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1

Gabor’s Signal Expansion and
Its Relation to Sampling of the
Sliding-Window Spectrum

Martin J. Bastiaans

1.1 Introduction

It is sometimes convenient to describe a time signal (), say, not in the time
domain, but in the frequency domain by means of its frequency spectrum,
i.e., the Fourier transform 3(w) of the function (t), which is defined by

Blw) = /wme*wdt:

a bar on top of a symbol will mean throughout that we are dealing with
a function in the frequency domain. (Unless otherwise stated, all integra-
tions and summations in this contribution extend from —o0 to +00.) The
frequency spectrum shows us the global distribution of the energy of the
signal as a function of frequency. However, one is often more interested in
the momentary or local distribution of the energy as a function of frequency.

The need for a local frequency spectrum arises in several disciplines. It
arises in music. for instance., where a signal is usually described not by
a time function nor by the Fourier transform of that function, but by its
musical score; indeed, when a composer writes a score, he prescribes the
frequencies of the tones that should be present at a certain moment. It
arises in optics: geometrical optics is usually treated in terms of rays, and
the signal is described by giving the directions (cf. frequencies) of the rays
(cf. tones) that should be present at a certain position (cf. time moment).
It arises also in mechanics, where the position and the momentum of a
particle are given simultaneously.

A local frequency spectrum can be constructed in different ways. One
favorite candidate is the Wigner distribution function {953. 663, 139, 45,
67, 222, 889. 59]. introduced in 1932 by Wigner in mechanics to describe
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mechanical phenomena in a so-called phase space. The Wigner distribu-
tion function is a representative of a rather broad class of bilinear time-
frequency functions [226, 227, 222], which are related to each other by linear
transformations. Some well-known time-frequency representations — like
Woodward’s ambiguity function [966, 707, 889], Rihaczek’s complex energy
density function [768], and Mark’s physical spectrum [677) — belong to this
class. This broad class of bilinear time-frequency functions is known as the

Cohen class [226]; any function of this class is described by the general
formula

1
Flt,w) = %///¢(T+%t’)w*(7’~ LVk(t .t o)

Xe“j{WthWIt+w,T)deiidwl

where an asterisk denotes complex conjugation. The choice of the kernel
k(t,w.t’,w’) selects one particular function of the Cohen class; the Wigner
distribution function, for instance, arises when we choose k(t.’w.‘, v, w')br 1,
wher?as k(t,w V' o'y =2m6(t — t')6(w — w') yields the ambigﬁity function.
In this contribution we will not consider the Wigner distribution function
or any other member out of this class of bilinear time-frequency signal
representations. )
Another strong candidate for a local frequency description of a signal is
the sliding-window spectrum — or windowed Fourier transform — a gener-
ilized version of the short-term Fourier transform. which is well—knoc'ivn in
§peech processing [746. 691]. It is defined as the cross-ambiguity function
see [889] and the references cited there) of the signal w(¢) and a window
’.unciz'on w(t) and is constructed in the following way. We multiply the
ignal by a complex conjugated version of the window function, which is
sually more or less concentrated around a certain time moment t say, and
letermine the Fourier transform of the product, with frequency ve;riab:le w
ay. Thus we create a function of time ¢ and fréquency w, simultaneously’
vhich might be considered as the local frequency spectruin of the signal 7
A %ocal frequency spectrum like the sliding-wvindow spectrum desZribés
he signal in time ¢ and frequency w, simultaneously. It is thus a function
f tw.o variables. derived. however, from a function of one variable. There-
e, ?t must satisfy certain restrictions, or. to put it another way: not any
inction of two variables is a local frequency spectrum. The restrictions
12t a local frequency spectrum must satisfy correspond to Heisenberg ’.s
neertainty principle in mechanics, which states the impossibility of a too
jf:urate determination of both position and momentum of a p;"trticle In
1is chapter we will show that the sliding-window spectrum is comple&ly
3t'erm.ined by its values on the points of a certain time-frequency lattice,
hich is exactly the lattice suggested by Gabor [313] as early as 1946,
A 'thn‘d candidate for a local frequency spectrum is Gabor's signal ez-
msion. In 1946. Gabor suggested the expansion of a signal into a discrete
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set of properly shifted and modulated Gaussian elementary signals [313].
A quotation from Gabor’s original paper might be useful. Gabor writes in
the stunmary:

Hitherto communication theory was based on two alterna-
tive methods of signal analysis. One is the description of the
signal as a function of time; the other is Fourier analysis ... .
But our everyday experiences. .. insist on a description in terms
of both time and frequency ... . Signals are represented in two
dimensions, with time and frequency as co-ordinates. Such two-
dimensional representations can be called ‘information diagrams’,
as areas in them are proportional to the number of independent
data which they can convey... . There are certain ‘elementary
signals’ which occupy the smallest possible area in the informa-
tion diagram. They are harmonic oscillations modulated by a
probability pulse. Each elementary signal can be considered as
conveying exactly one datum, or one ‘quantum of information’.
Any signal can be expanded in terms of these by a process which
includes time analysis and Fourier analysis as extreme cases.

Although Gabor restricted himself to an elementary signal that had a Gaus-
sian shape, his signal expansion holds for rather arbitrarily shaped elemen-
tary signals [50, 55]. We will show that there exists a strong relationship
between Gabor’s signal expansion and the sampling of the sliding-window
spectrum, and that Gabor’s signal expansion can be used to reconstruct
the signal from its sampled sliding-window spectrum.

In section 2 we will introduce the sliding-window spectrum and show
some of its properties. Sampling of the sliding-window spectrum is studied
in section 3, and the reconstruction of the signal from the sampling values
by means of the Zak transform is shown there. Some examples of window
functions are considered in section 4. In section 5 we introduce Gabor’s
signal expansion and we show an easier way to reconstruct the signal from
its sampled sliding-window spectrum. Some examples will be considered
in section 6. Propagation of Gabor’s expansion coefficients through linear
systemns and some ideas about the number of degrees of freedom of a signal
will be the subject of section 7. In section 8 we will describe an optical
means for generating Gabor's expansion coefficients and we will show a
link to folded spectrum techiiques.

We will restrict ourselves to one-dimensional time signals: the extension
to two or more dimensions, however, is rather straightforward. Most of the
results can be applied to continuous-time as well as discrete-time signals.
We will concentrate on continuous-time signals, but we will state the results
for the discrete-time case, if necessary, as well. To distinguish continuous-
time from discrete-time signals. we will denote the former with curved
brackets and the latter with square brackets: thus (¢} is a continuous-time
and ¢[n] a discrete-time signal. We will use the variables in a consistent
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manner: in the continuous-time case, the variables t. m and 7" have some-
thing to do with time. and w. k and © with frequency. and the relation
QT = 27 holds throughout; in the discrete-time case, the variables n. m
and N have something to do with time, and 9, & and © with frequency.
and the relation ® N = 27 holds throughout.

1.2 Sliding-Window Spectrum

The sliding-window spectrum S,,(t.w) of the signal ©(t) is defined as
Sy(t.w) = /W’)w*@' — eIt gy, (1.2.1)

where w(t) is the window function. We note that the sliding-window spec-
trum can be considered as the Fourier transform of the product of the
signal o(t) and a conjugated and shifted version of the window function
w(t). The window function may be chosen rather arbitrarily; mostly it will
be a function that is more or less concentrated around the origin. The
sliding-window spectrum can then be considered as a windowed or short-
term Fourier transform of the signal, which, indeed, can be interpreted as
a local frequency spectrum. If the window function is chosen a very narrow
function, like a Dirac function. the sliding-window spectrum reduces to a
pure time representation of the signal; if, on the other hand, the window
function is chosen constant. the sliding-window spectrum reduces to a pure
frequency representation. In general, however, the sliding-window spectrum
s an intermediate signal description between the pure time and the pure
Tequency representation.

Instead of the definition in the time domain, there exists an equivalent
lefinition in the frequency domain, reading

Sult.w) = ~2—1; AT (W — w)el tdw’ - eIt (1.2.2)
[

Che factor e™7*¢ causes a slight asymmetry between the definitions (1.2.1)

md (1.2.2): if desired, more symmetric definitions result from adding a

actor e/¥t/2 to the right-hand sides of these relations.

The sliding-window spectrum of a one-dimensional signal can easily be
lisplayed by optical means. Since this spectrum is the cross-ambiguity func-
ion of () and w(t), we can use the optical arrangements that are designed
o display such cross-ambiguity functions [785, 594, 595, 41, 761]: we only
ave to convert the time functions ©(¢) and w(t) to space functions.

We will give some properties of the sliding-window spectrum, which can
e derived directly from the definitions (1.2.1) and (1.2.2). Other proper-
tes can be found in the literature on cross-ambiguity functions. (See, for
istance, [889] and the references cited there.)
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1.2.1 INVERSION FORMULAS

Since the definition given in (1.2.1) of the sliding-window spectrum Su(t,w)
can be considered as a Fourier transformation of the product (¢ )w* (' ~1)
with respect to t', we can easily find a way to reconstruct the signal (1)
from its sliding-window spectrum by simply writing down the correspond-
ing inverse Fourier transformation

* 1 | jwt’ y
P(tHw*(t) = o ] Su(t' = t.w)el*" dw. (1.2.3)

An inversion formula similar to relation (1.2.3), but based on the defini-
tion (1.2.2) in the frequency domain, can be formulated to reconstruct the
spectrum @(w). ‘ . o

There exists another way of reconstructing the signal from its sliding-
window spectrum, viz., by means of the inversion formula [139]

) 1 ; ,
w(t’)fi'w(t)l‘dtm %/f[ Sy (t.ww(t’ —t)ed didw, (1.2.4)

which represents the signal as a linear combination of shifted and gmdu-
lated window functions. with the sliding-window spectrum Swlt.w) as a
weighting function. However. this linear combination is not umqu? [139]:
indeed, there are many kernels S(t, w) that satisfy the relationship

gp(t’)]iw(t}ﬁdt = 517; /][ S(t,w)w(t' — t)e?* dtdw. (1.2.5)

One obvious kernel is suggested by Gabor's signal expansion, in which
case the kernel S(¢.w) has the form of a discrete set of Dirac functions in
the timewfrequenc:v domain, as we will see in section 5. The representation
(1.2.4), i.e., choosing the kernel S(t.w) in relation (1.2.5) equal to the
sliding-window spectrum Sy (t.w). is the best possible one in the sense
that for this choice the L2-norm of S(t.w) takes its minimum value. To see
this we multiply both sides of Egs. (1.2.4) and (1.2.5) by @*(t'), integrate
over t', and conclude from the equivalence of the right-hand sides of the
resulting equations that S, (t.w) and S(t.w) — Sy (t.w) are orthogonal in

the sense .

27

hence, the relationship

L[ st w)did = — / t,w)|*dtdw
%// 1S(t,w)Pdtds = 27«//‘ 1S, (£, w)[2dtc

+;‘—~ // S(t,w) — Sy (t,w)|*dtdw

// S (@) [S(t.w) = Sy (t,w)]"dbdw = 0; (1.2.6)

(1.2.7)
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holds. It will be clear from Eq. (1.2.7) that the L%-norm of S(t,w) takes its
minimum value if S(t,w) — 5, (t,w) = 0, i.e., il we choose the kernel S(¢,w)
equal to the sliding-window spectrum Sy, (t. w).

1.2.2 SPACE AND FREQUENCY SHIFT

Let Sy (¢, w) be the sliding-window spectrum of the signal ¢(t); the sliding-
window spectrum of the shifted and modulated signal (¢t — t o)e?¥°t then

takes the form Sy,(t — to.w — wy)e @ =wolto In particular. the squared
modulus of the sliding-window spectrum, which is also known as the phys-
ical spectrum, or the spectrogram. has the following property: a time or
frequency shift of the signal yields the same time or frequency shift for the
squared modulus of the sliding-window spectrum.

1.2.3 SoME INTEGRALS CONCERNING THE
SLIDING-WINDOW SPECTRUM

The integral of the squared modulus of the sliding-window spectrum over
the frequency variable w,

1 o
5;/1sw(t.w)§zdw:J/ww’nzgw(f’mz)\?dt', (1.2.8)

can be interpreted as a weighted version of the intensity |¢(t)|?, whereas
the integral over the time variable ¢,

1 /. ,
1

can be considered as a weighted version of |@(w)|?. The integral of the

squared modulus over the entire time-frequency domain,

wf/ wlt.w)] Pdtdw = (/gg th) (/w ()] dt) (1.2.10)

is equal to the product of the total energy of the signal and the total energy
of the window function.

1.2.4 DISCRETE-TIME SIGNALS

The concept of a sliding-window spectrum can easily be extended to discrete-
time signals. Let z[n] (n = ....~1.0.1....) denote such a discrete-time
signal and let w[n] represent a window sequence. Analogous to definition
(1.2.1), the sliding-window spectrum is then defined as [cf. [746], Eq. (6.1)]

Sw(n.9) = Zaz’[*]z']w*[n’ — n)e=79" (1.2.11)

n’
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Unlike Eq. (6.1) in [746], the definition (1.2.11) uses a complex conjugated
version of the window: moreover, the window has not been time-reversed.
The only reason for doing this is to get more elegant formulas in the re-
mainder of this chapter. The sliding-window spectrum for a discrete-time
signal is a function of the two variables n and ¢ the time index n is discrete
and represents the position of the window, and the frequency variable
is continuous. Of course. as in the case of normal Fourier transforms of
discrete-time signals, the sliding-window spectrum S,,(n.9) is periodic in
¥ with period 2.

The inversion formula (1.2.3) has its counterpart in the discrete-time case
and then reads

17 on i ,
el wn] = = | Su(n' —n, 9)e? dv, (1.2.12)
2
where J(zn dv represents integration over one period 2m: the counterpart of
the inversion formula {1.2.4) takes the form

; 1 . . ,
7] Z lwn]|?> = z Py / Sw(m, D)wln’ — njed?™ do. (1.2.13)
n n T Jom

The other properties of the sliding-window spectrum have their counter-
parts in the discrete-time case, as well, which counterparts can easily be
derived.

1.3 Sampling Theorem for the
Sliding-Window Spectrum

We can reconstruct the signal {rom the sliding-window spectrum via the
inversion formula (1.2.3) or (1.2.4). However, in order to reconstruct the
signal, we need not know the entire sliding-window spectrum; it suffices
to know its values at the points of the Gabor lattice (t = mT.w = kQ)
with QT = 27, where m and k take all integer values [313]. In quantum
mechanics this lattice is known as the Von Neumann lattice [678, 38]. Note
that the Gabor lattice is rectangular, and that the rectangular cells occupy
an area of 27 in the time-frequency domain (see Fig. 1.1).

Let the values of the sliding-window spectrum at the sampling points
(t = mT,w = k) be called s,,,;,. We thus have the relation

Sk = Su(mT, kQ) = /ap(t)w*(t — mT)e ¥z, (1.3.1)

We shall now demonstrate how the signal can be found when we know the
values s,,x of the sempled sliding-window spectrum.
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FIGURE 1.1: The Gabor lattice.

We first define the function 5(t,w) by a Fourier series with Fourier ex-
pansion coefficients s,,;:

§(tw) = ZZS e (meT—kqt), (1.3.2)

note that the function 3(¢,w) is periodic in ¢ and w, with periods 7" and (2.
respectively. The inverse relationship has the form

1 . -
Smk;_/ / 5(t, w)ed Tk grgy, (1.3.3)
2 TJO

where the integrations extend over one period T and one period {2, respec-
tively. We remark that Parseval’s energy theorem leads to the relationship

1 .
?LL}SU'L‘))IQCZM“}:;;ISmkﬁ (13.4)

Furthermore, from the signal () we define the two-dimensional function
P(t,w) by
G(t. w) Z\p (t + mT)e~imeT, (1.3.5)

the equivalent definition in terms of the frequency spectrum @(w) reads

ejui

T 2 Plw + kQ)ed . (1.3.6)

k

The slight asymmetry between these two definitions could be removed, if de-
sired, by multiplying the right-hand sides of these definitions by VTe iwt/2,
[Note that the equivalence of the two definitions (1.3.5) and (1.3.6) implies
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an interesting relationship between a function and its Fourier transform,
viz.,

TZ ot +mT)e ImT = eiwt Z G(w + k)™ (with QT'=27),
m

which is, in fact, a generalized form of Poisson’s sum formula known in
Fourier theory!] We remark that the function @(t,w) is periodic in the
frequency variable w with period €1, and quasi-periodic in the time variable
t, with quasi-period 7"

Gt +mT,w+ kQ) = G(t,w)ef™T (1.3.7)

The inverse relationship of Eq. (1.3.3) has the form
1 7 :
ot +mT) = 5/ St w)e?™ T du. (1.3.8)
Q

and a similar relationship exists for the definition {1.3.6); it will be clear
that the variable t in relation (1.3.8) can be restricted to an interval of
length T, with m taking on all integer values. Parseval’s energy theorem
now leads to the relationship

1 - 1 |
3 [ [ ietwrpaan = 7 [iotrar (15.9)

Relation (1.3.5) provides a means to represent a one-dimensional time
function by a two-dimensional time-frequency function on a rectangle with
finite area QT = 2w. The two-dimensional function Q(t, w) associated to the
one-dimensional function (¢}, according to definition (1.3.5), is known as
the Zak transform because Zak was the first who systematically studied this
trausformation in connection with solid state physics [992, 993, 994]. Some
of its properties were known long before Zak's work. however. The same
transform is called the Weil-Brezin map and it is claimed that the transform
was already known to Gauss [798]. It was also used by Gel'fand (see, for
instance, [756]. Chapter XIII); Zak seems, however. to have been the first
to recognize it as the versatile tool it is. The Zak transform has many
interesting properties and also interesting applications to signal analysis,
for which we refer to [428, 429].

With the help of the functions §(¢,w), ${t,w) and a similar function

@(t, w) (a Zak transform, again) associated with the window function w(t),
relation (1.3.1) can be transformed into

§(t.w) =Tt w)d™(t,w). (1.3.10)

The transition from (1.3.1) to (1.3.10) goes as follows. We first write down
the definition (1.3.2) of the function (¢, w)

(f u‘) ZZS ke—](mmT kQt)

mo ok
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and substitute the sample values s,,;. from relation (1.3.1):

Stw)y=3% %" ( / ot w* (¢ - mT)e‘jk“*’dt'> eI (mwT—kit)
m ok

We rearrange factors

(t,w) = Z ii/cp(t’)w*(t' —mT) (Z g—jkﬂ(l'~i)> dt/j’ e JmwT
k

m

and replace the sum of exponentials by a sum of Dirac functions

§tw)y = Z [/ o) w* (t' — mT) (TZé(t' - - kT}) dt"}
: J

m
Xe—jmwT

We rearrange factors again,

tw) = TZ (Z/p(t')w*(t’ —mTy6(t —t — kT)dt’>
m k

Xe-—»jmwTﬁ

and evaluate the integral

m k

3{tow) = TZ (Z ot + ET)yw™ (t + kT — mT)) g ImwT
After a final rearranging of factors we find

§tw) = Tzip(tJrkT)e“jk“’T
k

X (Z Hr‘(t + {;l( - 771}T)€”j(k“m)wT> :

m

in wh}ch expression we recognize the definitions for the functions G(t, w)
and w(t,w) [cf. definition (1.3.5)]: hence ’

5(tw) = Tt wiw* (t, w).

