors called neurons. A popular model for 
classification ANN'S is the layered one shown in Figure 1 [13-191. 
The top layer receives the input vector, i, that stimulates the 
network. Each element of this vector is weighted by the input to 
hidden interconnects, tik, to form at the middle, or hidden, layer a 
weighted sum. This sum is altered by a nonlinearity (e.g. sigmoid) 
to establish the state of each hidden neuron. A linear combination 
of the hidden neural states is used to generate the output states, 
denoted by the vector, 0.  The interconnects between the hidden 
and output neurons is denoted in the figure by cq Layered ANN'S 
can be trained by iteratively inputting training dat [8,11,13,14], or 
can be trained by observing the training data only once. The 
performance of the referenced iterative techniques is dictated by 
the structure of the classification partition boundaries: the more 
complicated the boundaries, the more hidden neurons are 
required. In some instances, a second hidden layer is needed. 
When training is achieved by viewing the data only once, the 
number of hidden neurons must exceed the cardinality of the set 
of training vectors. In this paper, we use such an ANN. A highly 
regarded tutorial on other aspects of classification ANN'S is given 
by Lippmann [ll] 

Input e Weighting Factor 

,_ - + - - A-&--- 1 0.. . . 

1 - - - -  
Hidden Layer I 

Neuron 

Output Layer I 
I 

r -  

Weighting Factor 

output 

Figure 1. Structure of Three-Layered ANN 

The ability of an ANN classifier to respond to multifarious training 
data increases with the number of available neurons. Assuming 
that each neural state is in some sense uncorrelated with those 
remaining, each neuron represents a computational degree of 
freedom available to the network. The number of degrees of 
freedom can be artificially increased through the use of neurons in 
a hidden layer, the states of which can be almost any nonlinear 
combination of the stimulus neural states [1519]. One approach is 
to generate nonlinearities with stochastically chosen interconnects 
between the input and hidden neural layers with a sigmoidal 
nonlinearity at each hidden neuron [19]. The hidden to output 
interconnects are chosen to be a (trainable) projection matrix [ la] 
whose values are a function of the stochastically chosen 
interconnects and the training data. Preliminary simulations of 
such networks show an approach to fixed generalization 
classification partition boundaries as the number of hidden 
neurons becomes larger [19]. 
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Although the use of hidden neurons with arbitrarily determined 
nonlinear states is potentially applicable to a large number of 
artificial neural networks, we limit our investigation here to the 
projection artificial neural network. 

A Proiection Based Artificial Neural Network 

A set of stimuli vectors {sn I 1 s n s N } is to be made to 
correspond to a set of response vectors {rn I 1s  n 5 N }. That is, 
we wish to design a classifier that will output, say, r when the 
input is s3. We define the stimulus and response matrices 
respectively as 

3 

S = [ s , I  s21 ...I s N l  

and 

The hidden states will be denoted by { hn I 1s n s  N }, where 

h = o s n ;  l s n s N  (3) 

and o is some nonlinear operation. The hidden layer matrix follows 
as 

In an artificial neural network architecture, the number of input 
neurons is equal to the length of a stimulus vector. Each input 
neuron is connected to each hidden neuron in order to achieve a 
nonlinear mapping. The interconnects between the hidden and 
output neurons are given by elements of the projection matrix 

C = R I H T H j l H T  (5) 

In practice, the hidden to output interconnects are trained using an 
updating rule that requires examination of the training data only 
once [la]. 

Once trained, the network output, 0 ,  corresponding to an input 
vector, i, is given by 

o = C o i  (6) 

A nonlinearity that is useful in artificial neural network 
architectures is 

B S  = q T s  (7) 

where T is the matrix of input-to-hidden interconnects and q is a 
nonlinear pointwise vector operator (e.g. sigmoid). A hidden 
neuron adds the contribution from all the input neurons, and 
adopts a state equal to a nonlinear function of this sum. The state 
of the output neurons is then a weighted sum of the hidden neural 
states. Equation (6) then becomes 

o = C q T i  (8) 

Almost any nonlinearity will allow the trained artificial neural 
network to respond correctly to training data. The manner in which 
the network responds to data outside of the training set (i.e. how 
the network generalizes) is dependent on the choice of the 
nonlinearities. In this paper, the elements of the interconnect 
matrix, T, are chosen stochastically from a zero mean uniform 
probability distribution. Such a procedure has been shown to 
result in good classification diversity [19]. 

Test Svstem and Alsorithm 

Figure 2 shows the working example used in this study. It is a 
simple system composed of 3 machines, 9 buses, 11 transmission 
lines, 3 loads and 3 capacitive compensators. The data of the 
system is given in tables 1 to 3. 

