
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, May 9-10,1991

Modulized RNS-Decimal Number

Conversion Algorithm And Its Implementations

Zhi Lil, R a r n a ~ a m ~ I ~ r i s h n a n ' ~ ~ , RobertJ.Marks, 111

1. Interactive Systems Design Lab 2. Boeing High Tech Center
Department of Electrical Engineering, F T - 10 Mail Stop 7J - 24

University of Washington P.O. Box 3999
Seattle, WA 98195, USA Seattle, WA 98124, USA

Tel: (206) 543 - 6990 Tel: (206) 865 - 3038

Abs t rac t

In this paper, we investigate residue number system (RNS) to deci-
lnnl number system conversion algorithms and their implementations. We
first, for the general Q-tuple RNS decoding, propose a modulized decod-
ing algorithm in which each module decodes only a 2-tuple RNS code, and
discuss its computational complexity at the algorithm level. The second
algorithm is for decoding a 2-tuple RNS code and can be called a partial
table-lookup method. By memorizing only partial decimal numbers in the
dynamic range of any RNS, this method can generate the correct decimal
number with at most three additions. We discuss hardware implementa-
tion methods and compare our algorithms with the conventional decoding
algorithm in terms of the arithmetic operation complexity, dynamic range
requirements and hardware implementation complexity.

I. Introduction

The Residue Number System (RNS) has attracted a great
deal of attention recently in application in ultra-speed, ded-
icated, real-time systems that support parallel processing of
integer-valued data, because of its two attractive features [I, 2,
6, 9, 12, 141. Most importantly, no carry mechanism is needed
in residue arithmetic. The second feature is that RNS decom-
poses a computation into subcalculations of smaller computa-
tional complexity. However, a much higher accuracy is achieved
after the results of these low-accuracy subcalculation are recom-
bined.

In this paper, we advocate a new RNS to decimal conversion - -
algorithm and discuss its implementations. We first propose a
modulized decoding algorithm in which each module decodes
only a 2-tuple RNS code. The second algorithm is for decod-
ing a 2-tuple RNS code and can be called a partial table-lookup
method. By memorizing only partial decimal numbers in the
rlynamic range of any RNS, this method is able to generate the
, or ~ r c i decimal number for any given code with at most three
,~~i,litions. We discuss implementatioll methods at both the al-

f l ~ r n snd hardware 1evt.l and coinpare onr alrrorilhirl wi th
the conventional decoding algorithms,(namely, the Chinese Re-
mainder Theorem (CRT) and the Mixed Radix Representation
Algorithem (MRC)), in terms of the arithmetic operation com-
plexity, dynamic range requirements and the hardware imple- - -

mentat ion complexity.
This paper is organized as follows: Section I1 is a brief

overview of RNS and its conventional decoding algorithms. Sec-
tion I11 introduces two procedures for the conversion and corre-
sponding implementations. Section IV is the conclusion.

which are called moduli. The residue of any integer x with re-
spect to a particular modules mi is denoted

which is the least positive integer remainder of the division of x
by Ri [3]. The Q-tuple of residue

(RI, R2,. . . RQ)

with respect to the Q different moduli provides a unique repre-
sentation of any integer x in the range 0 to N - 1, where the N
is the product of all the moduli

Q
N = 11 mi.

The N is called the legitimate dynamic range of the RNS.
In the RNS applications, conversion of the RNS to a more

conventional numerical form is a singularly important operation.
Until now, the most commonly used decoding methods of RNS
to decimal system are the CRT and MRC [2,3].

The basic formula for CRT is

where, hi = & and [&I,, is the multiplicative inverse of the
riti

m,.
From a computational point of view, the CRT is extremely

costly, for it requires a number of conventional multiplications
and additions [2,9]. Furthermore, it needs a large dynamic range
at the final mod(N) operation.

The MRC transforms the Q-tuple RNS code into Q coeffi-
cients of a mixed radix number representation of

To obtain the coefficients, we first divide the x by the ml, the
remainder will be al (which is R1). Then, we subtract the al
from the x and then divide the difference by ma, we get the p2.
This process continues until we acquire all the coefficients.

The disadvantage of the MRC is the decoding time is lin-
early proportional to the number of the moduli of the RNS. The
computation load is still relatively heavy, with the compluta-
tional complexity of O(QZ) [l l] .

