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Multilayer Perceptrons and trained classification trees are two
very different techniques which have recently become popular.
Given enough data and time, both methods are capable of per
forming arbitrary nonlinear classification. We first consider the
important differences between multilayer Perceptrons and classi
fication trees and conclude that there is not enough theoretical
basis for the clear-cut superiority of one technique over the other.
For this reason, we performed a number of empirical tests on three
real-world problems in power system load forecasting, power sys
tem security prediction, and speaker-independent vowel recogni
tion. In all cases, even for piecewise-linear trees, the multilayer Per
ceptron performed as well as or better than the trained
classification trees.

I. INTRODUCTION

We use and compare two types of regression and clas
sification systems. A regression system generates an output
Y for an input X, where both X and Yare continuous and
perhaps multidimensional. A classification system gener
ates an output class C for an input X, where X is continuous
and multidimensional and C is a member of a finite alpha
bet.

The use of trained classification and regression systems
has been studied by many researchers in the past (see, for
example, [1]-[4]). However, there has been a recent surge
of interest in trainable systems such as artificial neural net-
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works (ANNs). In particular it has been shown thatthe mul
tilayer Perceptron (MLP) can be trained by example to solve
the nonlinearly separable exclusive-OR problem [5], and this
architecture has been linked to previous neural~like pro
cessors [6], [7]. Less known to the engineering community
is the statistical technique of classification and regression
trees (CART) which was developed during the years 1973
through 1984 [8], [9].

CART, like the MLP, can be trained to solve the exclusive
OR problem, the solution it provides is extremely easy to
interpret, and both CART and MLPs are able to approximate
arbitrary nonlinear decision boundaries. Although there
have been no links made between CART and biological
neural networks, the possible applications and paradigms
used for MLP and CART are very similar.

The authors of this paper represent diverse interests in
problems which have the commonality of being important
and potentially well suited for trainable classifiers. The load
forecasting problem, which is partially a regression prob
lem, uses past load trends to predict the critical needs of
future power generation. The power security problem uses
the classifier as an interpolator of previously known states
of the system. The vowel recognition problem is represen
tative of the difficulties in automatic speech recognition
caused by variability across speakers and phonetic context.

In each problem area, large amounts of real data were
used for training and disjoint data sets were used for test
ing. We were careful to ensure that the experimental con
ditions were identical for the MLP and CART. We concen
trated only on performance as measured in error on the test
set and did no formal studies of training or testing time.
(CART was, in general, quite a bit faster in training and test
ing.)

In all cases, even with various sizes of training sets, the
multilayer Perceptron performed as well as or better than
the trained classification trees. We also believe that inte
gration of many of CART's well-designed attributes into MLP
architectures could only improve the already promising
performance of MLPs.

Reprinted from Proc. IEEE, vol. 78, no. 10, Oct. 1990, pp. 1614-1619.
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Fig. 1. (a) A multilayer perceptron (MLP) and (b) a classi
fication tree. Both were trained to perfectly solve the exclu
sive-OR problem.

II. BACKGROUND

A. Multilayer Perceptrons

The name "artificial neural networks" has in some com
munities become almost synonymous with MLPs trained by
backpropagation. Our power studies made use of this stan
dard algorithm [5] and our vowel studies made use of a con
jugate gradient version [10] of backpropagation. In all cases
the training data consisted of ordered pairs {(X, Y)} for
regression, or {(X, C)} for classification. The input to the
network is Xand the output is, after training, hopefully very
close to Y or C.

When MLPs are used for regression, the output Ycan take
on real values between 0 and 1. This normalized scale was
used as the prediction value in the power forecasting prob
lem. For MLP classifiers the output is formed by taking the
(0,1) range of the output neurons and either thresholding
or finding a peak. For example, in the vowel study we chose
the maximum ofthe 12 output neurons to indicate the vowel
class.
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B. Classification and Regression Trees (CART)

CART has already proven to be useful in diverse appli
cations such as radar signal classification, medical diag
nosis, and mass spectra classification. Given a set of train
ing examples {(X, C)}, a binary tree is constructed by
sequentially partitioning the p-dimensional input space,
which may consist of quantitative and/or qualitative data,
into p-dimensional polygons. The trained classification tree
divides the domain of the data into nonoverlapping regions,
each of which is assigned a class label C. For regression, the
estimated function is piecewise constant over these regions.

