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Abs t rac t  

In this paper, we investigate residue number system (RNS) to deci- 
lnnl number system conversion algorithms and their implementations. We 
first, for the general Q-tuple RNS decoding, propose a modulized decod- 
ing algorithm in which each module decodes only a 2-tuple RNS code, and 
discuss its computational complexity at  the algorithm level. The second 
algorithm is for decoding a 2-tuple RNS code and can be called a partial 
table-lookup method. By memorizing only partial decimal numbers in the 
dynamic range of any RNS, this method can generate the correct decimal 
number with at most three additions. We discuss hardware implementa- 
tion methods and compare our algorithms with the conventional decoding 
algorithm in terms of the arithmetic operation complexity, dynamic range 
requirements and hardware implementation complexity. 

I. Introduction 

The Residue Number System (RNS) has attracted a great 
deal of attention recently in application in ultra-speed, ded- 
icated, real-time systems that support parallel processing of 
integer-valued data, because of its two attractive features [I, 2, 
6, 9, 12, 141. Most importantly, no carry mechanism is needed 
in residue arithmetic. The second feature is that RNS decom- 
poses a computation into subcalculations of smaller computa- 
tional complexity. However, a much higher accuracy is achieved 
after the results of these low-accuracy subcalculation are recom- 
bined. 

In this paper, we advocate a new RNS to decimal conversion - - 
algorithm and discuss its implementations. We first propose a 
modulized decoding algorithm in which each module decodes 
only a 2-tuple RNS code. The second algorithm is for decod- 
ing a 2-tuple RNS code and can be called a partial table-lookup 
method. By memorizing only partial decimal numbers in the 
rlynamic range of any RNS, this method is able to generate the 
, or ~ r c i  decimal number for any given code with at most three 
,~~i,litions. We discuss implementatioll methods at both the al- 

f l ~ r n  snd hardware 1evt.l and coinpare onr alrrorilhirl wi th  
the conventional decoding algorithms,( namely, the Chinese Re- 
mainder Theorem (CRT) and the Mixed Radix Representation 
Algorithem (MRC)), in terms of the arithmetic operation com- 
plexity, dynamic range requirements and the hardware imple- - - 

mentat ion complexity. 
This paper is organized as follows: Section I1 is a brief 

overview of RNS and its conventional decoding algorithms. Sec- 
tion I11 introduces two procedures for the conversion and corre- 
sponding implementations. Section IV is the conclusion. 

which are called moduli. The residue of any integer x with re- 
spect to a particular modules mi is denoted 

which is the least positive integer remainder of the division of x 
by Ri [3]. The Q-tuple of residue 

(RI, R2,. . . RQ) 

with respect to the Q different moduli provides a unique repre- 
sentation of any integer x in the range 0 to N - 1, where the N 
is the product of all the moduli 

Q 
N = 11 mi. 

The N is called the legitimate dynamic range of the RNS. 
In the RNS applications, conversion of the RNS to a more 

conventional numerical form is a singularly important operation. 
Until now, the most commonly used decoding methods of RNS 
to decimal system are the CRT and MRC [2,3]. 

The basic formula for CRT is 

where, hi = & and [&I,, is the multiplicative inverse of the 
riti 

m,. 
From a computational point of view, the CRT is extremely 

costly, for it requires a number of conventional multiplications 
and additions [2,9]. Furthermore, it needs a large dynamic range 
at  the final mod(N) operation. 

The MRC transforms the Q-tuple RNS code into Q coeffi- 
cients of a mixed radix number representation of 

To obtain the coefficients, we first divide the x by the ml, the 
remainder will be al ( which is R1 ). Then, we subtract the al 
from the x and then divide the difference by ma, we get the p2. 
This process continues until we acquire all the coefficients. 

The disadvantage of the MRC is the decoding time is lin- 
early proportional to the number of the moduli of the RNS. The 
computation load is still relatively heavy, with the compluta- 
tional complexity of O(QZ)  [ l l ] .  

11. A n  Overview of t h e  RNS 111. Modulized RNS Decoding Algorithms 

The RNS is based on Q fixed and relatively prime (i.e, con- 3.1 ~ ~ d ~ l i ~ ~ , - ~  RNS D~~~~~~~ Procedure and Partial 
taining no common factors, except 1 ) integers mi, m2,. . . , mQ, Table-Lookup Method:  
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In this section, we discuss two procedures for RNS decoding. 

3.1.1 Modulized RNS Decoding Procedure  

Any Q-tuple RNS code can be decoded by a modular struc- 
ture of (Q - 1) 2-tuple RNS decoders arranged in [log, Q1 levels. 
Each module is arranged as a binary tree structure. (Here, the 
1x1 is the ceiling function of x.) 