11. A n Overview of t h e RNS 111. Modulized RNS Decoding Algorithms

The RNS is based on Q fixed and relatively prime (i.e, con- 3.1 ~ ~ d ~ l i ~ ~ , - ~ RNS D~~~~~~~ Procedure and Partial
taining no common factors, except 1) integers mi, m2,. . . , mQ, Table-Lookup Method:

CH2954-6191-0000-319 $1.00 0 1991 IEEE

Z. Li, R. Krishnan and R.J. Marks II, "A modularized RNS-decimal number conversion algorithm and its implementation",
Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp.319-322,

May 9-10, 1991 , Victoria , B.C. Canada.

In this section, we discuss two procedures for RNS decoding.

3.1.1 Modulized RNS Decoding Procedure

Any Q-tuple RNS code can be decoded by a modular struc-
ture of (Q - 1) 2-tuple RNS decoders arranged in [log, Q1 levels.
Each module is arranged as a binary tree structure. (Here, the
1x1 is the ceiling function of x.)

For each decoder:

1. The two moduli are the dynamic ranges of the 2 decodes
in the immediate previous level which the decoder is con-
nected. Those in the first level are directly from the chosen
RNS;

2. A 2-tuple RNS code is the two decoded outputs form the
immediate previous level with which the decoder is con-
nected. That in the first level is directly from the c n d ~ to
hr daro?crl:

3. Each module decodes the 2-tuple RNS code into a decimal
number which is unique within the dynamic range of the
decoder. The structure continues until we get only one final
decoded decimal number.

To prove this procedure works, we only need to notice the
uniqueness of the RNS code with respect to its decimal number
and the duality between the encoding and decoding process,
and then apply a simply mathematical induction. The proof is
omitted here.

Figure 1 shows the decoder structure. It is very suitable for
the VLSI implementation because of its modularity and local

x: Decimal Number

Fig. 1 Modulized Q-tuple RNS Decoder Structure

As an example for the modulized decoder structure of Fig.1,
we use the 2-tuple MRC to implement each box. Here, the
computation involved at each box is:

Let us have a numerical example: assuming a RNS has mod-
uli: (ml, mZ1 m3, m4) = (5,7,9,4), the code to be decoded is
(R1,R2,R3, R4) = (1,2,3,0). At the top level, there are 2 de-
coders, and the bottom level is 1 decoder. At the top level, the
left side decoder decodes the (R1,R2) = (1,2) with respect to

the (ml,m2) = (5,7). From the MRC, we have the output as
the R12 = 16 which is unique in the range of mlm2 = 5x7 = 35.
Similarly, the right side decoder decodes (R3, &) = (3,O) into
R34 = 12 with respect to the m3m4 = 9x4 = 36. The bottom
decoder take the (R12, R34) as inputs with respect to the moduli
(35,36) respectively. Note that 35 is relatively prime to 36. The
decoded number R123* = 156.

Comparing the modulized MRC and conventional MRC,
here we see the modulized MRC algorithm improves the perfor-
mance over the conventional MRC in: (1). If a single process-
ing element (PE) is used to implement both algorithms, then,
at the algorithm level, our modulized MRC reduced the com-
plexity from 0 (Q 2) to O(Q). (2). The total decoding time
is reduced if each module is implemented by a individual PE.
Time complexity is proportional to [log2 Q1. However, that for
the conventional MRC is O(Q) . (3). About the dynamic range
reqttir~ment for the Modulized MRC. generally speakinp. 1 1 1 ~ ~

closer to the final stage a module is, the wider the required dy-
namic range. Nevertheless, none of them exceeds the N.

3.1.2 Partial Table-Lookup Method

Motivated by Procedure 1, we propose a partial table-lookup
method only for the 2-tuple RNS decoding.

First, let us put all the decimal numbers within the dynamic
range of a 2-tuple RNS into a ml by m2 matrix D , with the
first element with the index of (0,O) and the last element with
(ml - 1,m2 - 1).

~ ~ ~ , . - l l
where, the d(R1, Rz) is the decimal number which has the RNS
code as (R1, R 2) We will refer kth row of the D matrix as the
Dk, k E [O,ml - 1).

For example, for ml = 3, m2 = 2, the matrix D is:

In the RNS, the order of the moduli can be any order desired.
In the following discussion, we will refer only the row vectors of
D. But any conclusions we have for the rows can be applied to
the columns.