The first split of the data space is made to obtain the best
global separation of the classes. The next step in CART is
to consider the partitioned training examples as two com
pletely unrelated sets-those examples on the left of the
selected hyperplane, and those on the right. CART then
proceeds as in the first step, treating each subject of the
training examples independently. A question that had long
plagued the use of such sequential schemes was: when
should the splitting stop? CART implements a novel, and
very clever approach; splits continue until every training
example is separated from every other, then a pruning cri
terion is used to sequentially remove less important splits.

The CART system was trained using two separate com
puter routines. One was the CART program from California
Statistical Software; the other was a routine we designed
ourselves. We produced our own routine to ensure a care
ful and independent test of the CART concepts described
in [9].

C. Relative Expectations of MLP and CART

The nonlinearly separable exclusive-oR problem is an
exampleofonethat both MLP and CART can solve with zero
error. In Fig. 1(a)-a trained MLP solution to this problem
the values along the arrows represent trained multiplicative
weights and the values. In Fig. 1(b)-the very simple trained
CART solution-y and n represent yes or no answers to the
trained threshold and the values in the circles represent the
output Y. It is interesting that CART did not train correctly
for equal numbers of the four different input cases and that
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one extra example of one of the input cases was sufficient
to break the symmetry and allow CART to train correctly.
(Note the similarity to the well-known requirement of ran
dom and different initial weights for the MLP.)

CART trains on the exclusive-oR very easily since a piece
wise-linear partition in the input space is a perfect solution.
In general, the MLP will construct classification regions with
smooth boundaries, whereas CART will construct regions
with "sharp" corners (each region being, as described pre
viously, an intersection of half planes.) We would thus
expect MLP to have an advantage when classification
boundaries tend to be smooth and CART to have an advan
tage when they are sharper.

Other important differences between MLP and CART
include:

1) For an MLP the number of hidden units can be selected
to avoid overfitting or underfitting the data. CART fits the
complexity by using an automatic pruning technique to
adjust the size of the tree. The selection of the number of
hidden units or the tree size was implemented in our exper
iments by using data from a second training set (indepen
dent of the fi rst).

2) An MLP becomes a classifier through an ad hoc appli
cation of thresholds or peak-picking to the output value(s).
Great care has gone into the CART splitting rules while the
usual MLP approach is rather arbitrary.

3) A trained MLP represents an approximate solution to
an optimization problem. The solution may depend on ini
tial choice of weights and on the optimization technique
used. For complex MLPs many of the units are indepen
dently and simultaneously adjusting their weights to best
minimize output error.

4) MLP is a distributed topology where a single point in
the input space can have an effect across all units or anal
ogously, one weight, acting alone, will have minimal effect
on the outputs. CART is very different in that each split value
can be mapped onto one segment in the input space. The
behavior of CART makes it much more useful for data inter
pretation. A trained tree may be useful for understanding
the structure of the data. The usefulness of MLPs for data
interpretation is much less clear.

The above points, when taken in combination, do not
make a clear case for either MLP or CART to be superior for
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Fig. 2. A comparison of the performance of an MLP and
CART (with linear combinations) in predicting three days of
hourly power loads in megawatts.

Light Company and is currently being verified for appli
cation to future load prediction.

Figure 2 shows a detail of the comparative forecasting
performance for three days. The daily periodicity in hourly
loads was followed quite well by both techniques, and the
MLP performed somewhat better than CART around the
peaks in load.
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IV. POWER SYSTEM SECURITY

The assessment of security in a power system is an ongo
ing problem for the efficient and reliable generation of elec
tric power. Static security addresses whether, after a dis
turbance such as a line break or other rapid load change,
the system will reach a steady-state operating condition that
does not violate any operating constraint and cause a
"brownout" or "blackout."

The most efficient generation of power is achieved when
the power system is operating near its insecurity boundary.
In fact, the ideal case for efficiency would be the full knowl
edge of the absolute boundaries of the secure regions. The
complexity of the power systems makes this full knowledge
impossible. Load flow algorithms, which are based on iter
ative solutions of nonlinearly constrained equations, are
conventionally used to slowly and accurately determine
points of security or insecurity. In real systems the trajec
tories through the regions are not predictable in fine detail.
Also, these changes can happen too fast to compute new
results from the accurate load-flow equations.