In fact, we have now solved the problem of reconstructing the signal from
ts sampled sliding-window spectrum:

e frmp the sample values s,,, we determine the function $(t,w) via
definition (1.3.2):

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

1. Gabor’s Signal Expansion 11

e from the window function w(t) we derive the associated function
w(t, w) via definition {1.3.5):

e under the assumption that division by @*(t.w) is allowed, the func-
tion $(t,w) can be found with the help of relation (1.3.10):

¢ finally, the signal follows from @(t, w) by means of the inversion for-
mula {1.3.8).

A simpler reconstruction method, however, becomes apparent in section 53,
when we have studied Gabor’s signal expansion.

Problems may arise in the case that w(¢,w) has zercs. In that case ho-
mogeneous solutions [55] 2(t.w), say. may occur, for which the relation

T3(t.w)i* (t.w) =0 (1.3.11)

holds. Relation (1.3.11), which is similar to relation (1.3.10) with §(t,w) =
0, can be transformed into the relation

/z(t)w*(t —mT)e kMgt = 0, {1.3.12)

which is similar to relation (1.3.1) with s = 0, and which shows that
the sliding-window spectrum of a homogeneous sclution z(¢) vanishes at
the Gabor lattice [425]. We conclude that the existence of homogeneous
solutions makes the reconstruction of the signal from its sampled sliding-
window spectrum non-unigue: if ©(¢) is a possible reconstruction, then
w(t) + z(t) is a possible reconstruction. too.

1.3.1 DIsCrETE-TIME SIGNALS

We can extend the concept of sampling of the sliding-window spectrum to
the discrete-time case, as well. Let V be a positive integer and let & be
defined by © = 27 /N. In the discrete-time case the Gabor lattice can then
be described by (n = mN.¥ = kB). Let the values of the sliding-window
spectrum at these sampling points be denoted by $,,5; we thus have the
relation [cf. relation (1.3.1)]

Smk = Sp (MmN, kO) = Zp[n}w* [n — mN]e=7%On, (1.3.13)

Of course, due to the periodicity of Su{n,9) in the frequency variable ¥
with period 27, the array of coefficients s, is periodic in k with period
N.

Analogous to the continuous-time case. reconstruction of the discrete-
time signal [n] from the sample values s, requires the function §(rn.9)
defined by its Fourier series coefficients s,,,x [cf. definition {1.3.2)],

Bnd) =" 3" sppedmIN—ROm) (1.3.14)

m k=< N>
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where ),y represents summation over one period N. Note that the
function &(n, ) is periodic in the time index n and the frequency variable
9, with perieds N and ©, respectively. The inverse relationship has the
form [cf. relation (1.3.3)]

1 1 ;
. & i(n. O dj(mﬂN—an) ) 131
Smk =T D 9/65(7“9;@ dod (1.3.15)

n=<N>
2urthermore, we need the Zak transform of the signal o[n]. which is
defined by [cf. definition (1.3.5)]

H(n.d) = Z oln + mNje™ImON {1.3.16)

The Zak transform is now periodic in the frequency variable ¢ with period
8, and quasi-periodic in the time index n with quasi-period N [cf. relation
(1.3.7)}:

B(n+mN, 9+ kO) = 3(n.9)ed ™V, (1.3.17)
The inverse relationship reads [cf. relation (1.3.8))
1 f :
wln+mN| = 6/ o(n.9)el™ N gy, (1.3.18)
e

where now the time index n can be restricted to an interval of length V.
with m taking on all integer values.

The case N = 1 and. consequently, © = 27 deserves special attention:
in that case there is maximum overlap between the window sequence wn|
and its direct neighbors win + N|. The formulas can then be simplified.
Without losing any information, we can take & = 0 in relation (1.3.13),
and n = ( in relations (1.3.14)-(1.3.18), for instance. Relation (1.3.13) then
reduces to a simple correlation

Smo = Z wlnjw™[n — ml; (1.3.19)

note that, moreover, the values s,g become real when the signal [n]
and the window sequence wln] are real. Furthermore, relation (1.3.14) and
(1.3.15) then constitute a normal Fourier transformation pair, and so do
relations (1.3.16) and (1.3.18).

1.4 Examples of Window Functions

We shall consider some examples of window functions w(t), and we shall de-
:ermine their associated two-dimensional functions @ (¢, w), confining owr-
selves throughout to the fundamental interval (—%T <t < %T, ——%Q <w <
%Q): for other combinations of ¢t and w. we can use the {quasi-)periodicity
sroperty (1.3.7).

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

1. Gabor’s Signal Expansion 13

RecT WINDOW FUNCTION

As a first example we consider a rectangular window function whose width
equals T (see Fig. 1.2):

t 1 forv%T<t§%T 141
w(t) = rect (?) = { 0 elsewhere. (14.2)

=4

FIGURE 1.2: A rectangular window function, cf. Eq. (1.4.1).
The associated two-dimensional function w(t.w) follows readily via def-
inition (1.3.5): in the fundamental interval it reads
w(t.w) =1 (1.4.2)

This example can easily be generalized to an arbitrary window function
w(t) that is limited to the interval -3T <t < iT: in the fundamental
interval the associated function w(t,w) reads

Wit w) = w(t). (1.4.3)

SiNe WINDOW FUNCTION

Our second example is the band-limited function (see Fig. 1.3)

w(t) = sinc (i> - snlrn) (1.4

T ’ﬂ'T

This function and the rectangular window function of the first example
are dual to each other, i.e.. the Fourier transform of one function has the
same form as the other function. The Fourier transform of the sinc window

function reads o
w{w) = Trect(-ﬁ) . (1.4.5)

and its associated two-dimensional function w(t,w), which can readily be
derived using definition (1.3.6), takes the form

B(t,w) = et (1.4.6)
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FIGURE 1.3: A sinc window function, cf. Eq. {1.4.4).

in the fundamental interval.

This example can easily be generalized to an arbitrary function w(t) that
is band-limited to the interval -—%Q < w < %Q; in the fundamental interval
the associated function @(¢. w) reads

ejwt
W(t.w) = ——1D(w). (1.4.7)

1.4.1 GaussiaAN WINDOW FUNCTION

As our final continuous-time example we consider the Gaussian window
function (see Fig. 1.4)

w(t) = v2e~ ()7, (1.4.8)
the factor ¥/2 in this definition has been included to normalize [ lw(#)|2dt
to unity.

FIGURE 14: A Gaussian window function, cf. Eq. (1.4.8).

A Gaussian function has several advantages: its Fourier transform is
again Gaussian, and the product of the effective width in the time do-
main and the one in the frequency domain takes the theoretical minimum
value [704, 707]. The associated two-dimensional function @ (t.w) follows
via definition (1.3.5): in the fundamental interval it takes the form

J'(tw) = yﬁe“"(%)Qﬁg(ﬂg*). (149)

where 63(() is a theta function [950, 3] with nome ¢ = e™™, and where, for
convenience, we have set ¢ = w/Q + j¢/T.
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Since wW(t,w) has a simple zero for (¢t = 1T, w = £Q) in this case. a ho-
mogeneous solution Z{¢,w) may occur in the signal reconstruction process,
reading in the fundamental interval (up to a constant factor)

F(t.w) = 2mb(t — $T)6{w — $0) (1.4.10)

and thus, with the help of the inversion formula (1.3.8)

2t) =T (-1)"6(t — 1T —mT), (1.4.11)

This homogeneous solution z(¢) is depicted in Fig. 1.5.

FIGURE 1.5: A homogeneous solution corresponding to a Gaussian window func-
tion, cf. BEq. (1.4.11).

1.4.2 DISCRETE-TIME SIGNALS

We consider two simple examples of discrete-time window sequences w{n],
and determine their associated two-dimensional functions w{(n,¥) for dif-
ferent values of the shifting distance N. Our first discrete-time example is
the symmetrical, three-point window sequence (see Fig. 1.6)

1 forn=20
wln]={ 3a forn==21(0<da®<1) (1.4.12)
0 elsewhere;

note that for a = 0.16, we are dealing with a three-point Hamming window.
For N = 1, the maximum-overlap case, we find

w(n,9) = (1 +acosd)e’™’. (1.4.13)
For N = 2 we find
W2m.¥) = e2m?
; i 1.4.14
{ w(2m +1.9) = da(1+e??)ef2m ( )

Note that in this case of partial overlap, the function w{n,¥) has zeros for
9 = -évr +rm(r=...,-1,0,1,...), and hence a homogeneous solution z|n]
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FIGURE 1.6: A symmetrical, three-point window sequence, cf. Bqg. (1.4.12).

arises. Its associated function Z(n,d) is given hy

22(2m, %) = 0 )
222m+1.9) = w(-1)"z 3 6 (I~ —%7{ - r7). (1.4.15)
The homogeneous solution thus takes the form (see Fig. 1.7)
z[2m] = 0 1.4.16)
22m+1] = (=1)7"2. (1.4.16)

-8 r4 0 l4 Ia
FIGURE 1.7 A homogeneous solution corresponding to a symmetrical,
three-point window sequence, cf. Eq. {1.4.18).

Our second discrete-time example is the one-sided exponential window
sequence (see Fig. 1.8)

(1.4.17)

o) et forn <0 {a>0)
win] = { 0 for n > 0.

In the basic interval —(N — 1) < n < 0, the associated function @(n. )
takes the form

1

" 4 — ,an . A
wn.v) =e [y (1.4.18)

vhe values of w(n.9) outside this interval can be found by applying the
juasi-periodicity relation (1.3.17).
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-6 -12 -8B -4 0 4 8 42 18

FIGURE 1.8: A one-sided exponential window sequence, cf. Eq. (1.4.17).

1.5 Gabor’s Signal Expansion

In 1946, Gabor [313] suggested the expansion of a signal into a discrete
set of Gaussian elementary signals [386, 48, 50, 55, 426]. Although Gabor
restricted himsell to an elementary signal that had a Gaussian shape, his
signal expansion holds for rather arbitrarily shaped elementary signals [48,
50, 55]. With the help of Gabor’s signal expansion. we can express the signal
w(t) as a superposition of properly shifted and modulated versions of an
elementary signal g(f), say. yielding

o(t) = Z Zamkg(t — mT ek, (1.5.1)
m ok

where the time shift T and the frequency shift @ satisfy the relation
QT = 27. Unlike the inversion formula (1.2.4), which represents the signal
as a continuum of window functions, Gabor’s signal expansion (1.5.1) repre-
sents the signal as a discrete set of elementary signals that are shifted over
discrete distances m7 and that are modulated with discrete frequencies
1593

In general, the discrete set of shifted and modulated elementary signals
g(t — mT)e* ™ need not be orthonormal, which implies that Gabor’s ez-
pansion coefficients a,,, cannot be determined in the usual way. In this
section, however, we show how we can find a function w(t), say, that is
bi-orthonormal to the set of elementary signals in the sense

/g(t)w*(t —mT)e ¥t = §,.6;. (1.5.2)

where 6, is the Kronecker delta (6g = 1.6, = 0 for m # 0): the choice
of the symbol w for this function — as if it was a window function — is
intentional, as will become clear soon! With the help of this bi-orthonormal
function w(t), the expansion coefficients follow readily via

Gmk = /c,o(t)w*(t — mT)e R gt (1.5.3)

The relationship between Gabor’s signal expansion and the sliding-window
spectrum becomes apparent by noting that the right-hand side of relation
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(1.5.3) can be interpreted as a sampled sliding-window spectrum with win-
dow function w(t) [see relation (1.3.1)].

To show the relationship between the Gabor expansion with the ele-
mentary signal g(t) and expansion coefficients a,,; on the one hand [cf.
relation (1.5.1)]. and the sliding-window spectrum with the window func-
tion w(t) and the sample values a,, on the other hand [cf. relation (1.5.3)],
we proceed as follows. We first derive a way to find the Gabor expansion
coefficients a,,, along the lines similar to the ones used in section 3. As we
did for the array of sample values s,,, we define from the array of Gabor
coefficients a,,; the function a(t,w) according to definition (1.3.2). Fur-
thermore, we introduce the function §(f,w) associated to the elementary
signal g(t) according to definition (1.3.5) and also use the function 3(t,w)
associated to the signal (t). We can then transform relation (1.5.1) into

St w) = alt,w)glt,w). (1.54)

The transition from {1.5.1) to (1.5.4) goes as follows. We first write down
the definition (1.3.5) for the function ${1,w),

Gltow) = Z ot +nT)e T

and substitute (t + n7") from Gabor’s signal expansion (1.5.1),

ot.w) = Z (Z Zamkg(t +nT - mT)ejkm) g~ inwT
n m k

We rearrange factors

@(t‘w)zz Z eI T k) (Z g(t+[n ~ m}T}e'j("'_m)T)
k n

m

and recognize the definition (1.3.2) for the function a(t,w) and the defini-
tion (1.3.5) for the function §{¢,w): hence

(t,w) = alt.w)F(t.w).

In fact we have now solved the problem of finding Gabor’s expansion co-
efficients, even in the case that the set of shifted and modulated elementary
signals g(t — mT)e?® ¥ is not orthogonal:

s from the signal ¢(t) and the elementary signal g(t) we derive the
associated functions @(t,w) and g(t.w) via definition (1.3.5);

e under the assumption that division by §(¢,w) is allowed, the function
a(t, w) can be found by means of relation (1.5.4);
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e finally, the expansion coefficients a,,; follow from the function a(t, w)
with the help of the inversion formula (1.3.8).

We have just shown how Gabor’s expansion coefficients could be deter-
mined when the signal p(¢) and the elementary signal g(t) are known; there
is, however, a simpler way to find these expansion coefficients by means of
relation (1.5.3). To prove this, we have to derive a function w(t) that is bi-
orthonormal to the elementary signal g(¢) in the sense of relation (1.5.2).
Under the assumption, again, that division by g(t.w) is allowed, we define
the function @(t.w) through the relation

Tg(t. w)*(t. w) = 1. (1.5.5)
Substitution of relation (1.5.5) into relation (1.5.4) yields
alt.w) =To(t. w)w™ (t.w). (1.5.6)

When we notice the resemblance between relation (1.5.6) and relation
(1.3.10), it is not difficult to see that relation (1.5.6) can be transformed
into relation (1.5.3), in the same way as relation (1.3.10) can be transformed
into relation (1.3.1); the function w(t) then follows from the function @©(t. w)
by means of the inversion formula (1.3.8). Likewise, relation (1.5.5) can be
transformed into the bi-orthonormality relation (1.5.2). We conclude that
the expansion coefficients can be determined immediately by means of re-
lation (1.5.3) when the signal (t) and the function w(¢) are known. Note
that the expansion coefficients ¢, can be considered as the sample values
of the sliding-window spectrum of the signal (¢} with window function
w(t).

Gabor’s expansion coefficients may be non-unique in the case that §(f.w)
has zeros. In that case homogeneous sclutions #(¢.w) may occur again [58].
for which now the relation

FHtow)g{t.w) =0 (1.5.7)

holds. Relation (1.5.7), which is similar to relation (1.5.4) with 3(t.w) = 0,
can be transformed into the relation

Z Z Zmig(t = mT)e?* = 0, (1.5.8)
m k

which is similar to relation (1.5.1) with ¢(t) = 0. Relation (1.5.8) shows
that certain arrays of non-zero coefficients in Gabor’s signal expansion may
yield a zero result. We thus conclude that Gabor's signal expansion may
be non-unique: if the array of coefficients a,y vields the signal (), then
the array Gmk + 2mk vields the same signal.

The resemblance between relations (1.5.3) and (1.3.1) leads to another
important conclusion. In section 3 it was shown how the signal could be re-
constructed from the sampled sliding-window spectrum; we now conclude
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that there exists a simpler reconstruction method by means of Gabor's
signal expansion {1.5.1), where we must identify the Gabor expansion co-
efficients a,,x with the sample values s, of the sliding-window spectrum;

hence _
p(t) =D smrg(t — mT)e?*, (1.5.9)
k

7

The bi-orthonormality of w and g as expressed by the bi-orthonormality
relation (1.5.2) is, in fact, the reason why we can use the w-functions to find
the coefficients of Gabor's expansion into g-functions [cf. relations (1.5.1)
and (1.5.3)], and use the g-functions to reconstruct the signal from its
sampled sliding-window spectrum with window function w(¢) [cf. relations
(1.3.1) and (1.5.9)]. Zeros in either §(¢.w) or @(t.w) may complicate mat-
ters, however. When we apply Parseval’s energy theorem (1.3.9) to w(t) or
g(t), and substitute from relation (1.5.5), we get the relationships

l 2 . /
T/!u(z‘)] dt = 2“/ [(t. w)2dtdw

(ltdu;. {1.5.10)

o Tfi(f~w)

e
o ),

From these relationships we conclude that in the case that §(t.w) or
@(t,w) has zeros, the required window function w(t) or the required ele-
mentary signal g(¢) may not be quadratically summable. This consequence
of the occurrence of zeros in §(t.w) or w{t,w) is even worse than the fact
that Gabor's signal expansion is not unigue or that the reconstruction from
the sampled sliding-window spectrum is not unigque due to homogeneous
solutions; it may cause very bad convergence properties in the expansion
or reconstruction method.

When we substitute from relation (1.5.9) into the definition (1.2.1) of
the sliding-window spectrum, we obtain the relation

Spltow) = Z Z Sk /g{t’ — mT)e W (¢ — eIV g (1.5.12)
m ok :

ﬂ

2
dtdw. (1.5.11)

T’U:’(t u})

Relation (1.5.12) enables us to express the sliding-window spectrum in
terms of its sample values. We can write

Splt.w) = Z Z Sk Qu (t = mT w — kQ)e 3™ T (1.5.13)

m  k
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where we have used the shifting property of the sliding-window spectrum,
and where we have introduced the inferpolation function

Oult.w) = / G = eI dt. (1.5.14)

Note that the interpolation function is, in fact, the sliding-window spectrum
of the function g(¢) with window function w(t), and that its property

Qu(mT k) = 8,6k (1.5.15)

is equivalent to the bi-orthonormality property (1.5.2). By interchanging ¢
and w in relation (1.5.14), we get

Qut.w) = QL (—t. —w)e 7, (1.5.16)

which is, in fact. the sliding-window spectrum of the function w(t) with
window function g(t).

1.5.1 DISCrRETE-TIME SIGNALS

For discrete-time signals, Gabor's expansion takes the form [cf. relation

(1.5.1)]
n] = Z Z amrgln — mNekOm: (1.5.17)
m  k

it will not be difficult to express all the other relationships in this section
for discrete-time signals, as well. The interpolation property (1.5.13), for
instance, then takes the form

(n,9) Z Z SmkQuw(n — mN, Y — k@)e MV, (1.5.18)

m ok=<N>

where, again, @y, (n,?) is the sliding-window spectrum of the elementary
signal g[n] with window sequence wn].

The case N = 1, with maximum overlap between the window sequence
win] and its direct neighbors win + N|, deserves special attention, again,
and the formulas can be simplified. Without losing any information, we can
now take k& = 0 in relation (1.5.17), for instance, which then reduces to a
simple convolution

n) = Z amogln — ml. (1.5.19)

e

1.6 Examples of Elementary Signals

For some elementary signals g(¢). which we have considered already as
window functions in section 4. we shall determine the corresponding window
functions w(t) and the interpolation functions @, (. w).
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1.6.1 RECT ELEMENTARY SIGNAL
For the rect elementary signal g(¢) = rect{t/T), cf. Fig. 1.2, we readily find
Ti(t.w) = 1 (1.6.1)

in the fundamental interval and hence

t
Tw(t) =rect| — | . 1.6.2
(6 = rect( 1) (162

The interpolation function @, (t.w) that corresponds to a rectangular
window function reads

Qu(t.w) = e~wt/2 sinc{% (1 - ‘—;—D} (1 -

Gabor’s signal expansion using a rectangular elementary signal repre-
sents, in fact, a well-known way of expanding a signal: we simply consider
the signal in successive intervals of length 7" and describe the signal in each
interval by means of a Fourier series. Note that w(t) is proportional to the
elementary signal g(¢) since. in this case, the set of shifted and modulated
elementary signals is orthogonal.