In the matrix D, any element d(R1, R2) can be obtained
by a mapping from one element in the first row with a relation
summarized as:

4 0 , Rz) + RI = ~ [R I , (R1 + Rz)mod(mz)l (7)
This equation tells us two properties of the D:
Property 1. The set of all the elements in kth vector Dk, k E

[I, ml - 11 is equal to the set of the elements in vector Do added
with the row index k ;

Property 2. In the vector Do, for the element d(0, Rz), after
the set mapping of Property 1, the resultant decimal number has
the row index of R1 and the column index of (R1 + R2)mod(m2).

A formal proof of this procedure is in the appendix. A quick
check with the example in (6) shows this truth.

Z. Li, R. Krishnan and R.J. Marks II, "A modularized RNS-decimal number conversion algorithm and its implementation",
Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp.319-322,

May 9-10, 1991 , Victoria , B.C. Canada.

3.2 Implementation of Part ial Table-Lookup

We can use the Procedure 2 to decode any R1,R2 in the D
and save the computations encounted in the traditonal 2-tuple
CRT and MRC once we know the rnz decimal numbers in the
Do In the following, we will present three ways to implement
it.

3.2.1 Linear Array Method

Once the Do vector which is derivable from the Eq.(4) are
stored, and put them into an linear array data structure [lo]
according to the the index of R2, we are ready to decode the
(R 1 , R 2) (To be distinctive,in this part, we use the hat sign to
represent the known RNS code to be decoded.)

From Eq. (7) , let

then, we have

which will give us the value:

Rz = [R Z - ~ ~] m o d (m z) (9)

Since the following bounds exist:
. A

-nl < RZ - R1 < mz (10)

the mod(mz) operation is seen as a way to make the value of Rz
positive. Since for any x

(-x)mod(mz) = (m2 - x)mod(m2).

In order to let the Rz in Eq. (9) has a positive value with
the smallest number of arithmetic operations, we should choose
the order of the moduli such that

When (11) is satisfied, the algorithm is summarized as fol-
lows.

1 . Compute the index p:

p = Rz - R1

2. Test if

If so, goto next step;

'd(O,nz-1)

rese t - -+
clock --+ c o u n t e r

R 1 --)

R l
L

Fig. 2 A Circular Shift Register Decoder

3.2.2 Circular Shift Register Decoder

Consider the decoder shown in Fig. 2 with circularly shrift
register bank of length nzz, a multiplexer and an adder. The
register bank initially contains the decimal number of Do, from
left-to-right according to the index of Rz. R1 controls the num-
ber of shift. With one shift from the initial state of the register,
we get the Dl - 1 vector. (Here the n' is a constant vector of the
same length of D, with all elements as n.) +With 2 shifts from
the initial state, y e have the D2 - 5 vector. Rz selects a number
from the DR, - R1 vector; finally, the value of R1 is added to
that number.

With respect to Fig. 2, to decode (R1, Rz) , the detailed
operation is:

Operation-]

1 . Let the register shift for R1 times, then, the register states
are hold.

2. Rz selects the output of the Rkh register.

3. The value of R1 is added to the decimal number from the
step $ then we have the decoded decimal number;

4 . Refreshing all the register states to the initial statues. The
decoder is ready to accept a new code of (R1, Rz) .

The advantage of the simple decoder Fig.2 is that it only
involves R1 shift operations and one addition. The required
dynamic region is always less than N. The limitation is that the
decoding delay is linearly proportional to R1. In the worst case,
it needs ml shifts. More specifically, if T, is the time needed for
one shift and T. is for the addition, then respose time for the
decoder in Fig. 2 is mzTs + T,.

3.2.3 A Constant-Time Decoder

If not, add mz to p; In order to overcome the limitation of the Fig. 2, we re-
place the addressing mechanism of shifting by a direct address

3. Select the correspondzng decimal number with the R2 index computation. Figure 3 shows a hadware implementation of equal to the p from the step 3 in Do vector; Algorithm-l from which a constant respose time is expected.
4. Add the R1 to that decimal number. In Figure 3, we still assume the condition of Eq. (11) true.

Then, the conditional addition of the mz with the result of R2 -
The advantage for Algorithm-1 is that it can decode any R1 is controlled directly from the sign bit for the each bit fed to

(n , , R ~) with at most 3 additions and one logic comparison. the second adder. For the response time, only 3T. is needed to
The dynamic range is always less than that of the chosen RNS. decode a 2-tuple RNS code.