Table 1 Generator Data 

Generator # 1 2 3 

Type nuclear steam steam 
Rated kVA 245.000 192.000 128.000 
kV 
P S  

‘d‘ 
‘d 
F 
M 

)io 

KAA 

line 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

bus 

7 
8 
9 

14.400 18.000 13.800 
0.850 0.850 0.850 
0.320 0.315 0.232 
1.710 1.670 1.680 
0.100 0.100 0.100 
9.254 6.214 4.766 
7.100 5.000 5.890 
0.200 1.670 1.680 
50.000 50.Ooo 50.000 

Table 2 Transmission Line Data 

Bsh Rser Xser 

O.oo00 
O.oo00 
O.oo00 
0.0010 
0.0027 
0.0018 
0.0017 
0.0025 
0.0015 
0.0058 
0.0062 
0.0061 
0.0058 
0.0062 

O.oo00 
O.oo00 
O.oo00 
0.0017 
0.0018 
0.0017 
0.0016 
0.0024 
0.0016 
0.0039 
0.0045 
0.0049 
0.0045 
0.0049 

0.0151 
0.0140 
0.0213 
0.0301 
0.0412 
0.0530 
0.0223 
0.0305 
0.01 16 
0.0520 
0.0610 
0.0730 
0.0810 
0.0930 

Table 3 Load and Capacitors Data 

Q BC 
P 

1.210 0.350 0.031 
1.110 0.250 0.011 
0.814 0.200 0.020 

Machine number 3 is arbitrarily selected as the study machine. 
The interactions among the machines is represented by the multi- 
machine power system model [3,20]. 

The proposed ANN technique for power system security 
assessment, related to system’s stability, is described by the 
following procedure: 

Step 1: Identify the Continaencv Parameters: Specify the 
parameter(s), variable@) and/or topologies which have 
impact on power system security; such as transmission line 
status, load status, machines excitations and generation 
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level. These contingency parameters are the input stimulus 
for the ANN. 

I I 

-1 -0 

14 

Figure 2. Test System 

Figure 3. Three-Dimension Security Contours 

Establish off-line Securitv Contours: Obtain the security 
contours of the system for some values of each contingency 
parameter. These security contours, which enclose the 
steady state stability area, can be obtained by assessing the 
eigenvalues of the entire power system. 

An example of the security contours is shown in the three 
dimension plot of Figure 3. The eigenvalues of the entire 
system inside the security contours have negative real 
components. The contingency parameters in this case are 
the real and reactive powers of machine 3, and its excitation 
gain. The figure shows 4 layers of security contours, each 
one corresponding to one value of the excitation gain. The 
upper and lower limits on the reactive power represent 
operation restraints. 

Step3: Train the ANN: In the training process, the ANN 
comprehends the security contours established by step 2. 
Instead of using the entire contour for training, only selected 
points that represent stable and unstable operations can be 
utilized. 

Step 2: 

The input neurons of the ANN receive an input pattern that 
contains the stimuli vectors contained in matrix (S). The 
input pattern is a set of contingency parameters. The 

magnitudes of these parameters form the stimulus matrix 
(S). The output neurons receive the status of the system 
stability (response matrix R) that correspond to the input 
stimuli vectors. This training process is depicted in Figure 1. 
Training the network means identifying the topology of the 
ANN and the weights of its interconnects (tik, cki). 

Test the ANN: After the ANN is trained by afew values of 
the contingency parameters, it is tested at other values not 
necessarily part of the training set. In this case, which is 
represented by equation (8), the input neurons are given a 
set of input vector (i) which contains a set of contingency 
parameters, and the output neurons produce the status of 
system stability (0). 

Step 4: 

Test Results 

The ANN presented in this paper is designed to classify the system 
stability for various input patterns (contingency parameters). The 
input patterns used to train the ANN, and to test the network, are 
summarized by the following cases: 

Case 1: The input pattern is composed of (1) real power of the 
study machine; (2) reactive power of the study machine and 
(3) excitation gain of the study machine. 

Case 2: The input pattern is composed of (1) and (2) of case 1 in 
addition to the real power generated by machine 2. 

Case 3: The input pattern is composed of (1) and (2) of case 1 in 
addition to the load demand at bus 8. 

Case 4: The input pattern is composed of ( l ) ,  (2) and (3) of case 1 
in addition to the status of lines 9 and 10. In this case the 
ANN has 4 inputs. 

Case 5: The input pattern is similar to those in case 1 in addition to 
the load demand at bus 8. In this case the ANN has 4 inputs. 

Extensive results were obtained during this study. However, for 
brevity, only typical ones are presented in this paper. 

In all the following figures, P and Q are the real and reactive power 
of the study machine (machine 3), K is the excitation gain of 
machine 3, DI is the load demand at%us 8, and P2 is the real 
power of generator 2. 

The following figures are divided into two categories: one shows 
the training data and the second shows the test results. When the 
ANN is tested, the values of the input patterns were different from 
those used in training. 