¢ >rect<—2%;> (16.3)

T

1.6.2 SiNC ELEMENTARY SIGNAL
For the sinc elementary signal g(¢) = sinc(¢/T), cf. Fig. 1.3, we have
Tt w) = e/t (1.6.4)

in the fundamental interval and hence
t
Tw(t) =sincl — | 1.6.5
w{t) smc(T) ; { )

the interpolation function corresponding to the sinc window function reads

Qult.w) = e™992 gine {% (1 - '%D} (1 - j%‘) 1‘ect(?:~;2> . (1.6.6)

This example is simply the dual of the previous one. It will be clear
that for a signal which is band-limited to the frequency interval jw| <
%Q, Gabor's signal expansion represents the well-known ordinary sampling
theorem.

1.6.3 GAUSSIAN ELEMENTARY SIGNAL

Stz ]
In the case of the Gaussian elementary signal g(t) = &2~ "(T)" of. Fig. 1.4.
we have in the fundamental interval

Gt w) = Vo™V gy (e, (1.6.7)

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
1. Gabor’s Signal Expansion 23

and thus ) . .
Ti(t,w) = —=e™ TV 1.6.8
= o 108
in which expressions we have set again ¢ = w/Q + jt/T. The function
1/63(7¢) can be expressed as

1 KO -3/2 o0
B3(7C) = (*;) (co + 2"12::1(-—1) Cm cos(27rm()) , (1.6.9)

where
o0

Cm = Z(‘l)neww(n+%)(2m+n+%) (1.6.10)
n=0
(see, for instance, [950], p. 489, Example 14); the constant Ky = 1.85407468
is the complete elliptic integral for the modulus %\/5 (see. for instance. [950],
p. 524). It is now easy to determine w(t) via the inversion formula (1.3.8),
yielding

1 (Ko\7¥ t
Tw(t +mT) = 7 (—Trq) e”(T)z(ml)mcmezﬂmT (1.6.11)

with w~%T <t < %T, and hence

1 [K\TY? 1
Tw(t)=%<—7r9> ™)’ > (=1)re™" 3 (16.12)

This window function w(#), which corresponds to the Gaussian elementary
signal, is depicted in Fig. 1.9. A practical way to represent w(t) is in the

2
k [\0
-4 (-3 -2 |f1

a2

i 2 3 4

FIGURE 1.9: The window function that corresponds to a Gaussian elementary
signal, cf. Eq. (1.6.12).
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form [508]

1 (K N\ t 1
Tw(t) = —= (iﬂ> (1) Cre™ () = (4 3)*], (1.6.13)
7
where m is the non-negative integer defined by (m — %)T <] < (m-+ %)T
and where
hiad (naly2 1.2
O = 3 (=17 memlintg) = lm3)T] (1.6.14)
n=1m

Since Cyy, is close to unity (Cp = 0.998133, C; = 0.999997, .... Cee = 1),
this representation leads to the approximation

-3/2
Tw(t) =~ = (Ijg> (wl)me”[(%)g*(m+%)2] (1.6.15)
RN
with (m - %)T <t < (m+3)T.

Without proof, we mention some properties of this function w(t). As
is also the case for the Gaussian function. the Fourler transform of w(t)
has the same formn as w(t) itself. Moreover. the function w(t) satisfies the
differential equation

= 2l () — ——
a -1
More properties of this special w(t) can be found elsewhere [428].
The interpolation function Q. (f.w) that corresponds to this window
function w(t) takes the form

-\ —3/2
dw 2t 1(53) S0~ [mt 7). (16.16)

m

T

Qul(t.w) = —1-

~3/2 .
5 (59> g ulme) (1.6.17)

T ¢

where, again, we have set { = w/{ + jt/T and where #;(() is again a theta
function [950. 3] with nome ¢ = e~ ™. Relation (1.6.17) can be expressed in
a more symmetrical form using Welerstrass’ sigma function [950, 3] (with
W' = jw = jKy: see [3], Sect. 18.14, Lemniscatic case), and then reads

QU(QI(OC)A

tow) = emdwt/2=mIC2/
Qult.w)=e c 2K ol

(1.6.18)
From relation (1.6.18) we conclude that there seems to be a connection
with certain classical interpolation theorems [949. 428]. With the help of
relation (1.5.16) we find the interpolation function that corresponds to the

. . . 45 —m(A)?
Gaussian window function w(t) = ¥2¢ "7

Qu(t.w) = edwt/2g=rlc /27 (20CT)

T (1.6.19)
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In the case of a Gaussian elementary signal g(t). its associated function

G{t.w) has a simple zero for (¢ = 7. w = Q). In this case a homoge-

neous solution Z(f,w) may thus occur in the determination of the Gabor
coefficients, reading in the fundamental interval (up to a constant factor)

(t.w) = 276(t — LT)6(w — 30). (1.6.20)
[cf. relation (1.4.10)] and thus, with the help of the inversion formula (1.3.3),

Zmp = (1) (1.6.21)

1.6.4 DISCRETE-TIME SIGNALS

We consider the symmetrical, three-point elementary signal gn]

1 forn =20
gln] = ¢ 3a forn=%1(0<a®<1) (1.6.22)
0 elsewhere.

which we considered already in section 4 as a window sequence. cf. Fig. 1.6.
For the maximum-overlap case (N = 1), we find

ejm&

w(n.v) = (1.6.23)

1+ acos?d

and the corresponding window sequence win] thus takes the form (see
Fig. 1.10)

n|
1 VvV1—a? -1 )
wn] = ° , (1.6.24)
V1—af a
In the case of partial overlap (N = 2), we find
w(em.d) = Y
. 2 el?md (1.6.25)
U?(2T7e - 119) == Em
and hence (see Fig. 1.11)
; 1 for m =0
y — 2
w(2m] { 0 for m 5 0,
L (1.6.26)
f _ = (-1m form >0
wm 1] = { —afg -1)m for m < 0.

As our final example we consider the one-sided exponential elementary
signal, cf. Fig. 1.8,

, o for n <0 (o
gln] :{ e or n <0 (o> 0) (1.6.27)

0 for n > 0.
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FIGURE 1.10: The window function corresponding to a symmetrical, three-point
elementary signal, in the case of maximum overlap, cf. Eq. (1.6.24).

FIGURE 1.11: The window function corresponding to the symmetrical,
three-point elementary signal, in the case of partial overlap, cf. Eq. (1.6.26).

In the basic interval —(N — 1) < n < 0. the associated function §(n.9)

takes the form
eQTL

g(n.9) = w-ﬁ

(1.6.28)

the values of §(n,¥) outside this interval can be found by applying the
quasi-periodicity relation (1.3.17). The function #(n, ¥) now takes the form

@(n. ) = e=on (1 - e"<a+ﬂ9>N) (1.6.29)

inside the basic interval. The corresponding window sequence wn] then
reads (see Fig. 1.12)

e for -(N-1)<n <0
wn]={¢ —%e™ " forl<n<N (1.6.30)
0 elsewhere.
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S

FIGURE 1.12: The window function corresponding to the one-sided exponential
elementary signal, cf. Eq. (1.6.30).

We use this example to show once more the possible non-uniqueness of
Gabor’s signal expansion. In the limiting case o = 0, the function g(n, v)

has zeros for 9 = r(27/N) (r = ....~1,0,1....). and an array of coefficients
Zmk arises whose associated function 2(n,?) in the basic interval, say, is
given by
2 2
Hn.d) = 75171 Z 5 (0 - 773') . (1.6.31)
The array z,,, thus takes the form
R ,
k= D e N gy (1.6.32)
n=—{N-—1)

and yields a zero result when substituted in Gabor’s signal representation.

1.7 Degrees of Freedom of a Signal

Gabor’s signal expansion as introduced in section 5 is related to the degrees
of freedom of a signal: each expansion coefficient a,,; represents one com-
plex degree of freedom. If a signal is, roughly, limited to the space interval
[t < %a and to the frequency interval |w| < %b, the number of complex
degrees of freedom equals the number of Gabor coefficients in the space-
frequency rectangle with area ab. this number being about equal to the
time-bandwidth product ab/27%. We shall consider this point in more detail
in this section.
We first consider the propagation of Gabor’s expansion coefficients through

a linear (not necessarily time-invariant) system. A linear system that trans-
forms an input signal y; into an output signal ¢, can be described in four
different ways, depending on whether we describe the input and the output
signal in the time or in the frequency domain. We thus have four equivalent
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input-output relationships.

polte) = [ hueltor gttt (L7.1)
Bolwe) :]hwt(wo,ti)gﬁi(ti)dti. (l??)
1 _
Polto) = 5 /iltw(?ozwi)g;i(wi)dwis (1.7.3)
v
- 1 .
'190(‘-*)0) = %/hww(woawiﬂfi(‘ui)d@i: (1~7-4)

in which the four system functions hy. hyt, hi. and by, arve completely
determined by the system. Relation (1.7.1) is the usual system representa-
tion in the time domain by means of the impulse response hy(l,. t;); the
function hy(t.t;) is the time domain response of the system at time ¢ due
to the input impulse signal ¢;(¢) = 6(¢t — t;). Relation (1.7.4) is a similar
system representation in the frequency domain; the function hy, (w.w;) is
the frequency domain response of the system at frequency w due to the
input @;(w) = 276(w — w;). which is the Fourier transform of the harmonic
input signal ;(t) = e/¥i*. Relations (1.7.2) and (1.7.3) are hybrid sys-
tem representations. since the input and the output signal are described in
different domains.

Unlike the four system representations (1.7.1)-{1.7.4). there is only one
system representation when we describe the input and the output signal by
their Gabor coefficients (or by any other time-frequency representation).
Let us describe the input signal ;(¢) and the output signal ,(t) of a linear
system by their Gabor expansions with expansion coefficients aink and a2, .
and elementary signals g;(¢) and g,(¢) [with associated window functions
w;(t) and w,(t)]. respectively: note that we have chosen different elementary
signals for the input and the output signal. The input and cutput expansion
coefficients are then related to each other by the relationship

Uy = Z Z Crmkm/ k' Gy g1 - (1.7.5)
m' k'

The coefficients ¢,km/k in this relationship are completely determined by
the system and the elementary signals: indeed, when we combine the Gabor
expansions of the input and the output signal with the system representa-
tion (1.7.2). for instance, we find

1
Cmkm'k’  — 5‘7‘1_ // hwt(w.t)w;(w— kQ)
xgi(t — m'T)dmeT+K W geq,  (1.7.6)

and similar relations for the other system functions.
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As an example we consider the basic system. where the input signal
@;(t) is first truncated to the time interval [t] < %a and then Fourier
transformed; the resulting Fourier transform is truncated to the frequency
interval |w| < %b and then inverse Fourier transformed to yield the output
signal ©,(t). Such a system can readily be described by a system function

hot(w. t), which in this case takes the form

t w .
1] = — X o —jwt
Rt (w. t) 1ect<a> 1ect( b) e . (1.7.7)

For convenience, we shall choose the widths of the apertures for the input
signal and for its Fourier transform equal to an odd multiple of the time
and the frequency shift T and €1, respectively: thus

a=(2M +1)T and b= (2K + 1)Q. (1.7.8)

with A7 and K integers. When we substitute from relations (1.7.7) and
(1.7.8) into relation (1.7.6). we conclude that the array of coefficients ¢ gmr/
can be expressed as a four-dimensional discrete convolution of two arrays
Aok and emem ks, where the coefficients dy,pmp are defined by

< I

| bmemOp—pr for im| < M and |k
Ik = { 0 elsewhere, (1.7.9)
and the coefficients e, pm/ ks are given by
1 t ( .
Crnkml k! = 7 // rect<~f> rect(%) eIVt (w — KkS2)
xg;(t — m'T)ed T +E ) gy, (1.7.10)

A system whose Gabor coefficients ¢y pm i would have the form (1.7.9)
is tdeal in the sense that the Gabor coefficients of the output signal vanish
outside the time-frequency rectangle with area ab. Hence. whereas the input
signal of such an ideal system may have an infinite number of degrees of
freedom, the number of degrees of freedom of the output signal. i.e.. the
number of non-vanishing Gabor coefficients. is equal to the time-bandwidih
product ab/2x. However, our system under consideration is not ideal: to find
its Gabor coefficients ¢ pmkr. the ideal array dyempy must be “smeared
out” by convolving it with the array e,pm/x. The latter array is, in fact.
the array of Gabor coefficients of the elementary svstem described by the
system function {1.7.7). with the special choice ¢ = T and b = (. i.e.,
M=K=0.

Depending on the choice of the elementary signals for the input and
the output signal. the array of coefficients e xm/ ke can be strongly con-
centrated. To show this we clioose a rect elementary signal to describe the
input signal and a sinc elementary signal to describe the output signal:
thus

gi(t) = 1‘ect<—%> (1.7.11)



Robert J. Marks Il, Editor,

30 Martin J. Bastiaans

and

Wolw) = rect(%) , (1.7.12)

We then find egpgg = 0.873, and the strong concentration becomes apparent
by noting that

S e - 1

m  k om’

In general the value of egogg for this elementary system is given by

1 t w ot
€0000 = 5 //rect(;f> rect(—ﬁ) eItk (w) g (t)dtdw. (1.7.13)

Furthermore, the identities

Zzzzemkm’k’ - (Z wo(kQ)> (Z gz(mT)) (1714)
m  k m' ok

k m

and

22000 lemkmnl? = (2—1,; / mo(w)t?dw) ( / %gi(m?dt) (1.7.15)

m ok m k'

can be derived in a straightforward way, using the basic relation
D =SSt - T, (1.7.16)
e i

The ratio
leoooo]?

2o 2ok 2o Do Embmine |2
can be considered as a degree of concentration of the array Emim i’ around
the coefficient egogp. By applying a variational principle to the expression
(1.7.17), it is not difficult to show that the degree of concentration has a
stationary value when g;(t) and @,(w) are chosen according to

gi(t) = Uap, (-Jt:) rect(;}) (1.7.18)

To(w) = Vg, (%) rect(%). (1.7.19)

whejre the functions ¥, () are the prolute spheroidal wave functions (see,
for instance, [830]) defined by the eigenfunction equation

(1.7.17)

and

/ Un(§) rect(§)e™™de = 57\ /A Wu(n) (n=0.1...).  (1.7.20)
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If we choose the elementary functions as in relations (1.7.18) and (1.7.19),
the corresponding stationary value of the degree of concentration is equal
£0 Agm. An optimum value is attained for m = 0, for which the degree of
concentration takes the value Ay = 0.783. This is a slightly better result
than choosing the elementary signals as in relations (1.7.11) and (1.7.12),
in which case the degree of concentration takes the value 0.762.

We conclude that for a proper choice of the elementary signals the array
emim’k Can be strongly concentrated. Since the Gabor coefficients ¢pem/r
of the basic system under consideration can be found by convolving the
ideal array dpypme With the strongly concentrated array eeme ks, the ar-
ray of system coefficients Cppmie is very similar to the array dpigmip.
Hence, the number of degrees of freedom of the output signal of this sys-
tem is about equal to the time-bandwidth product ab/27. We remark that
the way in which we have proved this has a clear physical interpretation.
Roughly speaking, with the Gabor expansion of the input signal in mind,
only those shifted and modulated versions of the elementary signal that can
pass both the input (time) aperture and the Fourier {frequency) aperture
will contribute to the output signal.

A slightly more general system than the one described by relation (1.7.7)
is the one whose kernel h:{(w,t) takes the form

hot(w, t) = zm: 2,; Pk l‘ect<—;; - m) 1‘ect<% - k) eTIwt, (1.7.21)

The array of system coefficients ¢,,pmpr can now be expressed as a four-
dimensional convolution of the arrays hpidmem O—k and €pmpmers. In the
case that the array e,eme e 18 again strongly concentrated around the el-
ement epgog, the Gabor coefficients of the input and the output signal are
related by the simple relation

A% ™ Ryl (1.7.22)

For the special system described hy relation {1.7.7), we easily find that the
array h.p equals unity in the interval (jm| < M, k] < K) and vanishes
outside that interval.

1.8 Optical Generation of Gabor’s Expansion
Coefficients for Rastered Signals

In this section we will describe an optical arrangement which is able to
generate Gabor’s expansion coefficients of a one-dimensional signal by op-
tical means [54]. An important feature of the optical arrangement is that
it accepts the one-dimensional signal on a raster format; hence. the two-
dimensional nature of the optical processing system is fully utilized.
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middie plane

output plane 0

FIGURE 1.13: Optical setup for generation of Gabor’s expansion coefficients.

Let us consider the optical arrangement depicted in Fig. 1.13. A plane
wave of monochromatic laser light is normally incident on a transparency
situated in the input plane. The transparency contains the signal o(z),
say, in a rastered format. With X = 27 /U being the width of this raster
and aX being the spacing between the raster lines. the light amplitude
©i{zs, ;) just behind the transparency reads

wilzs, y) = rect(%) Z (@i + mX)6(y; — maX). (1.8.1)

m

An astigmatic optical system between the mput plane and the middle
plane performs a Fourier transformation in the y-direction and an ideal
imaging (with inversion) in the z-direction. Such an astigmatic system can
be realized as shown, for instance, using a combination of a sph‘erical and
a cylindrical lens. The astigmatic operation results in the light amplitude

prlry) = //e'jﬁiyy"é(l’—fciM(-’u-yi)(lyi

TN L .
= l’ect(}> Slr.ady) (1.8.2)
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just in front of the middle plane: the parameter 3; contains the effect of
the wavelength of the laser light and the focal length of the spherical lens.
In Eq. (1.8.2) we have introduced the associated function ©(z.u). the Zak
transform of ((z), defined by equation (1.3.5).

A transparency with amplitude transmittance

m(z,y) = rect(%) rect(%) X (z, aB;y). (1.8.3)
where Y = U/af; = (27n/X)/ab;, is situated in the middle plane. Just
behind this transparency, the light amplitude takes the form

wolz.y) = m(x.y)pi{z.y) = rect(%) rect(%) alz. afy). (1.8.4)

where use has been made of relation (1.5.6).

Finally. a two-dimensional Fourier transformation is performed between
the middle plane and the output plane. Such a Fourier transformation
can be realized as shown, for instance, using a spherical lens. The light
amplitude in the output plane then takes the form

1 y s
@o(zoeyo) = ﬂ—//e“]ﬁc(iol y””u,:g(:r,y)dl'dy
: { Ba:
= Em Ek Umk sinc(zl%j;, - k) sinckfg,f;( - m) .

(1.8.5)

where Gabor’s expansion coefficients a,,; have been introduced: the pa-
rameter J,, again. contains the effects of the wavelength of the light and
the focal length of the spherical lens. We conclude that Gabor’s expansion
coefficients appear on a rectangular lattice of points

oY aBX
mk = Yo (NTJ‘N 3, ) (1.8.6)

in the output plane.