We thus propose to use the sparsely known solutions of
the load flow equations as a training set. The test set con
sists of points of unknown secu rity. The error of the test set
can then be computed by comparing the result of the
trained classifier to load flow equation solutions.

Our technique for converting this problem to a problem
for a trainable classifier involves defining a training set {(X,
C)} where Xis composed of real power, reactive power, and
apparent power at another bus. This three-dimensional
input vector is paired with the corresponding security sta
tus (C = 1 for secure and C = 0 for insecure). Since the sys
tem was small, we were able to generate a large number of
data points for training and testing. In fact, well over 20000

A. The Problem

The ability to predict electric power system loads from
an hour to several days in the future can help a utility oper
ator to efficiently schedule and utilize power generation.
This ability to forecast loads can also provide information
that can be used to strategically trade energy with other
generating systems. In order for these forecasts to be useful
to an operator, they must be accurate and computationally
efficient.

III. LOAD FORECASTING

where k was the hour (1-24) ofthe day and L; and Tj signified
the load and temperature at the ith and jth hour, respec
tively. The input thus consists of the hour, two previous
load and temperature readings, and the current tempera
ture. The actual current temperature was used during train
ing and the predicted temperature was used during testing,
thus representing the actual technique of relying upon
weather reports. The output part is the predicted load Lk•

The MLP we used in these experiments had 6 inputs (plus
the trained constant bias term), 10 units in one hidden layer,
and one output. This topology was chosen by making use
of data outside the training and test sets.

B. Methods

Hourly temperature and load data for the SeattlelTacoma
area were provided for us by the Puget Sound Power and
Light Company. Forecasting for weekdays is a more critical
problem for the power industry than for weekends and we
selected the hourly data for all Tuesdays through Fridays
in the interval of November 1, 1988 through January 31,1989.
These ,data consisted of 1368 hourly measurements from a
total of 57 days.

These data were presented to both the MLP and the CART
systems as a 6-dimensional input with a single, real-valued
output. The MLP required that all values be normalized to
the range (0, 1). These same normalized values were used
with the CART technique. Our training and testing process
consisted of training the classifiers on 523 days of the data
and testing on the 4 days left over at the end of January 1989.
Our training set consisted of 1272 hourly measurements
and our test set contained 96 different hourly readings.

Several techniques of input and output pairing were tried;
after some investigation we found that a good choice of
data organization for our trainable classifier was

(X, Y) = (k,Lk- 2,Lk- 1, Tk- 2, Tk- 1, Tk,Lk)

the best performance as a trained classifier. We thus believe
that the empirical studies of the next sections, with their
consistent performance trends, will indicate which of the
comparative aspects are the most significant.

C. Results

We used an 11 norm for the calculation of error rates and
found that both techniques worked quite well. The average
error rate was 1.39% for the MLP and 2.86% for CART.
Although this difference (given the number of testing
points) is not statistically significant, it is worth noting that
the trained MLP offers performance at least as good as the
current techniques used by the Puget Sound Power and
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superior performance of the MLP technique, all of which
we are currently investigating. One advantage may stem
from the ability of MLP to easily find correlations between
large numbers of variables. Although it is possible for CART
to form arbitrary nonlinear decision boundaries, the effi
ciency of the recursive splitting process may be inferior to
MLP's nonlinear fit. Another relative disadvantage of CART
may be caused by the successive nature of node growth.
For example, ifthe first splitthat is made for a problem turns
outto be suboptimal given the successive splits, it becomes
very inefficient to change the first split to be more suitable.

We feel that the careful statistics used in CART could also
be advantageously applied to MLP. The superior perfor
mance of MLP is not yet indicative of best performance and
it may turn outthat careful application of statistics may allow
further advancements in the MLP technique. Other input
representations also might produce better performance for
CART than for MLP.

New developments have been made in trained statistical
classifiers since the development of CART. More recent
techniques, such as projection pursuit [14], may prove as
good as or superior to MLP. This continued interplay
between MLP techniques and advanced statistics is a key
part of our ongoing research.
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total data points were available for the (disjoint) training
and test sets.