Figure 4 shows the training data points that form the stimuli 
vectors (S) for case 1. Three different values of excitation gain (KA) 
of machine 3 were used: 90%, 110% and 120%. The "t's", "*'s" and 
"x's" are the training data corresponding to unstable operating 
points at the above mentioned values of KA. The dots are the 
training data corresponding to stable operating points. 

The ANN was tested at various operating conditions other than 
those used in training. For example, Figure 5 shows the test result 
at excitation gain KA = 100%. This value of KA was not used in 
training the ANN. The dots in the figure represent test points for 
stable operation as indicated by the ANN. For verification purpose, 
a security contour at KA = 100% is also shown in the figure with 
"x's". This security contour was not used in training the ANN. 
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0.6 

Figure 6 shows the training data for case 2. The ANN is trained at 
three values of real power generated by machine 2 (P2): 50%, 
100% and 125%. The dots are the training data corresponding to 
stable operating points. The "+'s", "*s" and "x's'' are the training 
data corresponding to unstable operating points at the three 
different values of P2. 
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Figure 4. Training Data for Case 1 
(x) KA = 90%; (*) KA = 110%; (+) KA = 120% 
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Figure 5. Test Results at KA = 100% 
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Figure 6. Training Data for Case 2 

Figure 7 shows the result of testing the ANN when P2 = 75%. The 
dots in the figure represent test points classified by the ANN as 
stable operating points. For verification purpose, a security contour 

(x) P2 = 100%; (*) P2 = 125%; (+) P2 = 50% 

for P2 = 75% is also shown in the figure with "x's". This security 
contour was not used in the training process. 
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Figure 7. Results at P2 = 75% 
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Figure 8. Training Data for Case 3 
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Figure 9. Test results at DI = 150% 

Figure 8 shows the training data for case 3. The ANN is trained at 
three different values of load demand at bus 8 (DI): 0%, 100% and 
200%. Figure 9 shows the result of testing the ANN at a load 
demand of 150%. The security contour at DI = 150% is also shown 
in the figure for verification purpose only. It was not used in 
training the ANN. 

Figure 10 shows the training data for case 4. The line statuses for 
training the ANN were arbitrary selected as follows: line 9 is out, or 
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both lines 0 and I O  are out. In each case two different values of the 

excitation are used: 90% and 110%. In this case the ANN is trained 
by an input pattern composed of four variables. The ANN is tested 

training. A sample of the test results is shown in Figure 11. The 
security contour shown with "x's" in the figure is used for 
comparison purposes only. It was not used during the training 
process. 

at an excitation of 100% with the same line statuses used in 
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Figure 10. Training Data for Case 4 
(x) K - 110% and L9 & L10 out; (*) KA = 90% and L9 & L10 out; ?+; KA = 110% and L10 out; (0) KA = 90% and L10 out 
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Figure 11. Test results at KA = 100 and L9 & L10 out 
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Figure 12. Training Data for Case 5 
(x) KA = 110% and DI = 0%; (*) KA = 90% and D - 0%; 

(+) KA = 110% and DI = 200%; (0) KA = 90% and A,= 200% 

Results of case 5 are depicted in Figures 12 and 13. Figure 12 
shows the training data. In this case the input pattern is composed 
of four variables. Figure 13 shows a sample of the test results 
when the load is at 100% and the excitation is at 90%. This test 
data was not used to train the ANN. Only for comparison purpose, 
the security contour for this test case is shown in the figure. 

As seen from all the above test cases, the ANN was very successful 
in classifying the status of power system stability. Only very few 
minor misclassifications are observed near the boundary of the 
security contour. 

0.6 
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P 

Figure 13 Test Results at KA = 90% and Dl = 100% 

Conclusions 

We view these results as being rather encouraging for the future of 
ANN'S in power system applications. We have demonstrated a 
number of cases where the network was able to properly 
interpolate among training data sets to recognize stability 
contours. As emphasized in the introduction, a considerable part 
of the importance of this result is due to the complexity of the 
mathematical relationships being represented. However, one 
suspects that the smoothness and regularity of the contours 
contributes to this successful demonstration. 

Naturally, the primary concern about whether this concept can 
become useful as an on-line aid resides in the question of scaling. 
As with the cited pattern recognition, the working example in this 
paper is a very small system. We see at least two possibilities for 
developing realistic applications. First, it is possible that the 
present technology for training large ANN'S can be extended to full 
scale power network application. This may require methods for 
partitioning the ANN and the training process. It may also require 
special ANN computers which are currently being developed at a 
rather fast acceleration. The second possibility is that a special 
purpose ANN can be built to monitor a specific operational 
situation. For example, there may be a particular but important 
relationship between stability and a few system variables. It may 
be quite feasible now to build a modest size ANN to monitor such 
a special situation. Then, of course, it is reasonable to contemplate 
a few ANN'S to monitor a few such special situations. We may be 
able to use this type of ANN application in the rather near future. 
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