We remark that it is not an essential requirement that the input trans-
parency consists of Dirac functions. When we replace the practically unre-
alizable Dirac functions 6(y — maY’) by realizable functions d(y — maY),
say, then Eq. (1.8.1) reads

Wiz y) = mct(%) Z ola; + mX)d(y, — maX), (1.8.7)

and the light amplitude @1 (x. y) just in front of the middle plane takes the
form

or{z.y) = rect(%) Sl afiyyd(Biv). (1.8.8)
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The additional factor d(3;y) can easily be compensated for by means of
a transparency in the middle plane. Note that the special case d(y) =
sinc(y/aX), and thus d(5:y) = rect(y/Y), has the advantage that all the
light from the input plane will fall inside the rectangle rect(z/X) rect(y/Y’)
in the middle plane.

This technique to generate Gabor's expansion coeflicients fully utilizes
the two-dimensicnal nature of the optical system, its parallel processing
features, and the large space-bandwidth product possible in optical pro-
cessing. The technigue exhibits a resemblance to folded spectrum techniques
[194], where space-bandwidth products in the order of 3 x 10° are reported
(see, for instance, [194], Chap. 8.3). In the case of speech processing, where
speech recognition and speaker identification are important problems (see,
for instance, [41]). such a space-bandwidth product would allow us to pro-
cess speech fragiments of about 1 min.

1.9 Conclusion

In this chapter we have derived a sampling theorem (in the time-frequency
domain) for the sliding-window spectrum of a one-dimensional time signal,
and we have shown how the signal can be reconstructed from the sampling
values of its sliding-window spectrum by means of the Zak transform.

We have related the sampling of the sliding-window spectrum to Gabor’s
expansion of a signal in a discrete set of shifted and modulated elementary
signals, and we have shown on the one hand that the sliding-window spec-
trum provides an easy way to determine Gabor’s expansion coefficients and
on the other hand that Gabor’s signal expansion can elegantly be used to
reconstruct the signal {rom its sampled sliding-window spectrum.

The key solution was that the window function. which is used in the
sliding-window spectrum, and the elementary signal. which is used in Ga-
bor's signal expansion, form a bi-orthonormal pair of function sets when
shifted and modulated according to the Gabor lattice.

The Gabor lattice played a key role in this contribution. It is the regular
lattice { = mT.w = k§2) with Q7 = 27 in the time-frequency domain, in
which each cell occupies an area of 2m. The density of the Gabor lattice
is thus equal to the Nyguist density 1/27, which. as is well-known in in-
formation theory. is the minimum time-frequency density needed for full
transmission of information. Gabor’s expansion coefficients can then he
interpreted as degrees of freedom of the signal.

It may be clear that a coarser lattice. with cells whose areas are larger
than 27, leads to undersampling: we do not have enough freedom to be able
to represent all possible signals. On the other hand, a finer lattice, with a
density that is higher than the Nyquist density, leads to oversampling:
dependence between the Gahor coefficients arises, and we can no longer
interpret them as (independent) degrees of freedom.
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Unfortunately, the Gabor lattice with its critical density 1 /27 may lead
to numerically unattractive properties: therefore, one might prefer a denser
lattice, with QT < 2m. This situation has not been considered in this chap-
ter; an excellent review of denser lattices can be found in [244].

We conclude this chapter by drawing attention to some related topics:
the rather modern wavelet transform of a signal and the way of representing
a signal as a discrete set of wavelets. T here is some resemblance between
these topics and the ones that are studied in this chapter. But, whereas
the sliding-window spectrum leads to a time-frequency representation of
the signal, the wavelet transform leads to a time-scale representation. And
whereas the Gabor lattice is linear in both the time and the frequency
coordinate, the lattice that is used in the wavelet representation is non-
linear. An excellent review on the wavelet transform can be found, again.

in [244].
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Sampling in Optics

Franco Gori

2.1 Introduction

Tuminate an object with laser light and look at it through a diffraction
grating. You will see a set of mutually displaced copies of the object. If
the lateral extent of the object is small enough, the various copies do not
overlap. You can easily devise a method for selecting a single copy of the
object. For example, you can replace your own optical system, i.e., your
eye, by a converging lens and let the multiple limages that were linpressing
your retina be produced on a screen. Then, a hole on the screen will suffice
to isolate a single image. You can even dispense with the laser light and
repeat the observation in a more domestic environment by looking at a
distant street lamp through a piece of fine fabric. In this case, all of the
object copies except the central one will appear iridescent. but the basic
phenomena will be the same.

Elementary optical experiments of this kind vividly illustrate the repli-
cating effect of sampling as well as the possibility of recovering a luminous
signal from its sampled version. This is because in optics certain transform
operations are performed by Nature. It is not so for other phenomena ex-
ploited for the transmission of information (e.g., time-dependent electrical
signals) where the trausform of a signal, even the Fourier transform, is an
abstract alternative representation of the signal more than the description
of something that the signal itself displays somewhere in space. We can. of
course, “see” the spectrum of a signal on a spectrum analyzer in much the
same way as we could see anyv sophisticated transform of the signal on the
monitor of a suitably programmed computer, but this is rather removed
from the physical evolution of the phenomenon.

With such favorable elements, sampling was set to become a key tool in
optics. It was in fact so and nowadays sampling procedures and sampling
theorems are almost second nature to the opticist to such a pass that
concepts and properties connected with sampling theory are often used
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without explicit mention. This does not mean that the subject has settled.
On the contrary, refinements, extensions and new forms of sampling keep
appearing in the optical literature.

Any attempt to give an exhaustive account of all the occurrences and
uses of sampling in optics would be hopeless. It may even be added that
somewhat like the Cartesian ovals, which from time to time someone finds
out a new [869], known results of sampling theory begin to be rediscov-
ered, because the scattering of papers among a lot of scientific journals,
conference proceedings and books covering four decades makes it virtually
impossible for anybody to have complete information.

Being well aware of this, we shall focus attention on some selected ar-
eas in which the application of sampling techniques has been particularly
stimulating. One of the basic applications of sampling theory in optics is
the estimation of the number of degrees of freedom of a wavefield. The
deceptively simple evaluation of this number has met with several objec-
tions whose analysis has produced a host of results. This will be a central
theme of the present contribution. We shall review the development of the
main ideas on this subject from the beginning up to recent achievements.
We shall refer. as far as possible, to simple, one-dimensional coherent cases
where the important points can be appreciated in the neatest way. It will
be seen that even when the mathematical techniques become slightly so-
phisticated, there is a clear connection to sampling. In this part, of course,
the reference tool will be Fourler analysis.

Many optical phenomena are to be described by the Fresnel transform.
Accordingly, we shall examine some fundamental properties of this trans-
form and their optical significance. In particular, the use of sampling meth-
ods will be underlined. Tt will be seen that this can be used as a key for
approaching the large body of techniques that use Fresnel phenomena for
imaging and interferometry.

A tool of relevant interest for other optical phenomena is the Mellin
transform. Here too. a sampling theory can be developed that leads to
the so-called exponential sampling. Foundations and main features of this
theory will be seen together with outlines of optical applications.

Although many optical fields of interest are coherent to a good approxi-
mation. most often we have to do with partially coherent fields. A complete
description of them requires the use of coherence theory. Sampling plays a
relevant role in this theory too and we shall give some hints to explain why
this happens. A

Several of the above quoted topics could be encompassed usnder the more
general heading of the optical processing of information. This is a vast and
rapidly expanding subject to which whole books are devoted and it could
not possibly be reviewed in the present contribution. However, it can be
useful to point out some of the reasons that make sampling theory so
important for optical processing. This will be done in the final part.
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Before entering the main themes, we shall devote some space to a short
review of the history of sampling in optics.

Applications of sampling in optics are also described in previous review
papers [440, 480].

2.2 Historical Background

There is a famous Molidre's character who suddenly realizes that he has
been speaking “in prose” for over forty years without even knowing. ' This
bears some resemnblance to the situation of sampling in optics for which
there is a sort of prehistoric period. This dates back to the beginning of
our century when the thermodynamics of electromagnetic radiation was
intensively investigated. In 1914. von Laue. who had already published
some important papers on the entropy of radiation, identified (at least
explicitly) the series coefficients with samples of the expanded function.
Notice that this occurred one vear before the result by Whittaker on the
interpolatory or cardinal series [946].

The pioneering results by von Laue were later reviewed and extended by
Landé who gave them the large audience of the Handbuch der Physik [522].
Tn spite of this. they lay somewhat dormant in optics. In that period in fact.
problems connected to Degrees of Freedom (DOF) were of main concern to
cominunication scientists dealing with electrical signals.

The full appreciation in optics of the concepts of DOF and sampling camne
much later when the ideas of the communication and information theories
penetrated the field. A scientist whose contributions to both communica-
tion theory and optics were fundamental. namely. the Nobel laureate D.
Gabor. led the way. In his paper on communication theory [313], beside
intreducing the analytic signal (a comunon tool of modern optics). he pro-
posed a discrete representation of a signal by means of Gaussian packets. He
made this proposal on the grounds that Fourier analysis is at variance with
some deeply rooted ideas of conunon sense. like the idea of instantaneous
frequency of an acoustical signal [501]. Stressing analogies with quantum
mechanics. he discussed possible representations of a time-dependent sig-
nal in a time-frequency plane (a phase space. in fact) and showed that the
Gaussian packets occupied the minimum area permitted by the uncertainty
relation. Because of the lack of orthogonality of the Gaussian packets. the
evaluation of the expansion coeflicients of a signal is not a trivial problem.
Gabor suggested an approximate solution and an exact solution was found
only much later by Bastiaans [48] 2. Gabor's analysis was carried out in
the realm of time-dependent signals but its relevance for optics was set to

14 il y a plus de quarante ans que je dis de la prose sans que j’en susse rien.”
Moliére: Le Burgeois Gentilhomme.
2See chapter 1 by Bastiaans in this volume.
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become apparent shortly after. Indeed, it is not by chance that in 1948
Gabor announced the principle of holography [314]. In addition, in 1946,
the first edition appeared of the famous book by Duffieux of the appli-
cations to optics of the Fourier integral [269]. In 1951, Gabor delivered a
celebrated Ritchie lecture at the University of Edinburgh about optics and
information whose content was replicated much later in the first volume of
Progress in Opties [315]. Among many other points, some of whom will be
reviewed later. he discussed the spatial version of the Gaussian packets that
became widely known for their importance in laser optics {108, 109, 494).
Let us add that the expansion of a function by means of Gaussian packets
became customary in the quantum theory of optical coherence through the
use of coherent states [333. 568, 386] and that the uncertainty relations of
Fourier analvsis discussed in Gabor’s paper of 1046 were later to play an
important role in partial coherence theory [938, 574. 193, 961. 306, 59] as
well as in optical processing [45. 41] through the use, e.g.. of the Wigner
function [953].

In the meantime, the masterful work of Shannon had appeared [818, 819].
Within a few years the first applications of information theory to optics
were presented [562, 483. 484, 278. 907. 908. 546. 686, 317. 318, 563.
547, 964]. By the end of the 1050s and at the beginning of the 1960s,
the sampling theorem began to be taught in optics textbooks [909, 687]
and the general role of information theory in science was discussed [118].
The use of information theory spread out further in the optical litera-
ture [688, 29, 30. 35. 319. 381, 307. 552, 12]. In the same period. the optical
processing of information began to be popularized (238, 913] and the con-
nection between holography and communication theory was clarified [532]
by the invention of off-axis holography. Finally, the publication of text-
books stressing the role of mathematical transforms and sampling [339. 704]
marked the beginning of the full maturity period.

2.3 The von Laue Analysis

It is fair to begin by a short account of the 1914 paper by von Laue. Let
us first define the number of DOF of a space-time field distribution as the
number of parameters needed to specify the field. One can refer either to
real or to complex DOF.

Von Laue considers a beam of monochromatic, linearly polarized light
falling on a &.n plane within a solid angle © and evaluates the nwmnber
of DOF of the radiation illuminating a square region | § | < Z. He first
expresses the field contributed at a typical point (@.y.z) by a cone of
radiation with vertex at the point (£.7.0). Using the Debye integral [106)
he writes this contribution as follows:

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

2. Sampling in Optics 41

A A
/ / eiklale—&)+8{y—m)+vz] fl_f)‘ffé (2.3.1)
~AJ~A v o
where k is the wave number of the field (k = 27 /A, A being the wavelength).
This is a superposition of plane waves whose wave vectors have direction
cosines «, 3 and v and are contained in the solid angle {2 specified by the
conditions | o | < A, | 3| < A. To obtain the complete field, say V(x, y. 2)
von Laue multiplies expression (2.3.1) by a complex function f(€, 77) énc{
integrates across the square |£] < Z, || < Z. He further assumes A < 1
so that v 22 1. The result is

Vie,y.z) = /_::.: ;f(fen) d dn

A ~A
« / / giklae=O+8-n+72] godg.  (2.3.2)
e . (23

On expanding f(&, n) into a Fourier series and interchanging integrals, von
Laue obtains the following expression:

A A
Vie,y,z) = 4526“”/ / gtklow+8y) (2.3.3)
A d-a

o0 e 4] 2 -
X Z Z Komn sinc(»—-:a — m)
m=—00 N=—00 A

. 2=
X smc(Tﬁ - n) dodf,

\n{hera as usual, we put sinc(t) = sin{nt)/(wt). As a next step, von Laue
gives an estimate of the integrals

[_A egtres sinc(TQ - m) dev: [_A ethBY sinc(w)—\:ﬁ - n) dgs,

o (2.3.4)
appearing in (2.3.4). Under the hypothesis kAZ > 1, he reaches the con-
c.lusmn that these integrals are negligibly small unless the following condi-
tions are met:

2z A 2zZA
: n

X Inl<—%—

The number of distinct pairs satisfying these conditions equals (4 = A/))?

and this is also the number of complex coeflicients K,,,, needed to specify

the field, i.e., the number of complex DOF. t

Im| < (2.3.5)
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As far as the temporal DOF are concerned, the von Laue derivation is
as follows. Let us consider a spectral interval dv and a finite time span 7.
Expand the field into a time Fourier series within the interval (0,T). The
harmonics belonging to the interval dv are the ones whose frequencies n/T
satisfy the inequalities

v o< ; < v+du (2.3.6)

Their number amounts to Tdv. Combining the spatial and temporal DOF.
von Laue concludes that a beam of light with spectral width dv and con-
tained in a solid angle ¢} possesses

4Z2Q7 dv

—
complex DOF when it illuminates an area 4 Z? for a time 7. Actually,
von Laue refers to real DOF because he argues that no DOP are to he
attributed to the phases.

We will not further discuss the von Laue paper but we cannot help re-
marking how pioneering it is. Note in fact that the sinc series appearing
in (2.3.4) is nothing but the sampling expansion of what we now call the
plane wave spectrum or angular spectrum of the radiation field [106. 339].
Such a spectrum can be expanded into a sampling series because its (in-
verse) Fourier transform (shorthand: FT) has a finite support (the square
region [ £ | < Z. | 5| < Z). Although von Laue does not notice explic-
itly that the coefficients I,,, are samples of the angular spectrum, the
substance of the sampling theorem is already present.

(2.3.7)

2.4 Degrees of Freedom of an Image

This section might well be subtitled “The struggle for superresolution.”
There is in fact an intimate connection between the concept of degrees of
freedom of an image and that of resolving power, and although the degrees
of freedom are used for many other purposes, one of the subjects that
has turned out to be most intriguing is the possibility of overcoming the
classical resolution limit.

In the following, we will not stick too strictly to the history of the subject.
Instead. we will try to evidentiate some of the main ideas that developed
in the field.

Let us recall that under certain simplifving assumptions [339, 575, 325,
106] an optical system can be thought of as a linear shift-invariant sys-
tem characterized by its impulse response. Accordingly, the image function
is the convolution between the object function and the impulse response.
This holds true for any state of coherence of the light radiated by the
object [106. 342]. provided that a suitable meaning is given to the words
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object function and image function. For quasi-monochromatic spatially co-
herent light, the functions describing the object and the image represent
disturbances, i.e., scalar field distributions: whereas they represent opti-
cal intensity distributions if the light radiated from the object is quasi-
monochromatic and spatially incoherent. The impulse response to be used
in these two cases is of course different: that pertaining to incoherent ob-
jects being proportional to the squared modulus of the coherent one. In the
more general case of partially coherent illumination, both the object and
the image are to be described by means of cross-spectral densities [569],
i.e., by functions of pairs of points. The corresponding impulse response has
the form of the product of the coherent responses evaluated at two distinct
points.

g | Object Pupil Image
e
A
e
- -l B < ot B
f f f f

FIGURE 2.1: A unit magnification system.

Therefore, the fundamental function is the coherent impulse response.
Using a one-dimensional notation, we shall denote it by S(x). Its FT S(p),
namely, the coherent transfer function, is often called the pupil function
because it can be thought of as the transmission function of the pupil of
the optical system. The basic paradigm for coherent imaging is exemplified
by the unit magnification svstem of Fig. 2.1. The object field distribution,
say f(z), propagating up to the pupil plane undergoes a Fourier transfor-
mation. With a suitable definition of the coordinates, the pupil plane 7 can
be considered as a plane of spatial frequencies where the object spectrum
f(p) is displaved. Such a spectrum is modified through multiplication by
the pupil function. After that, light proceeds toward the image plane. This
step can be described as an inverse FT if the coordinates axes in the ob-
ject and image planes are opposedly oriented. In formulas, the image field
distribution, say g(z), can be expressed as the convolution

@)= [ f)Ste = v) dy. (2.4.1)
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where the integration region is (possibly) the whole y-axis. In equivalent
terms, the spectra g(p) and f(p) of the image and the object. respectively,
are related by

3(p) = [(n)S(p). (24.2)

The venerable concept of resclving power can be introduced in a simple
manner. A single object point gives rise to a light patch in the image.
When the object is made up of two points, two light patches appear in
the image. If the distance between the two object points is progressively
reduced, the two patches overlap more and more until the overall image
becomes practically indistinguishable from the one that would be produced
by a single object point. The two object points are no longer “resolved.”
To quantify this statement, the coherence properties of the light radiated
by the object points are to be taken into account [896]. We will not go into
details. Suffice it to say that for any state of coherence one can define a
resolution limit.

The resolution limit was thought of as an ultimate barrier for a very long
time. Presumably. after the advent of quantum mechanics, the possibility
of overcoming that limit also seemed to be prevented by the Heisenberg un-
certainty principle. Yet, in the 1940s, superdirective or supergain antennas
were discovered [797] and their optical connterparts, namely, superresolv-
ing pupils, were later proposed [906]. In principle, the impulse response of
an optical system could be narrowed at will. Although the actual produc-
tion of superresolving pupils presented formidable difficulties, it was clear
that the resolving power concept lacked a solid foundation. The transfer of
information from the object to the image was to be reexamined by different
means. A possibility was offered by the sampling theorem.

2.4.1 USE OF THE SAMPLING THEOREM

In order to outline this approach, we shall refer to the simplest case. A
one-dimensional coherent object field distribution f(z) is imaged through
an optical system whose pupil is a perfect low-pass filter extending from
—Pym to ppr on an axis of spatial frequencies. The image field distribution
g(x) is then given by the convolution

o(@) = 2as [ f(w)sinclpacte — )] dy. (2.4.3)

Due to its band-limited nature, the image can be expressed through a
sampling expansion of the form

[« ]

glz) = Z 9(1‘0 + 5;%{—) sine[2pp (x — z0) — 1), (2.4.4)

Tezm— 00
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where zg is an arbitrary shift. In other words. the image is completely
determined by a set of its samples taken at the Nyquist rate 1/2pyy. 2

1
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FIGURE 2.2: An image field distribution g(x).
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FIGURE 2.3: Set of samples of g(z) obtained with z¢ = 0.