A. Results

We observed that for any choice of training data set size,
the error rate for the MLP was always lower than the rate
for the CART classifier. This performance difference is illus
trated in Fig. 3. For 10000 points of training data, the MLP

. .. CART without linear combinations

--- CART with linear combinations

MLP

'" ............
..........

oL-_'----'_---'-_--'-_--'-_---'-_--'-_-'-_-'-_
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Fig. 3. The error rate in security prediction for the MLP and
two versions of CART.

had an error rate of 0.78% and CART (using linear combi
nations) had an error rate of 1.46%. Although both of these
results are impressive, the difference was statistically sig
nificant (p > 0.99).

In order to gain insight into the reasons for differences
in importance, we looked at classifier decisions for two
dimensional slices of the input space. While the CART
boundary sometimes was a better match, certain patho
logical difficulties made CART more error-prone than the
MLP. Our other studies also showed that there were worse
interpolation characteristics for CART, especially for sparse
data. Apparently, starting with nonlinear combinations of
inputs, which is what the MLP does, reduced error better
than the piecewise linear fit of CART.

V. SPEAKER-INDEPENDENT VOWEL CLASSIFICATION

Speaker-independent classification of vowels excised
from continuous speech is a most difficult task because of
the many sources of variability that influence the physical
realization of a given vowel. These sources of variability
include the length of the speaker's vocal tract, phonetic
context in which the vowel occurs, speech rate, and syllable
stress.

To make the task even more difficult, the classifiers were
presented only with information from a single spectral slice.
The spectral slice, represented by 64 DFT coefficients (0-4
kHz), was taken from the center of the vowel, where the
effects of coarticulation with surrounding phonemes are
least apparent.

The training and test sets for the experiments consisted
of featural descriptions X paired with an associated class C
for each vowel sample. The 12 monophthongal vowels of
English were used for the classes, as heard in the following
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words: beat, bit, bet, bat, roses, the, but, boot, book, bought,
cot, bird. The vowels were excised from a wide variety of
phonetic contexts in utterances of the TIMIT database, a
standard acoustic phonetic corpus of continuous speech,
displaying a wide range of American dialectical variation
[11], [12]. The training set consisted of 4104 vowels from 320
speakers. The test set consisted of 1644 vowels (137 occu r
rences of each vowel) from a different set of 100 speakers.

The MLP consisted of 64 inputs (the DFT coefficients, each
normalized between zero and one), a single hidden layer
of 40 units, and 12 output units (one for each vowel cate
gory). The networks were trained using backpropagation
with conjugate gradient optimization [10]. The procedure
for training and testing a network proceeded as follows:
The network was trained on 100 iterations through the 4104
training vectors. The trained network was then evaluated
on the training set and a different set of 1644 test vectors
(the test set). The network was then trained for an additional
100 iterations and again evaluated on the training and test
sets. This process was continued until the network had con
verged; convergence was observed as a consistent decrease
or leveling off of the classification percentage on the test
data over successive sets of iterations.

A. Results

In order to better interpret the vowel classification resu Its,
we performed listening experiments on a subset ofthe vow
els used in these experiments. The vowels were excised
from their sentence context and presented in isolation. Five
listeners first received training in the task by classifying 900
vowel tokens and receiving feedback about the correct
answer on each trial. During testing, each listener classified
600 vowels from the test set (50 from each category) without
feedback. The average classification performance on the
test set was 51 % correct, compared to chance performance
of 8.3%. Details of this experiment are presented in [13].
When using the scaled spectral coefficients to train both
techniques, the MLP correctly classified 47.4% of the test
set while CART without linear combinations performed at
only 38.2%.

One reason for the poor performance of CART without
linear combinations may be that each coefficient (corre
sponding to energy in a narrow frequency band) contains
little information when considered independently of the
other coefficients. For example, reduced energy in the
1-kHz band may be difficult to detect if the energy in the
1.06-kHz band is increased by an appropriate amount. The
CART classifier described in the preceding operates by
making a series of inquiries about one frequency band at
a time, an intuitively inappropriate approach.

We achieved our best CART results, 46.4%, on the test set
by making use of arbitrary hyperplanes (linear combina
tions). This search-based approach gave results within 1%
of the MLP results.

VI. CONCLUSIONS

In all cases the performance of the MLP was, in terms of
percent error, better than CART. However, the difference
in performance between the two classifiers was only sig
nificant (at the p > 0.99 level) for the power security prob
lem.

There are several possible reasons for the sometimes
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