For each decoder: 

1. The two moduli are the dynamic ranges of the 2 decodes 
in the immediate previous level which the decoder is con- 
nected. Those in the first level are directly from the chosen 
RNS; 

2. A 2-tuple RNS code is the two decoded outputs form the 
immediate previous level with which the decoder is con- 
nected. That in the first level is directly from the c n d ~  to 
hr daro?crl: 

3. Each module decodes the 2-tuple RNS code into a decimal 
number which is unique within the dynamic range of the 
decoder. The structure continues until we get only one final 
decoded decimal number. 

To prove this procedure works, we only need to notice the 
uniqueness of the RNS code with respect to its decimal number 
and the duality between the encoding and decoding process, 
and then apply a simply mathematical induction. The proof is 
omitted here. 

Figure 1 shows the decoder structure. It is very suitable for 
the VLSI implementation because of its modularity and local 

x: Decimal Number 

Fig. 1 Modulized Q-tuple RNS Decoder Structure 

As an example for the modulized decoder structure of Fig.1, 
we use the 2-tuple MRC to implement each box. Here, the 
computation involved at each box is: 

Let us have a numerical example: assuming a RNS has mod- 
uli: (ml, mZ1 m3, m4) = (5,7,9,4), the code to be decoded is 
(R1,R2,R3, R4) = (1,2,3,0). At the top level, there are 2 de- 
coders, and the bottom level is 1 decoder. At the top level, the 
left side decoder decodes the (R1,R2) = (1,2) with respect to 

the (ml,m2) = (5,7). From the MRC, we have the output as 
the R12 = 16 which is unique in the range of mlm2 = 5x7  = 35. 
Similarly, the right side decoder decodes (R3, &) = (3,O) into 
R34 = 12 with respect to the m3m4 = 9x4  = 36. The bottom 
decoder take the (R12, R34) as inputs with respect to the moduli 
(35,36) respectively. Note that 35 is relatively prime to 36. The 
decoded number R123* = 156. 

Comparing the modulized MRC and conventional MRC, 
here we see the modulized MRC algorithm improves the perfor- 
mance over the conventional MRC in: (1). If a single process- 
ing element (PE) is used to implement both algorithms, then, 
at the algorithm level, our modulized MRC reduced the com- 
plexity from 0 ( Q 2 )  to O(Q).  (2). The total decoding time 
is reduced if each module is implemented by a individual PE. 
Time complexity is proportional to [log2 Q1. However, that for 
the conventional MRC is O(Q) .  (3). About the dynamic range 
reqttir~ment for the Modulized MRC. generally speakinp. 1 1 1 ~ ~  

closer to the final stage a module is, the wider the required dy- 
namic range. Nevertheless, none of them exceeds the N. 

3.1.2 Partial Table-Lookup Method 

Motivated by Procedure 1, we propose a partial table-lookup 
method only for the 2-tuple RNS decoding. 

First, let us put all the decimal numbers within the dynamic 
range of a 2-tuple RNS into a ml by m2 matrix D ,  with the 
first element with the index of (0,O) and the last element with 
(ml - 1,m2 - 1). 

~ ~ ~ , . - l l  
where, the d(R1, Rz) is the decimal number which has the RNS 
code as (R1, R 2 )  We will refer kth row of the D matrix as the 
Dk, k E [O,ml - 1). 

For example, for ml = 3, m2 = 2, the matrix D is: 

In the RNS, the order of the moduli can be any order desired. 
In the following discussion, we will refer only the row vectors of 
D. But any conclusions we have for the rows can be applied to 
the columns. 

In the matrix D,  any element d(R1, R2) can be obtained 
by a mapping from one element in the first row with a relation 
summarized as: 

4 0 ,  Rz) + RI = ~ [ R I ,  (R1 + Rz)mod(mz)l (7) 
This equation tells us two properties of the D: 
Property 1. The set of all the elements in kth vector Dk, k E 

[I, ml - 11 is equal to the set of the elements in vector Do added 
with the row index k ;  

Property 2. In the vector Do, for the element d(0, Rz),  after 
the set mapping of Property 1, the resultant decimal number has 
the row index of R1 and the column index of (R1 + R2)mod(m2). 

A formal proof of this procedure is in the appendix. A quick 
check with the example in (6) shows this truth. 
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3.2 Implementation of Part ial  Table-Lookup 

We can use the Procedure 2 to decode any R1,R2 in the D 
and save the computations encounted in the traditonal 2-tuple 
CRT and MRC once we know the rnz decimal numbers in the 
Do In the following, we will present three ways to implement 
it. 