Let us consider the image distribution of Fig. 2.2, where, for the sake
of simplicity, g(x) is real and 2pp; = 1. The set of samples obtained with
zg = 0 is shown in Fig. 2.3. The vertical segments can be thought of as
the positions and amplitudes of a set of point-like coherent sources that
would give rise to our image. The important point to be made is that this
is only one possible object out of infinitely many objects producing the
same image. As an example, let us consider the samples obtained when
xzg = 0.5. These are drawn in Fig. 2.4. It is seen that only two sammples are
different from zero. [As a matter of fact, Fig. 2.2 was obtained as a plot
of the function sinc(z — 1.5) + 0.8 sinc(x + 1.5)]. It is tempting to conclude

*Sampling expansions suitable for space-variant systems also exist [593].
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FIGURE 2.4: Set of samples of g(z) obtained with xg = 0.5.

that the true object is a pair of well-resolved point-like sources. However,
unless we have sufficient @ priori information. no such conclusion can be
drawn [907].

The classical formulation of the resolving power concept is based on the
assumption that the observer has only to decide whether a single object
point or two object points are present. In a similar hypothesis, the observer
only needs one bit of information. Although this may be the case in some
astronomical or spectroscopic investigation, the general situation is much
more complicated than this.

The previous remarks point out the role of prior knowledge in scientific
observations. There is an early optical example of the importance of this
factor at the very beginning of modern science. This occurred when Galileo
aimed his telescope at Saturn. He saw a surprising image and decided to
communicate the results of his observations to Kepler. According to the
style of those old days, he sent Kepler an anagram in Latin language.
The decoded message meant “I observed a very high planet composed of
three bodies.” He was wrong. of course. but how did that occur? We can
easily guess that the image was not very sharp and Galileo had no previous
experience of planets surrounded by annuli. The most commonly known
shape for celestial bodies was the sphere. As a consequence, he interpreted
the image as produced by a central body with two much smaller bodies at
its sides.

Let us come back to sampling and ask what changes are to be made
In our arguments in the presence of prior knowledge. One of the simplest
cases is perhaps when we know that the object has a finite extent. say from
—p to xp. The image formation law is still given by (2.4.3) with the only
difference that the infinite limits of integration are replaced by £z, We
want to give an estimate of the number of DOF of the image. To this end,
we note that the impulse response sinc(2ppx) of our system has a width,
roughly speaking, of about 1/(2ps). Let us suppose that the object extent
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is much larger than this, i.e., that duppps > 1. Then, we can say that the
image resulting from the convolution between f(z) and sinc(2pasz) has an
overall extent slightly greater than 2x,,. This, of course, is what common
experience suggests. For example, no one looking through the viewfinder of
a photographic camera expects to see an image much larger than the one
predicted by geometrical optics. Within the practically finite extent 2z,
of the image we find a finite number N of samples, namely,

N = 4:7;’1\4']91\/{, (2.4.5)

and this is also the number of complex DOF of the image. It is easily shown
that the result is of the same type cbtained in the von Laue analysis.
For obvious reasons, the quantity dapps is called the space-bandwidth
product [553]. The term Shannon number [910] is also used.

2.4.2 S0OME OBIECTIONS

The previous derivation of the number of DOF is admittedly crude and
several objections can be raised against it. First, we have assumed that the
only non-negligible samples are those falling within the geometrical image.
This is based more on physical intuition than on mathematically sound
arguments. As a matter of fact, it is not difficult to find examples in which
many relevant samples ave outside the geometrical image [715]. This may
be seen, e.g., in Fig. 2.5 that gives the image produced by the following
object. A group of 501 coherent point-like sources whose amplitudes are
alternatively +1 or —1 are aligned between —xz s and xpy, with a mutual
spacing of 0.1/2ps. The condition 4o pyppy 5> 1 is satisfied and yet signifi-
cant parts of the image are outside the interval [—zs. 237]. The horizontal
unit in Fig. 2.5 equals 1/(2pys). We note in passing that the same object
can be used to evidentiate how minute changes of the object can produce
large changes in the image. Suppose in fact that we pass from 501 to 500
point-like sources. The resulting iimage, shown in Fig. 2.6, exhibits several
changes and, in particular, a change of phase of 7 of one of the extreme
peaks.

As a second ohjection, it may be observed that non-uniform samplings ex-
ist [495, 980, 544, 704, 351, 391, 956. 111]. For example, a band-limited func-
tion can be specified by a set of samples grouped in periodically repeated
bunches provided that the average sample density satisfies the Nyquist con-
dition. Within a bunch, the mutual distance between adjacent samples can
be much smaller than 1/(2ps). Suppose now that the image is specified by
a non-uniform sampling of this type with one of the bunches falling within
[~xp7, 2} Clearly enough, we can choose the sampling in such a way that
the number of samples contained in the geometrical image is substantially
greater or smaller than the value of NV given by Eq. {2.4.5).

A third objection is the following. It may be shown that the FT of a
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FIGURE 2.5: Image distribution of 501 coherent point-like sources with alterna-
tive 1 amplitudes
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FIGURE 2.8: Image distribution of 500 coherent point-like sources with alterna-
tive 1 amplitudes

function with finite support is analytic [965], [381, 987, 988]. This applies
to the spectrum of the object field distribution. Such a spectrum is available
in the interval [—pas. pas] and. because of its analyticity properties, we can
extrapolate it along the whole frequency axis. Therefore, a perfect recovery
of the object should be possible. As the spectrum in [~ps. pas] has the
whole image as its own (inverse) FT, it may appear that we need the
knowledge of the image field from ~20c to 20, but we can push our argument
a little further. In fact, the image. being the (inverse) FT of a spectrum
with finite support [—~pas,par), is itself analytic and can be extrapolated
starting from its knowledge in a finite interval. for example, [z, x M) or
even in a smaller interval. In principle, any tiny piece of the image should
be enough to reconstruct the object perfectly.

This conclusion. of course, sounds paradoxical. By the same token. when
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listening to a music record, we could claim to be able to predict the future
melodies after few notes. on the grounds that the piece has a finite duration
and is reproduced through an amplifier with finite bandwidth. Having said
that, it remains to make clear where the above argument fails. The trap. of
course, is that when we descend from the platonic heaven of perfect Fourier
transforms and analytic functions to our laboratory, we find a world fraught
with noise and measurement errors [830]. We cannot assess the actual value
of the above arguments unless we find some procedure to implement the
reconstruction so that we can examine the effect of noise (including in it
measurement errors). This is where the ingenuity of researchers has pro-
duced the richest harvest of results. We shall now go briefly through some
of the most relevant approaches.

2.4.3 THE EIGENFUNCTION TECHNIQUE

We have a coherent object with finite support |z, zas] imaged through
the low-pass pupil rect{p/(2pas)], where rect(t) = 1 for | ¢ |< 1/2 and is
otherwise zero. By a simple change of variables. the imaging equation can
be written

c/2
o@ = [ fusinea-y) &y (2] <e/2). (2.46)
—-c/2
where. to avoid multiplication of symbols. we made the substitutions
z x
5 | — g(x): flo— | — fla), (2.4.7)
I (QPM ) o) (QPM >
and where
C = 4;2L‘MpM (248)

is the space-bandwidth product. In optical terms, Eq. (2.4.6) describes the
imaging of a coherent object with support [~¢/2,¢/2] through a low-pass
pupil extending from ~1/2 to 1/2. Only the region of the geometrical image
{lz] < ¢/2) is considered. For the moment, noise is ignored. We have to
solve Eq. (2.4.6). Let L? be the space of square-integrable functions defined
in [—¢/2,¢/2]. We assume f(y) to belong to L2, Eq. (2.4.6) is a Fredholm
integral equation in the first kind, whose convolution kernel sinc(z — y)
is easily proved to be positive definite. A unique solution exists. It can
be found through the eigenfunction technique that we shall now sketch.
Consider the homogeneous Fredholm integral equation of the second kind

e/2
/ ®ly)sinc(z —~ y) dy = ud{z) (2] < ¢/2). (2.4.9)
—¢/2

Because of the nature of the kernel, there exists a discrete set of real or-
thogonal eigenfunctions &, (2) corresponding to positive and less than unity
eigenvalues py, (n =10.1....). The ordering is for decreasing eigenvalues
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1> pp > py > . (2.4.10)

The &,(x) are the prolate spheroidal wavefunctions (shorthand: PSWF) [832,

519, 520]. A complete notation for them would be @,,(c:z) because there
is a diffevent family of PSWF for any value of ¢. Similarly. we should write
un(c). However, we shall drop such an explicit dependence on ¢
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FIGURE 2.7: Eigenvalues versus n for ¢ = 32/m.
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FIGURE 2.8: Eigenvalues versus n for ¢ = 4/n.

A few words about the PSWF are in order. Within the basic interval
[—¢/2,¢/2] they have a number of zeros equal to their order index, so that
they become more and more rapidly oscillating when n increases. Defin-
ing an equivalent spatial frequency as the inverse of twice the mean dis-
tance between adjacent zeros. we can say that, in [—¢/2.¢/2], @,(z) has an
equivalent spatial frequency of n/(2¢). Observe now that, in optical terms.
Eq. (2.4.9) defines a set of objects (®,) that, when imaged through the
low-pass pupil. reproduce themselves within a constant (u,,). They can be
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called the eigenobjects of the optical system. in the sense that for any of
them the image is a perfect replica of the object except for an amplitude
factor. The surprising result is that there exist objects of arbitrarily large
equivalent frequency that are perfectly imaged by the system. There is,
however, a multiplying factor and we can expect it do drop to low values
once the equivalent frequency exceeds the cutoff frequency (1/2) of the
low-pass filter. This is exactly what happens as soon as ¢ exceeds a few
units. As an example, the eigenvalues versus n are represented in Fig. 2.7
for ¢ = 32/% [833]. The eigenvalues v, are almost unity for index values
less than ¢ and then become extremely small. The transition from high to
low eigenvalues occurs in a range of indices that grows proportionally to
In{e). Such a step function behavior is no longer valid when ¢ approaches
1. In this case, even the first eigenvalues are appreciably lower than one, as
can be seen, e.g., from Fig. 2.8 referring to ¢ = 4/pi. As we shall see, this
has important consequences.

In optical terms, we would explain the small values of the u, by saying
that the energy conveyed by the corresponding @,, goes mostly outside the
pupil.

In order to clarify this point, we have to extend the definition of the
PSWF ocutside [~¢/2.¢/2]. This can be done with the aid of Eq. (2.4.9).
As the left-hand side makes sense for any x, we can remove the limitation
|z | > ¢/2 and let ®,, be defined in the outer region, | z | > ¢/2, through
the convolution of the inner part with sinc(z). We shall refer to ®,(z)
defined everywhere as the extended ®,, Note that, by its very definition,
this is a band-limited function. The inner part of &, will be termed the
truncated ®, Now, if we assume the ®, to be normalized in the basic
interval

ef
/ ’ P (z) de=1 (¥n), (2.4.11)

—c/2

then it can be proved that

o 1
/ ®(x) do =— (Vn). (2.4.12)
-0 n
We can read the left-hand side integrals in Eqgs. (2.4.11) and (2.4.12) as a
sort of measure of energy and we can say that the PSWF have their energy
mostly inside or outside the basic interval depending on whether the order
index is smaller or greater than c.

The behavior of the PSWF can be clarified a bit further by discussing an
even more fundamental property of them. The PSWF are self-reproducing
under finite FT. If we take the FT of the truncated ®,,, we obtain a function
with the same shape as the extended ®, itself. There is a scale factor as
well as an amplitude factor to be taken into account. The complete relation
is
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c/2 ‘
/ D, (y)e 2™ PY dy = i7" Sotn Pnlcp). (2.4.13)
—-c/2

Conversely, the FT of the extended ®,, is proportional to the following
truncated version of it:

/ O, (y)e ™Y dy =i "\/c/1n Pnlcp)rect(p). (2.4.14)

Eq. (2.4.14), of course, is consistent with the fact that the extended @, is
band-limited.

It is useful to observe that there is a familiar example of functions that are
self-reproducing under Fourier transformation. It is the set of the Hermite-
Gauss functions. To facilitate comparison. we insert a parameter ¢ into
their definition as follows:

Rade

Gu(z) = %%Hn <z\/§§> e~ /e, (2.4.15)

where H,, is the nth Hermite polynomial. The (infinite) FT of G, (x) is

/ Grly)e ™Y dy =i\ /c Glep). (2.4.16)
-0

On comparing Eqs. {2.4.18) and (2.4.16). we can expect that for large ¢
the PSWF with index smaller than ¢ become similar to the Hermite-Gauss
functions. In fact. this is the case. Incidentally, it is for this reason that
we can assimilate the modes of a laser cavity with spherical mirrers to
Hermite-Gauss heams [108].

The property expressed by Eq. (2.4.9) can be thought of as the result
of two steps of the form (2.4.13). First. &, is truncated to the basic inter-
val and Fourier transformed. According to Eq. (2.4.13), this produces the
extended &, up to a change of scale and a complex factor. Note that the
scale change is such that we find within the pupil the same inner part of
®,, that was included in the object extent. After truncation by the pupil,
an inverse F'T' gives the image. This hmplies again Eq. (2.4.13) or, more
properly, its complex conjugate. The final result is the attenuated version
of &,.

In a more formal way, we truncate to [~1/2,1/2] and make an inverse
FT of both sides of Eq. (2.4.13). Interchanging order of integration on the
left and changing variables on the right. we obtain

c/2 1/2 '
/ ®,.(y) dy / e?miplz=y) dp

—-c/2 -1/2
~ /2 ]
=" [tn D (v)e?mv2/C gy, (2.4.17)
V C Je/2
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Using the complex conjugate of (2.4.13) we find that (2.4.17) coincides
with (2.4.9).

We shall now use the PSWF to give a formal solution of Eq. (2.4.9). To
this aim, we expand both f(z) and g{z) into a series of PSWF:

& c/2
flz) = Z fa®n(2). {fn :/ fz) () dm} n (2.4.18)

=) “C/Q

rel?

glz) = Zgncbn(%) {gn = j glz)®,(x) daf} . (2.4.19)
n=0 —c/2

On inserting from Eq. (2.4.18) and (2.4.19) into Eq. (2.4.6) and taking into
account Byg. (2.4.9) we find

In = Pnfn (n=0,1....). (2.4.20)

Hence. on dividing the image coefficients ¢,, by the corresponding eigenval-
ues iy, we obtain the object coefficients f,, i.e., the solution of our problem
(see Eq. (2.4.18)).

What about the number of DOF of the image 7 In the noiseless case
considered so far, all of the (infinitely many) DOF of the object represented
by the set of coefficients f, are transferred to the image in the set of the
gn- However, in the passage from the object to the image each coeflicient
is multiplied by the corresponding eigenvalue. In particular, the object
coefficients with index exceeding ¢ by more than the width of the transition
region are multiplied by very small numbers.

We have now to see how the recovery process is influenced by noise
[142, 311, 937. 782, 769. 770. 910, 73. 786]. For noisy images, gy, is affected
by an error. Let

Gn=gn+en (n=0.1....) (2.4.21)

be the noisy value of g, with an error term ¢,. The estimated value of fj,,
say fn, is obtained from (2.4.21) through division by gy

Jo=fat— (n=0.1...) (2.4.22)
Hn

It is seen that the error term is amplified 1/y, times by this process. To
give a feeling of this effect, we consider an example. Let ¢ = 32/7 and
suppose we want to evaluate f, up to n = 20 (which corresponds to twice
the number of DOF furnished by Eq. {2.4.5)). From the tables of [833] it
turns out that when we try to recover fog, the error term is multiplied by
the frightening figure of 10'2. Unless the errors on the image coefficients
decrease as fast as the pu,. this would induce a disaster. Unfortunately, in
most realistic situations, the causes of error are likely to behave as a sort of
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white noise, thus producing a mean squared value of ¢, independent from
n. This prevents the recovery of object coefficients with index significantly
greater than ¢. The enormous amplification of data errors occurring in the
evaluation of the solution is a symptom of a typical pathology of inverse
problems, namely, ill-posedness [899, 791, 74]. The methods for treating ill-
posed problems in such a way as to obtain sensible solutions, i.e, methods
for regularizing the problem have had a large development in recent years.
In particular, those methods have been applied to the present problem of
image recovery [34, 928, 78. 79]. Here we shall limit ourselves to very simple
considerations.

The simplest way to cope with the noise problem is to use a truncated
series expansion in the object recovery. This means that we use Eq. (2.4.22)
up to a value of n determined as follows. Let ¢ and 7 be the root mean
square values of f, and ¢,, respectively, in the hypothesis that both the
object and the noise are white processes. To prevent noise from overcoming
the signal, we stop the series at the maximum value of n such that the
following inequality is still satisfied:

> (2.4.23)
@

Denote by N’ this value of n. Then. N’ is the number of DOF of the image.
It depends. of course. on the ratio /9, let us say the noise to signal ratio.
Nevertheless. due to the sharp fall-off of the eigenvalues, for any realistic
case, the value of N’ will not exceed ¢ very much. More exactly, N’ is
determined by the width of the traunsition region so that the estimate of
the number of DOF furnished by Eq. (2.4.5) is to be corrected by adding
a term growing like In(c). Let us see an example. For ¢ = 50/7 =~ 15.9
and n/¢ = 1073 (which means rather good experimental data) the tables
of [833] give N’ = 19. Now, passing from N = 16 to N’ = 19 does not
imply a very significant increase of resolution. So. after all. the sampling
based estimate is asymptotically correct (for large ¢).

The substantial agreement between the sampling and the eigenfunction
approaches can be expressed by saying that, for large ¢, the eigenvalues
behave approximately like samples of the pupil taken at the Nyquist rate
1/(2xas). They are very near to one up to n < ¢ and very near to zero
for greater indices. This pictorial remark can be converted into a rigorous
statement through the Szegd’s theorem [464, 516. 517]. Under much more
general conditions, e.g., for differently shaped pupils, the theorem asserts
that in a well-defined sense the eigenvalues are asymptotically approxi-
mated by the pupil samples.

If ¢ is not large. say for ¢ of the order of unity. things are different. In
this case. even the recovery of a couple of object coefficients beyond the
Shannon limit is significant in that it corresponds to obtaining a resolution
two or three times greater that the classical one. A value of ¢ near to one
means an object extent approximately equal to the width of the impulse
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response. At first sight, it may appear that this would seldom occur. Yet,
there is an important class of instruments in which this is the case. It is
the class of scanning instruments [958] where the object is illuminated by a
tiny spot of light moving across it. At any time. the effective object reduces
to the illuminated region and the space-bandwidth product is then small.
We can say that the trick is to use the temporal DOF of the optical channel
that are normally unexploited. Obviously, the illuminating spot can hardly
have a rectangular profile. so that our analysis is to be somewhat extended.
A hint on this will be given later.

It is useful to observe that the recovery process up to the index N’ can be
described as the result of the application to the image of a certain integral
operator [40]. Referring to the noisy case, we write the truncated series
estimate of the object. say fy{(z), as

.
fyrl@) = 3 Fa®u(a). (2.4.29)

n=0

It is easily seen that fy-(z) is obtained from the noisy image. say g(y), in
the following way:

e/2
faole) = / LSRN (@) dy (2.4.25)
where
N 1
Ry(a.y) = ) —Pn(2)®a(y). (2.4.26)
n=0 " "

The virtue of this approach is to evidentiate that the kernel Ry (z,y) is
independent from the particular image to which the recovery process is to
be applied. Note that Ry (z.y) is a shift-variant kernel.