Z. Li, R. Krishnan and R.J. Marks II, "A modularized RNS-decimal number conversion algorithm and its implementation",
Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp.319-322,

May 9-10, 1991 , Victoria , B.C. Canada.

Fig. 3 A Constanttime Decoder

Fig.4 shows a 4-tuple decoder combining Fig.1 and Fig.3.
In this case, the decoding time is only 6T,.

Fig. 4 A 4-tuplt Constant-time Modulized Decoder

VI. Conclusion

In this paper, we proposed a modulized RNS decoding al-
gorithm and a partial table lookup algorithm. Compared with
the CRT and the conventional MRC , our algorithms have the
following advantages: 1. Fast decoding with less arithmetic op-
erations: if a single PE is used, then the computational load is
reduced from the O(Q2) in the conventional MRC to the O (Q) .
if it is implemented by (Q - 1) PE's, then the modulized decoder
reduces the decoding time of the conventional MRC from O (Q)
to O(log2 Q). Furthermore, pipelining can be used; 2. The dy-
namic range can be constrained not to exceed that of the RNS.
3. Existance of a trade off between the decoding speed and the
memorized data. 4. In compared with the conventional Ta-
ble Lookup method, our partial table lookup algorithm can be
iriiplemented with much less ROM space.

Appendix

Equation 7 can be proved from Eq. (4) by a substitution.

References

1. S.Y. Kung, "VLSI Array Processors", Prentice Hall, Englewood
Cliffs, NJ, 1988, pp. 490 - 494.

2. Residue Number System Arithmetic: Modern Applications
in Digital Signal Processing, edited by M.A. Soderstrand, et al.
IEEE Press, 1986

3. N.S. Szabo and R.I. Tanaka, "Residue Arithmetic And Its Ap-
plications t o Computer Technology", McGraw-Hall, New Yorli,
1967.

4. W.K. Jenkins, "Techniques for Residue-to-Analogy Conver-
sion for Residue-Encoded Digital Filters", IEEE Tmns. Circutt
Sysi. vol. CAS- 25, pp. 556562, July 1978.

5. K.P. Lee, et al. A Fast and Flexible Residue Decoder Based on
the Chinese Remainder Theorem., P w c . ISCAS189, Portland,
OR, May 89, pp 200 - 203.

6. T.J. Chen, W.K. Jenkins, Design of a Residue Number System
Digital Correlator for Real-Time Processing in Ultrasonic
Blood Flow Measurements, Proc. ISCAS'B9, Portland, OR, May
89, pp 208 -211.

7. G. C. Cardarilli, et al, RNS Realization of Fast Fixed-Point
Multipliers with Large Wordlenths , Proc. ISCAS'89, Portland,
011 May 89, pp 212 - 215.

8. F.J. Taylor and A.S. Rarnnarayanan, "An Efficient Residue-to-
Decimal Converter", IEEE Trans. Circuit Syst. vol. CAS-28,
pp.11641169, Dec. 1981.

9. A. Huang, et al, "Optical Computation Using Residue Arith-
metic'', Applied Optics, vol. 18, No. 2, pp. 149-162, Jan. 1979

10. A.V. Aho, et al, Data Structure and Algorithm Analysis, Addison-
Wesley Publishing Company, 1985.

11. C.K. Koc, " A Fast Algorithm for Mixed-radix Conversion in
Residue Arithmetic", P w c . Intern. Conf. on Computer Design,
1989 pp 18 - 21.

12. R. Krishnan, et al, " Complex Digital Signal Processing Using
Quadratic Residue Number Systems " , IEEE Trans. ASSP. ,
vol. ASSP - 34, no. 1 , pp 166 - 177, Feb., 1986.

13. C.H. Huang, " A Fully Parallel Mixed-Radix Conversion Algo-
ri thm for Residue Number Applications", IEEE Duns. Com-
puiers, vol. c-32, no. 4, pp 398 - 402, April, 1983.

14. G. Ma, F.J. Taylor, " Multiplier Policies for Digital Signal Pro-
cessing '', IEEE ASSP Magazine, Jan, 1990.

Z. Li, R. Krishnan and R.J. Marks II, "A modularized RNS-decimal number conversion algorithm and its implementation",
Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp.319-322,

May 9-10, 1991 , Victoria , B.C. Canada.