3.2.1 Linear Array Method  

Once the Do vector which is derivable from the Eq.(4) are 
stored, and put them into an linear array data structure [lo] 
according to the the index of R2, we are ready to decode the 
( R 1 ,  R 2 )  ( To be distinctive,in this part, we use the hat sign to 
represent the known RNS code to be decoded.) 

From Eq. (7) ,  let 

then, we have 

which will give us the value: 

Rz = [ R Z  - ~ ~ ] m o d ( m z )  (9) 

Since the following bounds exist: 
. A 

-nl < RZ - R1 < mz (10) 

the mod(mz) operation is seen as a way to make the value of Rz 
positive. Since for any x 

(-x)mod(mz) = (m2 - x)mod(m2). 

In order to let the Rz in Eq. (9) has a positive value with 
the smallest number of arithmetic operations, we should choose 
the order of the moduli such that 

When (11) is satisfied, the algorithm is summarized as fol- 
lows. 

1 .  Compute the index p: 

p = Rz - R1 

2. Test if 

If so, goto next step; 

'd(O,nz-1) 

rese t - -+  
clock --+ c o u n t e r  

R 1  --) 

R l  
L 

Fig. 2 A Circular Shift Register Decoder 

3.2.2 Circular Shift Register Decoder 

Consider the decoder shown in Fig. 2 with circularly shrift 
register bank of length nzz, a multiplexer and an adder. The 
register bank initially contains the decimal number of Do, from 
left-to-right according to the index of Rz. R1 controls the num- 
ber of shift. With one shift from the initial state of the register, 
we get the Dl - 1 vector. (Here the n' is a constant vector of the 
same length of D, with all elements as n.) +With 2 shifts from 
the initial state, y e  have the D2 - 5 vector. Rz selects a number 
from the DR, - R1 vector; finally, the value of R1 is added to 
that number. 

With respect to Fig. 2, to decode (R1, Rz) ,  the detailed 
operation is: 

Operation-] 

1 .  Let the register shift for R1 times, then, the register states 
are hold. 

2. Rz selects the output of the Rkh register. 

3. The value of R1 is added to the decimal number from the 
step $ then we have the decoded decimal number; 

4 .  Refreshing all the register states to the initial statues. The 
decoder is ready to accept a new code of (R1, Rz) .  

The advantage of the simple decoder Fig.2 is that it only 
involves R1 shift operations and one addition. The required 
dynamic region is always less than N. The limitation is that the 
decoding delay is linearly proportional to R1. In the worst case, 
it needs ml shifts. More specifically, if T, is the time needed for 
one shift and T. is for the addition, then respose time for the 
decoder in Fig. 2 is mzTs + T,. 

3.2.3 A Constant-Time Decoder 

If not, add mz to p; In order to overcome the limitation of the Fig. 2, we re- 
place the addressing mechanism of shifting by a direct address 

3. Select the correspondzng decimal number with the R2 index computation. Figure 3 shows a hadware implementation of equal to the p from the step 3 in Do vector; Algorithm-l from which a constant respose time is expected. 
4.  Add the R1 to that decimal number. In Figure 3, we still assume the condition of Eq. (11) true. 

Then, the conditional addition of the mz with the result of R2 - 
The advantage for Algorithm-1 is that it can decode any R1 is controlled directly from the sign bit for the each bit fed to 

(n , ,  R ~ )  with at most 3 additions and one logic comparison. the second adder. For the response time, only 3T. is needed to 
The dynamic range is always less than that of the chosen RNS. decode a 2-tuple RNS code. 
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Fig. 3 A Constanttime Decoder 

Fig.4 shows a 4-tuple decoder combining Fig.1 and Fig.3. 
In this case, the decoding time is only 6T,. 

Fig. 4 A 4-tuplt Constant-time Modulized Decoder 

VI. Conclusion 

In this paper, we proposed a modulized RNS decoding al- 
gorithm and a partial table lookup algorithm. Compared with 
the CRT and the conventional MRC , our algorithms have the 
following advantages: 1. Fast decoding with less arithmetic op- 
erations: if a single PE is used, then the computational load is 
reduced from the O(Q2)  in the conventional MRC to the O ( Q ) .  
if it is implemented by (Q - 1) PE's, then the modulized decoder 
reduces the decoding time of the conventional MRC from O ( Q )  
to O(log2 Q). Furthermore, pipelining can be used; 2. The dy- 
namic range can be constrained not to exceed that of the RNS. 
3. Existance of a trade off between the decoding speed and the 
memorized data. 4. In compared with the conventional Ta- 
ble Lookup method, our partial table lookup algorithm can be 
iriiplemented with much less ROM space. 

Appendix 

Equation 7 can be proved from Eq. (4) by a substitution. 
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