2.4.4 Tur GERCHBERC METHOD

Elegant as they are mathematically, the PSWI are not simple to use for
numerical evalnations (829, 833. 309]. The situation is even worse when the
eigenfunction technigue is to he used for more general imaging processes in
which the eigenfunctions are seldom known analytically. Therefore, meth-
ods of image processing not requiring the explicit knowledge of the eigen-
functions are welcomed. One of these is an iterative method proposed in
[329] and originally explained through energy considerations in the domains
of the image and its FT.

An analysis of the Gerchberg method in terms of PSWF was indepen-
dently given in [346. 256. 705]. Here, we shall use the approach given in [346]
because it affords an easy extension of the method to more general imaging
situations.
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First, let us give Eq. (2.4.6) a more compact form by introducing the
symbol K for the integral operator as follows

c/2
fly)sine(z —y) dy (lz] € ¢/2). (2.4.27)
—c/2

g(z) = (Kf)(z) =

The basic idea is to transform this Fredholm integral equation of the first
kind into one of the second kind and solve the last by a Neumann series.
This is done by introducing a sort of complementary operator

K=U-K, (2.4.28)
where U is the identity operator. Using I{. Eq. (2.4.27) can be written
fz) = gla) + (K f)(z). (2.4.29)

which is a Fredholm equation of the second kind. Following the usual pro-
cedure we can try to solve Eq. (2.4.29) by iteration. Successive approxima-
tions of the solution are

V) = gl). )
F@(z) g(z) + (K f*)(z) = g(z) + (Kg){z).

) = glo)+ (KfP)(z) = g(z) + (Kg)(z) + (K?g)(2).
(2.4.30)

i

fM 2y = g(z)+ (KM D)(z)
= gla) + (Kg)(x) + (Ig)(x) + -+ (KM 1g)(x).
The effect of successive iterations can be studied with the aid of the PSWF,

Using Eqs. (2.1.28) and (2.4.9). we see that the action of K on ®,(x) is
expressed by the relation

(K@) (2) = (1 = jn) P, (2). (2.4.31)

On inserting from Eq. (2.4.19) into the last of Egs. (2.4.31} and taking into
account Eq. (2.4.31). we easily obtain

o0

F ) =S g 1-( 1““n i M)f & (2).  (2.4.32)

n=0

where we used Eq. (2.4.20) and we defined the quantities

PM) =1 (1—p)™ (=01 M=12..). (2.4.33)
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FIGURE 2.10: Plot of p{ vs. n for c = 4/m

Taking into account that u, < 1., we see that the coeflicients p,(zM) tend
to unity for A/ — oc. In the same limit. f*) tends to the solution of
Eq. (2.4.29). On comparing Eq. (2.4.32) to Eq. (2.4.19) and taking iuto
account Eqg. (2.4.20), we note that for any finite M the net effect of the
iterations is that the eigenvalues u, are replaced by the quantities pﬁf‘“.
These quantities are drawn in Figs. 2.9 and 2.10, for ¢ = 32/% and ¢ =
4/7, respectively, for a few values of A/ (indicated near each curve). The
behavior of the p%M) with respect to n is similar to the one exhibited by
the p, (see Figs. 2.7 and 2.8) except that the transition from high to low
values occurs at a progressively higher index for increasing M. In a sense,
this is equivalent to recovering the image that would be produced by a
progressively wider pupil.

For small eigenvalues y,,, the number of iterations required to bring p%M}
near to one grows approximately like 1/, as can be easily deduced from
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Eq. (2.4.33). If ¢ is near to one, as in Fig. 2.10, a rather small number
of iterations (e.g., M = 100) produces an equivalent bandwidth two or
three times larger than the original one. To obtain the same result when
¢ is greater than some units, as in Fig. 2.9, we would need an impracti-
cally high number of iterations. One the other hand, two remarks are to be
made. First, variations of the method can give faster convergence and even
closed form implementation [784. 565, 185, 597, 599]. Second, the recovery
of object coefficients corresponding to too small eigenvalues is actually pre-
cluded by noise problems. From this point of view, the Gerchberg method
suffers from the same limitations as the direct eigenfunction technigue.

The virtues of the Gerchberg methods are: a) it allows one to implement
the eigenfunction technique without requiring their explicit knowledge: b)
it works with imaging kernels of many types. In the simplest form of the
method, the iterations are stopped when the scientist realizes that noise is
beginning to dominate the reconstruction. This is practically done by using
some plausibility criterion for the reconstructed object. Alternatively, the
prior knowledge ahout the object can be incorporated into a regularized
form of the method [200. 1].

The Gerchberg method implies repeated convolutions and truncations.
This is usually done by switching back and forth between the two domains
where the object and its Fourier transform are defined. Numerically, this is
obtained by using the discrete FT with fast algorithms [114]. It is curious
to ohserve that on approximating continuous with discrete FT, one mnakes
a sampling of both a function and its FT, assuming that the replica effects
produced by sampling do not cause overlapping. This amounts to assum-
ing that both the function and its FT can have finite support and this is
prohibited, strictly speaking. by the same analyticity properties that are
at the root of the recovery processes [295].

It is seen from Egs. (2.4.31) that the output of each iteration is fed back
to the input of a system described by the operator K. This remark suggests
that the Gerchberg method could be implemented by analogical systems
with feedback. This can be in fact demonstrated [255. 580]. It is to be
recalled that the Gerchberg method has been preceded by a similar method
originally proposed in [920] and later reconsidered and extended by several
authors [431. 310. 395. 893. 414]. The main difference [365] is that the
original van Cittert method does not use the a priori information about the
finite extent of the object so that it essentially performs an ordinary inverse
Fourier filtering [310]. The analytical technique underlying the Gerchberg
method was actually known in mathematics after the work in [523]. Also,
it must be mentioned that a somewhat similar iterative method was used
by Landau in a technique relating to companded signals [514, 518].

The Gerchberg method is a prototype of constrained iterative algorithms
and can be extended and generalized in several ways [745, 982, 955, 184,
781, 423, 539, 581, 795, 834. 867, 564, 777, 472, 231].
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2.5 Superresolving Pupils

We have seen methods for giving approximate solutions to the recovery
problem using, either explicitly or implicitly, the PSWF. The result can be
described as an image with increased resolution with respect to the image
given by the original pupil.

In principle, an attractive alternative is to replace the so-called clear
pupil, i.e., the pupil with transmission function rect(p), by a superresolving
pupil (shorthand: SRP) [906]. This would give an increased resolution in
real time without any post-processing of the image. Here, we want to see
something more about such pupils and to establish a link between them
and the previous approaches.
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FIGURE 2.11: A plot of 5(z) (dotted line) and sinc(z) (solid line).

Let us first outline the most elementary way to design a SRP. Denote
by S(x) the impulse response of the pupil. As the pupil function vanishes
outside [—1/2,1/2], S(z} can be expressed through the sampling expansion

o
Sz} = Z S{n)sinc{z — n). (2.5.1)
=00

The goal is to find the values to be given to the samples S{n) in order
to produce an impulse response that is narrower than sinc(z) on a limited
interval. Once this is done. the FT of Eq. (2.5.1) gives the Fourier series
expansion of the required pupil function. The values S{n) can be found
by trial and error as follows. Suppose that only a finite number of them,
say 2M + 1, are different from zero. We now require S(z) to be one at
the origin and to vanish at 247 selected points z, (n = %1, £2,....£M).
Then, Eq. (2.5.1) furnishes a set of 241 + 1 linear equations in the 244 + 1
unknown quantities $(n). The points x,, are chosen in such a way as to force
S(z) to be narrower than sinc(z) and to remain at low values on a certain
interval. An example helps to visualize this approach. Let A = 4 and
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choose 47 = £0.5, 249 = £0.7, 243 = £0.9, 244 = x1.1. The function
5(x) found on solving the problem is drawn in Fig. 2.11 where sinc(z) is also
given for the sake of comparison. It is seen that the resolution is increased
by a factor of 2. The values of S(n) (n = 0.1.....4) turn out be S(0) =
1; S(41) = —0.101692; 5(£2) = 390.289; S(%3) = 4522.14; S(+4) =
£530.01. It is clear from the high values of S(n) for | n | > 1 that the
impulse response drastically increases outside the interval [—1.1,1.1]. These
external sidelobes are the price to be paid for obtaining superresolution.
To prevent the sidelobes from blurring the image. the object must have a
finite extent equal to half the interval on which S(z) has been kept under
control (this is to say an extent 1.1 in our example). Therefore, the use of
SRP requires the prior knowledge that the object vanishes outside a certain
interval. As an empirical result. one finds that when the useful interval is
increased and/or the width of the central core of S(z) is decreased, the
outer sidelobes become higher and higher. The design of SRP belongs to
the general problem of approximating, on a given interval, an arbitrary
function by means of a band-limited function [891]. A systematic approach
can be based on the use of the PSWF [308, 309]. Suppose that we want
S(z) to have a prescribed form in {~¢/2. ¢/2]. In such an interval, S(z) can
be expanded into the PSWF series

/2
S(x)®,(x) d:c} . (2.5.2)

5@ =3 0n(a) { -/
n=0

—-c/2

Replace now the truncated &,, by their extended version. This gives rise
to a function that coincides with S(z) for | x| < ¢/2 and is band-limited.
Using Eq. (2.4.14), we immediately find that the required pupil function,
say S(p), is

v o) ey
S(p) = Ve rect(p) Y =

=0 \/[I’:
Therefore, we can choose at will S{z) for | 2 | < ¢/2. Equation (2.5.3)
gives us the pupil that produces the wanted response. Of course, we have
no control about the hehavior of S(z) for | 2 | > ¢/2 and this is where
again high sidelobes make their appearance. Note that the useful interval
for the object to be correctly imaged is [~c/4,¢/4]. We add that a simi-
lar approach can be used for a closely related problem in antenna theory,
namely, to find the line source that best approximates a specified radiation
pattern [759]. Furthermore, the PSWF offer an analytical solution [828] to
the complemeuntary optical problem of apodization, i.e., suppression of the

sidelobes of the impulse response.

In spite of their conceptual simplicity, SRP are difficult to use except for
few cases [234. 110. 384]. The main reasons for this are the following. First.
the pupil must be realized with high precision hecause even small errors can

5P, (cp). (2.5.3)
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divert light from the outer sidelobes into the central region. thus disturbing
the image. Second, the pupil is ineflicient from the energetic point of view
because much of the energy collected by the pupil is thrown into the outer
regions of the image. Third, the pupil lacks flexibility. It would be useful in
fact to be able to change the amount of superresolution and the consequent
height of the outer sidelobes when different levels of noise are to be faced.
This, of course, is impossible for a fixed pupil. An alternative possibility
is to simulate the effect of the SRP by postprocessing the image obtained
with a clear pupil. We can easily understand that in order to simulate the
effect of the SRP we can mervely convolve the image given by the clear
pupil with the superresolved impulse response. In the Fourier domain, in
fact, this amounts to multiplying the original pupil rect(p) by 5 {p). ie. to
simulate the presence of the SRP in the image formation process. In this
way, the impulse response of the SRP can be changed at will [257. 360].

Comparing this type of postprocessing with the one seen in subsec-
tion 2.4.3, we note that in both cases the image is acted on by an integral
operator, the main difference being that S(z) acts as a convolution kernel.
whereas Ry (x,y) is shift-variant.

2.5.1 SINGULAR VALUE ANALYSIS

As we shall see later, the eigenfunction technique exemplified by the use
of the PSWF can be extended in several directions. Nonetheless, it cannot
be applied when the input and the output of our linear system belong to
different functional spaces. In this case, a generalization is given by the
singular value analysis that we shall briefly sketch here [9, 80, 75, 76]. Let
us consider the following linear operator A:

(4f)(@) = [ FHv)dy. (25.4)
where the integration limits and the definition range for x are given when

the kernel H(xz.y) is specified. We also consider the adjoint operator A*
defined by

(A*R)(z) = / h(y) H* (. 2)dy. (2.5.5)

where the asterisk denotes the complex conjugate. We assume H(x,y) to
satisfy the condition

//IH(;‘L“.y)Fd:rdy < 0. (2.5.6)

Then, the operators AT 4 and AAT possess a discrete set of eigenfunctions
u, and v,. respectively, corresponding to the same set of non-negative
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eigenvalues 2. The eigensystems are to be found by solving the equations

(AT Aun)(z) = aiup(z) (n=0.1....).
(AA%v,)(z) = oafvp(z) (n=0,1,...). (2.5.7)

The functions u,, v, are the singular functions of the operator A and the
(real non-negative) numbers o, are the corresponding singular values. The
action of A (A1) on u, (v,) is the following:

(Aupg)(z) = apvp(z) (n=0,1,..), (2.5.8)
(AT ) a)a) = apun(z) (n=01,..). (2.5.9)

Suppose now that the equation
glz) = (Af)z (2.5.10)

is to be solved. In general, the following expansion holds:

flz) = ianun(x) +r{x). (2.5.11)

n=0

where r(z) belongs to the null space of A. In addition. g(z) admits the
expansion

g(z) = ibnvn(ary (2.5.12)
=0

On inserting (2.5.11) into (2.5.10) and taking into account Egs. (2.5.8)
and (2.5.12) one finds

by, = apan (n=20.1,...). (2.5.13)

Equations (2.5.11)—(2.5.13) are similar to Egs. (2.4.18)—(2.4.20). The eigen-
values are replaced by the singular values and two different sets of functions
Up, v, are used. In addition, depending on the properties of A. a part of
f(z), namely. r{x), can be irretrievably lost.

We shall now give two examples of applications of this technique to the
recovery problem discussed earlier. We saw that the image formation can
be thought of as a two-step process. In each of them. a finite support
function is Fourier transformed and the FT is given on a finite interval.
Let us counsider the prablem of recovering the function starting from the
knowledge of a portion of its FT. This occurs, for example, if we detect
the object spectrum across the pupil, either directly or through inverse
Fourier transformation of the field distribution all across the image axis.
The task is equivalent to extrapolating the spectrum outside the pupil.
Reversing roles. we can say that we want to extrapolate a function whose

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

2. Sampling in Optics 63

FT is known to vanish outside a finite interval. This is why the present
problem is also known as the extrapolation of a band-lmited function. The
operator A describing this process is defined as follows:
c/2 )
(Af)(p) = ) fly)e ™ Pudy (Ipl < 1/2). (2.5.14)
—c/2
whose adjoint is written
1/2 ]
)= [ awema (ol < e @519)
~1/2

It is easily seen that the operators AT A and AA™ are

/2

(ATAf)(z) = o fly)ysinele — y)dy  (ja] < ¢/2). (2.5.16)
1/2

(aaram = [ | Asinclelp 0t (bl < 1/2). (2507

Except for a scale factor. the two integral operators are identical to the
one entering Eq. (2.4.9). As a consequence, both sets of singular func-
tions reduce to the set of PSWF. The singular values a, equal /i, (see
Eqgs. (2.4.18) and (2.5.8)). Because of the completeness properties of the
PSWE. a perfect recovery would be possible in the noiseless case. The re-
covery of the «, in the presence of noise could be examined along the same
lines discussed with reference to Eq.( 2.4.20). It is clear, however. that the
substitution of the p, with the a,, is an advantage because a,, > .

The same scheme can be applied to scanning instruments. Suppose that
at a certain time the object is illuminated by a field distribution whose
shape we denote by P(z) and imaged by an optical system with impulse re-
sponse H{x,y). The field emerging from the object can be expressed as the
product of the dimensionless illuminating profile P(z) times the field f{x)
that the object would emit if it were illuminated by an orthogonal plane
wave of unit amplitude. The image field g(z) can be expressed through the
action on f{x) of a suitable operator A defined as follows:

ge.v)

glz) = (Af){x) = / Pyl fly)H(z.y)dy. (-~ <z <oc) (2.5.18)

-0

It is seen that Eq. (2.5.18) generalizes the previous case (see, e.g.. Eq. (2.4.1)).
In particular. when P(y) = rect(y/c) and H{z,y) = sinc(z — y) we come
back to Eq. (2.4.6) except that now z can vary on the whole axis.

I order to find what information about the object f(x) can be obtained,
some features of 4 are to be studied. It may well happen that A is not
injective. In physical terms, this means that the object can be split into
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the sum of a transmittable part and one part that gives no image. The
recovery problem then refers to the transmittable part only. A simple case
is the one where both H and f are sinc functions with the same width. This
occurs when the same low-pass optical system is used both to illuminate
and to hmage the object [76]. The singular system can be found in closed
form [359]. Once again. the sampling theorem appears in the analysis. In
fact, it turns out that the transmittable part of the object can be obtained
by sampling it and deleting certain samples. In addition [77], for confocal
scanning microscopy, an analytic inversion formula can be found starting
from a sampling expansion of the image.

2.5.2 INCOHERENT IMAGING

As we said at the beginning of the present section, when the object radiates
quasi-monochromatic spatially incoherent light. the image formation law
involves optical intensities. For the one-dimensional case with a clear pupil
extending from ~pps to par. the law can be written

g(x) = 2pum /m Fly)sinc®[2ppr (2 — y)ldy, (2.5.19)

where f(x) and g(x) are the optical intensity distributions across the ob-
ject and the image, respectively. The proportionality factor in front of the
integral is such that a maximum value of one is attained by the incoherent
transfer function (also called the optical transfer function [339}). The lat-
ter, say H{p), is proportional to the autocorrelation of the actual pupil. In
the present case, we have

[ i ] p ]
U IR S OIS R 3
H{p) f: 5 IJ rect ”PM} . (2.5.20)

The analysis carried out earlier could now he rephrased for inccherent imag-
ing. However. there are certain differences that deserve attention. First, the
bandwidth is twice the one pertaining to coherent imaging, although the
comparison is to be made with some caution because now the transfer
function refers to the spatial frequencies of the object intensity instead of
the object field. In addition. the incoherent transfer function is not flat
within the band of frequencies accepted by the system. This suggests that
an image enhancement could be obtained by restoring to the correct weight
the frequency components inside the handwidth of the system. Let us give
a simple example of this inverse filtering process. Figure 2.12 represents
the image of two point-like (mutually incoherent) sources of equal weight
centered at £0.41/(2pas). The unit on the horizontal axis equals 1/(2pas).
Clearly, the two sources are not resolved. We now filter the spectrum of
this image so as to produce an equivalent transfer function that is flat in
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(—2pn.2p a).* This amounts to replacing the original sinc?(2p,, ) impulse
response by sinc(4ppsa). The resulting corrected image is given in Fig. 2.13.
Two resolved sources can be recognized {at least, if we know that either one
or two sources are present, see subsection 2.4.1). Yet, the image shows some
artifacts consisting of spurious oscillations. The main remark is that nega-
tive sidelobes are present, a feature inconsistent with the physical meaning
of the function as an optical intensity.

1.2
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FIGURE 2.12: Image distribution of two point-like mutually incoherent sources.
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FIGURE 2.13: Image distribution of Fig. 2.12 after filtering.

Here, we encounter a basic constraint about the solutions of inverse prob-
lems relating to incoherent imaging. Being an intensity. the solution must

4Even in the noiseless case, the inverse filtering has to exclude the points
p = +2pp where H(p) vanishes.
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be non-negative. The role of this constraint also appears clearly when we
apply the sampling theory to the present problem. The function g(z) as ex-
pressed by Eq. (2.5.19) is band-limited and can be written as the sampling
expansion

SO

g(&?) = Z g 1:360 -+ Z}?—A;} SinC{4pjw(£L' - il?()) - n], (2521)

T 0

where xp is an arbitrary shift. At first sight, this looks similar to Eq. (2.4.4)
except for the doubling of the bandwidth. We can again say that the image
is completely determined by a set of its samples taken at the Nyquist rate
1/{4pas). Yet, the samples are no longer independent from one another
because they have to produce a superposition where the negative lobes of
the sinc functions are everywhere compensated by positive contributions.
We add that the problem of sampling non-negative functions is related to
the so-called phase problem [688, 936, 496, 32, 292, 260, 671].

The present imaging process could be examined through the eigenfunc-
tion technique. Although the eigenfunctions and the eigenvalues are not
analytically known, they can be computed numerically [73, 345, 362]. In
particular, it turns out that the eigenvalues, say p,, are approximately
given by p, = [1—n/(8zapar)], up to values of n smaller than 8z apas. For
greater values of n, the eigenvalues are extremely small. This again agrees
with the Szegd’s theorem which connects the sampling and the eigenfunc-
tion approaches.

Superresolution techniques quite similar to the ones alveady discussed
for the coherent case can be applied to incoherent imaging. Furthermore,
the positivity constraint can be included in the superresolving algorithms
[310, 406, 408].

It is to be noted that the comparison between coherent and incoherent
imaging is not an immediate one. In the first case, one deals primarily
with feld quantities, whereas in the second case intensities are the basic
quantities [339. 342]. In addition. noise effects are different [205, 206].

2.5.3 SURVEY OF EXTENSIONS

Up to now. we limited ourselves to one-dimensional imaging without aber-
rations. The analysis can be extended in several directions. First, two-
dimensional geometries can be considered. If a coherent object with a finite
support possessing an area S is imaged through a clear pupil covering a
finite area P in the spatial frequency plane, the number of complex DOF
of the image equals SP. This essentially is the so-called Gabor’s theorem
[315) whose one-dimensional version leads to Eq. (2.4.5). As in the one-
dimensional case. the validity of this result can be justified through differ-
ent approaches using suitable forms of the sampling theorem [319, 94] or
eigenfunction techniques [827. 515. 910, 356] or general properties of the
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solutions of the wave equation [656. 657). Further extensions refer to the
presence of aberrations [363, 259, 33] as well as to images produced by
point-like element pupils [357, 358, 831]. The number of DOF for scattered
fields can be evaluated in a similar way [364] and this leads to interesting
analogies to the DOF in holography [556, 424. 739].

It is interesting to observe that superresolution can be linked to one of the
newest approaches to data processing, namely, neural computing [589, 2].

We discussed several superresolution methods. Nevertheless. other meth-
ods exist [559, 22, 560. 725, 672, 724. 293, 726, 881, 407. 195].

2.6 Fresnel Sampling

We have seen the essential role played by the FT in the description of
imaging processes. Nevertheless. most optical propagation phenomena are
to be described by means of another transformation. namely, the Fresnel
sransform. This is a linear transformation depending on one real parameter
a. For a function f(z), the a-Fresnel transform to be denoted by £, {f}(z)

or fa is [348]
Eal{fHa) = fale) = V=ia ] Z F(€)emiatz=0 ge. (2.6.1)
The inversion formula reads
O =via [ ale)e o e, (2.6.2)

so that inverse transform simply equals the Fresnel transform of parameter
-0,

The extension to the two-dimensional case is straightforward. The con-
nection between the Fresnel transform and the Fresnel or paraxial approx-
imation of physical optics is immediately seen from the diffraction inte-
gral [339, 106]

iezkz

Az

Vilz.y) = - //Vg(f.77)ei"2%[($"€)2+(3’“")2]d§d?7. (2.6.3)

where Vp and V, are the (coherent) field distributions across the planes
2z =0and z = const. > 0, respectively. Except for the factor exp(ikz), we
see that V, is the two-dimensional Fresnel transform of Vy with parameter

1

= —, 2.6.4
“ Az’ ( )

because k = 27/ )
A function f(z) is said to be a-Fresnel limited (shorthand: a-F1) if fo(z)
vanishes outside some finite interval, say [—zo, o). Functions of this type
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possess several properties. For example, it can be proved than an o-Fl
function cannot be (-Fl also if o # 3, nor can it be band-limited in the
Fourier sense. In addition, an o-F1 function cannot be purely real. For o-Fl
functions the following sampling expansion holds [348]:

flay = et 5 g (ghYerelmn]

Tp=e = 00

x sine(2]alzgr — n). (2.6.5)

Conversely, if a function f(z) vanishes cutside a finite interval, say [~z ar, zar],
then its a-Fresnel transform can be expressed as follows:

7 _ riaz? S n —Tio fi?;’,{ﬂ ’
fate) = e 30 fu (s ) eolm]

= — 00

x sinc{2|alayz — n). (2.6.6)

The symimetry between Eqs. (2.6.5) and (2.6.6) is due to the fact that the
inverse a-Fresnel transform is simply obtained by changing o into —a.

Let us see the optical significance of these results, limiting ourselves to the
one-dimensional case. We asswimne f{2) to be a coherent field distribution
with finite support [—xzas, 22s] emerging from a plane z = 0. From the one-
dimensional analog of Eq. (2.6.3) we see that the field distribution across a
plane z = const. > 0 is given, up to a phase term exp(ikz), by f,(x) where
o s specified by Eq. (2.6.4). By virtue of Eq. (2.6.6). the propagated field is
completely determined by its samples spaced at a distance Az/(2x ) from
one another. Such a distance grows linearly with z and this gives a measure
of how the information density varies on free propagation.

In the case of FT, sampling a function produces an infinite set of replicas
of the spectrum. In optical terms, if we cover with a grating a coherently
radiating object put in the front focal plane of a converging lens, we obtain
an array of copies of the object spectrum in the back focal plane. We can
ask whether anything similar can be observed in Fresnel optics.

In order to answer the previous question it is useful to give an alternative
representation of the samples of f,. Let us introduce the function

h(z) = f(z)emee" (2.6.7)
whose Fourier series expansion in [—2. 2] reads
>0 .
h@)= > hme™ " (2.6.8)
T = 0

where

1 M miaz? —mim—E
b = 5= / flwe s da.
2z —-Tpr
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It is easily seen that the samples of f, can be given the form

. n 2 N
£ (__.L> = QxM\/_.‘mem[“—“mM] hp. (2.6.9)

21&(1‘1\4

In particular, suppose that o satisfies the condition

o 2r (r : integer). (2.6.10)
QT

In this case, the samples fa are proportional to the Fourier coefficients of
h(z). Because of Eq. (2.6.4), a set of planes exists

o2
2y = Sv—iﬂ (r : integer), (2.6.11)

where Eq. (2.6.10) is satisfied. Let us put an ideal sampling mask in any of
these planes. Disregarding the unessential factor exp(tkz), the field emerg-
ing from the mask can be approximated by a function, say s(zx), of the

form
o0 ) n e n
s(z) = n;mfa (W)éﬁr"m>

2zav—ia Y had (:z ,_.”._> (2.6.12)

B QlaﬁrMA

T == OO

The field produced across a typical plane z = const. > 0 at a distance D
beyond the mask can be evaluated, up to a phase term exp(ikD), as the
[3-Fresnel transform of s(z) with § = 1/(AD). We find without difficulty

O
. : 7L 2 ;3 L) B} .
Sp(z) = 2xm/ —apemibe E hoe™Plaat ) ™ H e Ty (2.6.13)

= O
It is seen that the series in Eq. (2.6.13) gives a periodic function. Now, it

is possible to choose D and hence 3 in such a way that
3 _ 1
(2azy)?  AD(20ap)?
On inserting Eqs. (2.6.10) and (2.6.14) into Eq. (2.6.13) we obtain
S 1 E wi—qi(A—r_-»}"’ bed —Imin 9.6.15
dg(x) - By Z hne F, (2.6.15)

47‘1?1\/] 7 o

= 2q (g : integer). (2.6.14)

where

P= Z:'ZxM (r,q : integers). (2.6.16)
q
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The series in {2.6.15) represents the periodic repetition of a magnified or
demaguified version of h(—z) depending on whether r is greater or smaller
than ¢. If we consider the intensity distribution. the phase factor in front of
the series cancels out. Using Eq. (2.6.7). we conclude that multiple images
are formed of the original object intensity |f(z)[%.

The above phenomenon is somehow connected to the self-imaging of
periodic objects. or Talbot effect [909. 659, 555, 140, 677. 499, 417]. Let
J{z) be periodic. To facilitate comparison with the previous case, we denote
the period by 2xa7. The Fourier series expansion of f(z) is of the form

o .
Fay = 3 fae™"E

o= = (5
1 [ e
I = 5 / fla)e™ = da. {(2.6.17)
2$Af —Z A7
The a-Fresnel transforin of f(x) turns out to be
= L
falw)= 3 fae T (2.6.18)
T - 00

If condition (2.6.10) is satisfied, Eq. (2.6.18) becomes identical to the series
expansion {2.6.17). Accordingly. at any plane satisfying Eq. (2.6.11). the
same field distribution is found (except for the exp(ikz) term) as at the
z = 0 plane.

The effects described so far are among the simplest of a rather large
class of multiple image production and reproduction phenomena in Fresnel
optics. In fact. one can ohserve a lot of similar phenomena, e.g.. the Lau
effect, passing from coherently to incoherently radiating objects [42, 421,
347, 884, 885. 887]. For a complete review the reader is referred to [716].

Finally, we note that an extension of the PSWE to Fresnel transform
problems can he made [349]. This can be of help when dealing with Fresnel
propagation phenomena.

2.7 Exponential Sampling

In several optical problems. the Mellin transform is of interest. Different
definitions of this transforin are used in the optical literature depending on
the problem to be treated. We shall now dwell a bit on these definitions and
on the related sampling theorems. Further, we shall point out the classes
of problems where these notions come in handy.

A first definition of the Mellin transform [111, 194), say fas (P) or [M f(2)](p),

of a function f(z) defined in [0.20) is the following:

fup) = [Mf(2)](p) = JC f(;c)x—2”fp~‘ij§. (2.7.1)

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

. ) -
2. Sampling in Optics

provided that the integral converges. The change of variable z = exp(t)
leads to the alternative expression

0
falp) :/ flet)e 2Pt (2.7.2)

-0
This gives a clear operational meaning to thc? Mellin t}‘ansfo.rm. We _ﬁl‘st
pass from f(z) to flexp(t)]. This operation, which e.\.{pand:s the interval {O‘, 1]
of the z-axis to the whole negative semiaxis t < 0,is equn-falemj to c-lrawmg
the graph of f(z) on a semilogarithmic plot, as exemplified in Fig. 2.14
and 2.15 where the triangle function (1 — |z — EOOl/SQ) rect{(z - 100)/100]
is plotted with a linear and a logarithmic horizontal axis, respectively. N;ot'e“
that if we change f(z) into f(az), i.e.. if we expand (a < 1) or compress
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FIGURE 2.14: Plot of the triangle function with a linear horizontal axis.
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FIGURE 2.15: Plot of the triangle function with a logarithmic horizontal axis.
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(@ > 1) f(z) horizontally, the semilogarithmic plot is simply shifted to the
'right or to the left by a quantity proportional to In(a)], reépectively. This
is shown in Figs. 2.16 and 2.17 which refer to the same triangular function
as Figs. 2.14 and 2.15, with a factér ¢ = 0.2,

The second operation implied by Eq. (2.7.2) is simply a FT. In view
of the properties of the first operation. the overall effect of a horizontal
maguification of f(z) on its Mellin transform is multiplication by a phase
term. More precisely, we have

(M f(az)](p) = a® 7P [M f(2))(p). (2.7.3)

This 1 . . . .

s Gperty'1§ of interest in optical processing [194], for example for
pattern recognition, when a certain shape is to be recognized regardless of
the scale factor.

1.5 -

4 -

0.5 =
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0 200 400 600 800 1000

FIG(I)H;E 2.16: Plot of the triangle function in Fig. 2.14, scaled with a factor
a=0.2

Using Eq. (2.7.2) together with the Fourier inversion formula, we obtain

f@ = [~ futvyetay, (2.7.4)

as the Mellin inversion formula.

Suppose. that & function f(x) is Mellin band-limited. in the sense that
f () va%m:shes .for [Pl = par. Then, we see from Eq. (2.7.2) that flexp(t)]
is band-lmited in the ordinary, Fourier sense. Accordingly, we can write an
expansion of the form (2.4.4) )

flet) = Z f(e“??’;‘»?)sinc(Qth - n), (2.7.5)

n=—0o0
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FIGURE 2.17: Plot of the triangle function in Fig. 2.15, scaled with a factor
a=0.2

where, for the sake of simplicity, the origin shift has been omitted. Written
in terms of the original variable, Eq. (2.7.5) becomes

flx)= i f(ef'?’%?)sinc(QpM In(z) —n). (2.7.6)

n=—00

This constitutes the sampling expansion for Mellin band-limited functions.
Note that the samples are not equally spaced. Instead, the ratio between
the positions of adjacent samples is a constant and a resolution ratio
exp[1/(2pa)] can be introduced. Roughly speaking. we can say that in
a Mellin band-limited function independent pieces of information tend to
accumulate near the origin. To underline this peculiar distribution of sam-
ples one speaks of exponential sampling [697].

We shall now introduce a different definition of Mellin transform which is
useful for many problems [81]. Let us denote by f(p) this alternative form
of the Mellin transform of f{x):

for= [ s 277)
p)= : —=. T.
Jo Vv
Using again the change of variable z = exp(t), Eq. {(2.7.7) becomes
flp) = / Fleh)et/2e=2mrt gt (2.7.8)

In addition to the passage from f(z) to flexp(t)], the present definition
of Mellin transform implies multiplication by exp(t/2). After that, a FT is
performed. It is easily seen that the new definition preserves the property
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e>'<p'ressed by Eq. (2.7.3) except that now the right-hand side has to be
divided by y/a. The inversion formula now becomes

flz) = \»}5 / _fearap (2.7.9)

. For functions that are Mellin band-limited. i.e., for which Eq. {2.7.7) van-
ishes when |p| > pas. a sampling theorem can be derived with a reasoning
anagogous to the one leading to Eq. (2.7.6). The sampling expansion now
reads

¢

|-

flz) =

8

v

fle™i )eTar sinc[2pas In(z) — n). {2.7.10)

The Mellin transform is the basic tool for solving integral equations of the
form

o
o) = [ Kewrwa, (27.11)
where f(x) is to be recovered starting from the knowledge of K(2y) and

g(z). If we perform a Mellin transform of g(z), we have from Eqgs. {2.7.7)
and (2.7.11)

9 = [l
= j( f(v) dy /0 K(n:y)z—%ip%. (2.7.12)

whgre the integration order has been interchanged. With the change of
variable zy = {. Eq. (2.7.12) becomes

o0 o
TR e ot
fy)y*mr— K(t)yg=2mir —
/0 \/@ 0 ®) \/Z

= f(-pEK(p). (2.7.13)

i

9(p)

We see from Eq. (2.7.13) that the action of the integral operator (2.7.11)
on f(x) is equivalent to a filtering of its Mellin transform. A comparison
with Eq. (2.4.2) shows that for product kernels (xy) the Mellin transform
plays the same type of role as the FT for convolution kernels.

As a simple example of the occurrence of (2.7.11) in optics, let us consider
a transparent medium in which opaque spherical particles With various di-
ameters are suspended. This system is illuminated by collimated coherent
Iight and the far-field intensity distribution is observed. The contribution
given by a single particle with radius ¢ can be approximately evaluated
as the Fraunhofer diffraction pattern of a disk with the same radius. We
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assume that the particles are wandering through the medium and that the
far-field intensity is averaged over a large time interval. Therefore, inter-
ference effects among the fields diffracted from different particles cancel
out and the various diffraction patterns add to one another on an intensity
basis. Because of Babinet’s principle. at any point of the far-field except
the origin the single contribution has the same shape as the intensity in
the well-known Airy pattern [106]. i.e..

a0y 2
2,4 {2%1\5191} ‘ (2.7.14)

where ¥ is the (supposedly small) scattering angle and J; is the Bessel
function of the first kind and order one. If the particle radii are distributed
according to a certain (unknown) function r(a), the total intensity is
o T 72(1
1(9) = I 4 [%} a*r(a) da, (2.7.18)
where [y is a constant. Eq. (2.7.15) is of the form (2.7.11) with f(y) and
g(z) replaced by a*r(a) and I(¥9), respectively. The kernel K is given
by the terms within square brackets multiplied by Ig. Equation (2.7.15)
is to be solved in order to find the particle size distribution r{«) [945].
Other examples include polydispersity analysis by photon correlation spec-
troscopy [697]. aerosol size distribution analysis [935] and laser velocime-
try [237).
Depending on the problem at hand, the solution of Eq. (2.7.11) can be
sought by various methods. The deceptively simplest method is, of course,
inverse filtering leading to

flp) = i) (2.7.16)

for those values of p where K(—p) is different from zero. However. in most
cases, K(p) is likely to be extremely small for certain ranges of p values
thus producing error amplification when Eq. (2.7.16) is applied to noisy
data. Furthermore. in many cases, K (p) vanishes outside a finite interval
[—par, pasr). The solution of Eq. (2.7.11) then requires a discussion some-
what similar to the one connected to lmaging through convolution kernels
(see Sec. 2.4), including the use of sampling theorems and singular func-
tions. For more information. the reader is referred to (81, 82].

Here and in the previous sections. we have seen examples of linear trans-
forms applied to optical problems. Other transforms are of interest in op-
tics, for example. Abel, Hankel, Hartley, Hilbert, Laplace and Radon trans-
forms [111, 112, 387. 422, 704]. A general sampling theorem [582] applies
to any linear transform whenever the function to be transformed is Fourier
band-limited. say in [—pps.par]. Let us express the linear operator in the
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form (2.5.4) and insert under the integral symbaol the sampling expansion
of f(y). This gives

= n n
AfY(z) = — | Hy | 1, . 2.7.17
ane = 3 1 () (g ) (2717
where H, is a low-pass filtered version of the kernel H defined as follows:
o0
Helz. 1) = / H(z.y)sine2pps (¢ - y)] dy. (2.7.18)
R

It will be noted that Eq. (2.7.17) looks shmilar to a nmumnerical integration
formula, e.g.. trapezoidal rule, for evaluating (Af)(x). Actually. it is an
exact formula. Examples of the use of Eq. (2.7.17) for numerical evaluations
are given in [H82].

2.8 Partially Coherent Fields

The flow of information in a partially coherent field is to be described by
means of the correlation functions. The neatest way to do this is to work in
the space-frequency domain where, for each temporal frequency, the spatial
correlation properties of the field are accounted for by the cross-spectral
density [569]. It has been shown [962] that for virtually any source the cross-
spectral density W{R,. Ry, v) at two space points with radius vectors Ry
and Ry can be expressed as the average

W(Ry. Ra.v) = (V*(Ry. 1)V (Ra. v)) (2.8.1)

on an ensemble of realizations of monochromatic fields at the temporal
frequency v. Most features of the partially coherent field can then be traced
back to features of the underlving monochromatic fields. Therefore, it is not
surprising that sampling theory plays a role in coherence theory.

The best known partially coherent fields are the ones produced by spa-~
tially incoherent planar sources. Let us denote by Iy(p,v) the optical in-
tensity at frequency v in a typical source point with radius vector p (in
the source plane). The cross-spectral density Wp(ry,ry, v) at two points
possessing radius vectors ry and rg in a plane parallel to the source plane
at a distance D from it, is given by the van Cittert-Zernike theorem [106]

k(2.2
e"z“ﬁ(”z“"ﬁ)

Wp(ry,ra,v) = 72

/Io(p, V)e“g”iprk_l; d?p. (2.8.2)
It is seen that. except for a geometrical factor (which is independent of
the source intensity distribution). Wp equals the FT of Iy(p.v). Suppose
now that Ip{p.v) has a finite support. Then, Wp is proportional, through
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a known factor. to a band-limited function and it can be determined by
sampling [776]. In addition, the integral in Eq. (2.8.2) depends on ry and ro
only through their difference. This has given rise to synthesis techniques for
sampling partially coherent fields [352, 354. 340, 783, 273, 99]. Let us give
an elementary one-dimensional example assuming a source width 2z, We
can sample Wp at zo — 21 = nlz (n =0.1....) where

rD

= . 2.8.3)
21‘M (

Az

Let us consider a linear array of four equally spaced points at a distance
Az from each other, as in Fig. 2.18. Assuming that Wp can be measured
at any pair of points of the array, we obtain four samples corresponding to
n = 0.1.2.3. However, the array is a redundant one because the distance
12 - 21 = Az can be obtained with 4 — n different pairs (n = 0, 1,2,3).
The array of Fig 2.18 eliminates the redundancy (except, of course, for
n = 0) and furnishes samples of Wp up ton =06 using the same number
of elements. It is easy to imagine that in the two-dimensional case similar
synthesis procedures can be applied leading to arrays where the number
of distinct pairs afforded by N point-like elements grows like N2. Such
techniques have found wide application in radioastronomy [334, 229].

FIGURE 2.18: Linear array of four equally spaced points at a distance Az from
each other

We can ask whether there exist more general phenomena causing Wp
to be band-limited. One fundamental reason is the following. The angular
spectrum of a monochromatic field generally comprises both homogeneous
and inhomogeneous or evanescent waves [106. 339]. The latter are strongly
damped on free propagation. At distances greater than a few wavelengths
from any material surface the spectrum is well approximated by the ho-
mogeneous part only. Across any plane where this condition is met each
member of the ensemble of monochromatic fields involved in the average
of Eq. (2.8.1) has a spatial structure of the form

Vir.v)= / V(p,v)e?™ P Td?p, (2.8.4)

c

where 1 is a radius vector in the chosen plane and C' is the circle of radius
1/X in the spatial frequency plane. According to Eq. (2.8.1), the corre-
sponding cross-spectral density is

Wir1,re.v) = / / (7 (. )7 (pa, )2 PrTa=PrT) 2, P,
°re (2.8.5)
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Whatever the form of the average under the integral sign, W is clearly
band-limited with its spectrum included in the four-dimensional domain
C x C [963]. Hence, 1 can be determined through a suitable sampling.

An extensive treatment of partially coherent fields along the previous
lines was given in [319]. Actually, Gamo's work referred to the mutual
intensity but most of his results could be easily rephrased in terms of cross-
spectral density.

"The preceding remarks deal with spatial coherence. At any point in space,
the temporal coherence depends on the (temporal) power spectrum at the
same point [106] through the Wiener-Kintchine theorem. According to that
theorem, the temporal autocorrelation function and the power spectrum
form a Fourier pair. This is the basis of Fourier spectroscopy where sampling
theory has an essential role [923. 605].

2.9 Optical Processing

The processing of information by optical means is a very wide subject
ranging from old and well-established technicues (e.g., phase-contrast mi-
croscopy (106, 339]) to rather new and rapidly developing ones (e.g., opti-
cal implementation of neural networks). Indeed. several topics dealt with
in previous sections can also be encompassed in optical processing.
Sampling theory is a tool of continuous use in this feld. As an example,
let us consider the production of multiple images of an object illuminated
with coherent light [839. 897]. In principle, this is easily obtained with the
system of Fig. 2.1 putting a suitable sampling mask in the pupil plane. In-
deed, if the object has a finite support, the spectrum displayed in the pupil
plane is a band-limited function and its sampling produces a multitude
of replicas of the image in the output plane. Generally, one would like to
produce replicas with one and the same intensity. If the sampling mask is
a set of holes (or slits for one-dimensional cases) in an opaque background,
replicas of different weights are produced because of the non-zero size of
the holes. In fact, the mask behaves as an amplitude grating [106] whose
diffraction orders are known to be differently weighted. A possible solution
Is to use a phase sampling mask like a Dammann grating [241, 916]. This is
a grating whose transmission function jumps between +1 and —1 a number
of times in a period. The positions of the transition points can be calculated
50 as to produce a finite number of diffraction orders of equal weight. As
there is no absorption, the efficiency. i.e.. the fraction of power directed in
the wanted orders, can be very high. Note that a grating of this type can be
used as a multiple beam splitter. In addition, phase gratings can be used
for spatial filtering purposes [389]. Another application of sampling occurs
in image subtraction with both coherent and partially coherent light [332].
Besides applications of this type, there are countless occurrences of sam-
pling in optical processing. It is worthwhile to review some fundamental

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

2. Sampling in Optics 79

reasons for this. To begin with, suppose that we want to measure a cer-
tain optical intensity distribution across a plane region. Whatever type
of detector we choose. the measurement implies some form of sampling
(287, 412, 143, 411. 199]. As a typical example let us consider a one-
dimensional array of detectors. Each detector has a certain width Az over
which it integrates the optical intensity. Let the distance between centers
of two adjacent detectors be z; and let Ny be the number of detectors. The
output of the array can be thought of as the result of two processes. First,
the optical intensity is convolved with rect(x/Ax). Second. it undergoes a
finite sampling. Assuming linearity of the detection process, the relation-
ship between the output signal s(z) and the optical intensity /(z) can be

written

r N\ e
s(x) = rect (NClﬁxj n;océ(il" — nay)

X {I(é)*rect (Z%)}(l) (2.9.1)

where proportionality factors have been omitted and the convolution op-
eration is denoted by =». Let us briefly discuss the effect of this type of
sampling. The convolution of I{z) aud rect(z/Ax) gives a low-pass filter-
ing of the FT of I(z). say I (p). The equivalent transfer function is of the
form sinc{Azp) and gives severe attenuation of spatial frequencies above
1/8xz. As a result, the function that we actually sample is not I(x) but
a blurred reproduction of it. Then. there is the sampling effect producing
replicas of the filtered version of I(p). spaced at a distance 1/x; from one
another. This will give rise to aliasing errors. Finally. there is the effect
arising from the finite extent of the sampled region. Because of this effect,
the set of replicas is convolved with a sinc(NgAzp) function. Taking into
account these effects and using some prior knowledge about the intensity
distribution to be measured. one chooses the above parameters so as to
keep errors below an acceptable level,

A peculiar effect, namely. moiré fringes. may be produced by aliasing
errors when the intensity distribution to be sampled, for example. a halftone
screened image. has an underlying periodic structure. In this case, a double
sampling at two different rates can help select frequency components less
suffering from aliasing ervors thus eliminating moiré fringes [684, 971]

Similar remarks apply when it comes to making a permanent record
of the intensity distribution by means of a photographic emulsion. The
detectors are now silver halide grains. Although they are somewhat different
from each other and irregularly distributed within the emulsion, the same
description approximately applies with reference to the mean values of grain
width and grain distance.

Detection of coherent field distribution follows the same pattern because
the lack of phase-sensitive detectors forces us to use as the measurable
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qguantity the intensity obtained in the interference between the unknown
field and a reference field.

Another operation in which sampling is almost invariably present is the
spatial modulation of a light wave. Beyond reasons like the periodic rep-
etition of cells with a certain area (as in many spatial light modulators)
there is another fundamental motivation. If we want to impart a certain
phase distribution to a wavefield, we can use a suitable phase object. On
the other hand, this is generally impractical because of the difficulties of
realizing arbitrary phase objects. It is much easier to code the phase dis-
tribution through an amplitude modulation. This is, of course, the very
principle of holography. An early example of this in optical processing is
the holographic matched filter of [925] where both the amplitude and the
phase distributions of the signal to be processed are modified by the passage
through a hologram. In order to isolate the term of interest in the diffracted
field from other unwanted terms, off-axis holography is used. This implies
an inclined reference beam and this is equivalent to translating the spec-
trum of the signal to be recorded on a carrier spatial frequency.

Although in some cases holographic filters can be produced in an ana-
logical manner, most frequently they are synthesized with the aid of a
computer [552, 554]. The basic layout of a computer-generated hologram
is an array of cells. One (complex) value of the function (i.e., an ampli-
tude and a phase value) is coded in each cell by a suitable control of the
amplitude transmission function. Typically, a transparent dot is drawn on
an opaque background in each cell. The size and the position of the dot
account for the amplitude and the phase, respectively, of the sample to be
synthesized. What is to be underlined is that this arrangement in a lattice
of cells requires the use of sampling theory from the outset. Furthermore,
extensions of the sampling theory can be usefully employed. For example,
as the samples are approximated by dots of non-zero area, errors occur.
They can be eliminated by a suitable predistortion of the function to be
synthesized [44].

Compnter-generated holography is today a rich topic with a lot of appli-
cations. For review papers, the reader is referred to [531, 141].

In ordinary holography, the use of sampling for high-density storage and
interferometry was discussed in [197, 198, 242, 361. 914].

A frequently occurring task is the sampling of a two-dimensional function
whose spectrum is limited by a circle, let us say a circle band-limited func-
tion. Of course, a sampling lattice with square cells can be used. However.,
this is a redundant sampling because the alias-free region in the frequency
plane is a whole square circumseribed to the required circle. This implies
that the sample density is 4/7 times higher than it would be required by the
circle area. Better results are obtained if the spectrum replicas produced
by the sampling are packed according to a hexagonal geometry. This occurs
when a sampling lattice with hexagonal cells is used [721, 648, 669]. The
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redundancy factor decreases from 4/7 to 2v/3/7 but the problem remains
of further reducing the redundancy.

A sampling theorem referring explicitly to circle band-limited functions
exists [319, 94]. It implies a continuous sampling along suitable circles. Al
though this theorem is conceptually important for problems like the eval-
uation of the number of DOF, the practical implementation of circle sam-
pling is not easy. A notable exception occurs when the circle band-limited
function is also circularly symmetric. In this case, the problem is actu-
ally one-dimensional and we can use the sampling theorem based on the
Fourier-Bessel series [704] or on the Dini series [888].

A different way to reduce redundancy has been found in [215] exploiting
the mutual dependence of the samples in the redundant case [588]. We shall
discuss the basic idea in a simple case.

Let us consider a two-dimensional sampling array with a square cell lat-
tice. The side of the cell equals one. The lattice sites are depicted in Fig. 2. 19
as the union of two sets represented by crosses and dots, respectively. The
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FIGURE 2.19: A two-dimensional sampling array with a square cell lattice.

first, called the cross set. is itsell a square lattice with side 21/2 rotated
through 7 /4 with respect to the z— and y— axes. The second set will be
called the dot set.

Suppose that the whole array is used to sample a band-limited function
whose spectrum is confined within a circle of radius 1 /2 centered at the
origin. This gives rise to a periodic repetition of the spectrum as schema-
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FIGURE 2.20: Spectrum of a band-limited function sampled with the array of
Fig. 2.19.

tized in Fig. 2.20 where the replicas of the spectrum are projected onto the
plane of the spatial frequencies pg. p,. Let us consider now the spectrum of
the samples corresponding to the cross set. This is a (two-dimensional) pe-
riodic function whose period is a square with side 1/(2+/2) rotated through
7 /4 with respect to the p,,p,— axes, (see Fig. 2.21). We focus our atten-
tion on the square evidentiated by heavy lines in Fig. 2.21. When drawn
in Fig. 2.20, such a square falls in a free region where the spectrum of
the whole set of samples vanishes. We conclude that, within the chosen
square, the spectrum of the cross samples is opposite to that of the dot
samples so that the first is immediately deduced from the second. Accord-
ingly, the dot samples are sufficient to find also the cross samples. The
latter are therefore redundant and can be eliminated, thus increasing the
sampling efficiency. Building on this idea, more sophisticated and highly ef-
ficient sampling schemes can be devised [215]. The contribution of Cheung
in this volume discusses other methods by which sampling density can be
reduced. Another type of sampling that can be usefully emploved for certain
hand-limited functions is polar sampling [858, 863]. The reader is referred
to the contribution by Stark in this volume for such a subject. Finally, a
sampling theorem that applies to three-dimensional optical microscopy has
been established in [681].

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

2, Sampling in Optics 83

SR
<

FIGURE 2.21: Spectrum of the samples corresponding to the cross set.

2.10 Conclusion

We have been wandering through a number of applications of the sam-
pling theory to optics. Admittedly, the tour is unequally weighted and far
from complete. The author hopes that a couple of points are underlined
by the present chapter. First: sampling, in one form or another, appears
recurrently in optical problems. Second: many new and extended forms of
sampling continue to be discovered and deserve further research.
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A Multidimensional Extension
of Papoulis’ Generalized
Sampling Expansion with the
Application in Minimum
Density Sampling

Kwan F. Cheung

This chapter is divided into two parts. In Part I, Papoulis’ one-dimensional
generalized sampling expansion (GSE) is extended to multidimensional (M-
D) band-limited functions. In Part 11, using sample decimation, we will
utilize the M-D GSE formulation to reduce the sampling density of M-D
band-limited functions. The ultimate reduction leads to the minimum sam-
pling density, which is equal to the area of the support of the function’s
Fourier spectrum. This rate is analogous to the definition of the Nyquist
rate for one-dimensional (1-D) band-limited functions.

Part I
A Multidimensional Extension of Papoulis’

Generalized Sampling Expansion
3.1 Introduction

The generalized sampling expansion (GSE), initially formulated by Pa-
poulis [707, 706]. unifies a broad class of extensions generated from the
Shannon sampling theorem [818] under a generalized setting. Cousider a
2o-band-limited function f(t) (i.e.., f(¢) has finite energy and F(v) = 0 for
lv| > o where o is measured in Hertz):

Fv) = /m f(tyem 32 vy,
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teg
f = / F(v)el?™tdy,

-
According to the Shannon sampling theorem. the function is uniquely de-
termined from the sample set {f(nTy)}. where T, = 1/20 is the Nyquist
interval.

In a more general setting, the m** order (m = 1.2.... is the order of
expansion) GSE allows f(¢) to be uniquely determined by m sample sets:
{{gx(rT)}k = 0 to m — 1}. The signal gi(t) is the response of a linear
system. h (), with the input f(¢):

ae(t) = hp(ti=f(t). k=0tom-—1

The sampling interval T is equal to mT,, m times the Nyquist interval.
Thus, every gi(t) is sampled at 1/m*® the Nyquist rate. There are m sample
sets. The overall sampling rate is still equal to the Nyquist rate. ff m =1
and Hy(v) = 1, the conventional Shannou sampling theorem results.

Two extensions that fall under the GSE are interlaced (or bunched)
sampling and signal-derivative sampling [111, 544]. Both can be formu-
lated as second-order expansions of the 1-D GSE. Interlaced sampling has
Hi(v) =1 and Ha(v) = e7?"* (0 < a < T). Signal-derivative sampling has
the same Hi(v) with Ho(v) = j27v.

Papoulis showed that there exist interpolation functions for each of the
two-dimensional cases above. Let . (t) be the interpolation function for the
k' sample set so that f(¢) can be reconstructed. The interpolation formula
for reconstructing f(t) is

m=1 oo
ft) = Z gr(nT)ye(t — nT).

k=0 n=—occ

The block diagram representing the m**-order GSE is depicted in Fig. 3.1.
A special contribution of this generalization is that the merit of different
sampling extensions can be compared in a common analytical setting. By
utilizing the GSE. Cheung and Marks [210. 212] demonstrated that there is
a class of sampling theorems which are ill-posed [590]. In particular, given
the samples are contaminated with noise. the interpolation noise variance
is unbounded for these ill-posed sampling theorems.

We will first briefly review the formulation of 1-D GSE.

3.2 GSE Formulation

The mth-order GSE follows from the partitioning of the spectrum F(v). In
particular, F(v) is partitioned into m equal portions. Each partition has
an extension of ¢

(3.2.1)

I =

1
=

ORI
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ho(e)

h1(t)

1/meh Nyquist rate sampler

L

hm-1(2)

FIGURE 3.1: The architecture of an m**-order generalized sampling expansion.

This partitioning of F{v) is shown in Fig. 3.2. The support of the first
partition, Fy(r), lies irf the region (—o, ~o + ¢). We denote this region as
A. Let Gi(v) be the spectrum corresponding to the sample set {gg(nT)}.
Thenfor k=0tom—1,

-1

Grv) =c > Hi(v+i)Fi(v): veA (3.2.2)

i=0
where F(v) is the it partition of F(v) shifted to A:
Fi(v) = Filv+ic): vedA
Equation {3.2.2) can be put in matrix form as
G =cHF. (3.2.3)

where H is a square matrix of dimension m, G is the vector with entries
{Gr(v)} and F is the vector with entries {Fj(v)}. Existence of a solution
requires /I to be non-singular in every point of 4. If this condition is
satisfied, then

I R

F=-H 'G. (3.2.4)
The m partitions of F'(v) are restored in A as a linear combination of the
spectra of the m sample sets. The m restored partitions are then shifted to
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)

FIGURE 3.2: A 1-D band-limited function is partitioned into m partitions in the
1-D GSE. The support of each partition has an extension of ¢.

their respective positions and the spectrum F(v) is reconstructed. Shifting
of these partitions in the v domain corresponds to modulation in the ¢
domain. Specifically,

) = / F(v)e>™tdy

Mm=1 gt (i+1)c
= Z/ Fi(1)e??™tdy
imQ ¥ —O+ic
ml
/ S [Awertmie] cizmiay, (3.2.5)
i=0

The square brackets in (3.2.5) enclose the modulation process which shifts
the partitions to their respective positions. Let E be the carrier vector:

—

E = ( 1 efmet pj2mlet eJ2m(m—1jct )T (326)

(the superscript 7' denotes transposition). Equation (3.2.5) can then be
written in the following form:

ft)= / ETFel?mitg,, (3.2.7)
A
By substituting (3.2.4) into (3.2.7), we obtain

f& =3 [ BTG erma (3.28)
A
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The product ETH"'Gin {3.2.8) generates the expression of the interpola-
tion formula for restoring f(¢). In particular, let

HTY = E, (3.2.9)
where
V=(Yolv,t) Yi(wt) ... Ymoa(wt) )"
Equation {3.2.8) becomes
() =1 / YTGel?™t qy (3.2.10)
CJA

from which the interpolation formula for restoring f(¢) results:

m-1  oc
Tyt — nT). (3.2.11)
k=0 n=—00
where .
vi(t) :Z/ Yi(v. t)el2 ™ty (3.2.12)
A

is the interpolation function for the i** sample set. Existence of the solution
requires the matrix H to be non-singular at every point in A.

3.3 M-D Extension

We now proceed to extend the 1-D GSE to M-D band-limited functions.
As will be demonstrated, the key of this extension lies in the manner by
which a period of the samples’ spectrum is partitioned. Before proceeding,
we have a brief presentation of the M-D sampling theorem in order to
maintain the notational uniformity. A more in-depth treatment is given
by Marks [590].

3.3.1 M-D SAMPLING THEOREM

The M-D sampling theorem, introduced by Petersen and Middleton [721],
is a direct extension of the Shannon sampling theorem. Let f (f} be a M-D
B-band-limited function. where £ = (t;.t5.....tx)7. Assume F(7) = 0 for
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U & B where B is a region contained within an M-D hypersphere of finite
radius B centered at the origin:

B = (7775 <B.B>0}

and 7 = (v1,v5....,vx)7. Such finite energy signals can be uniquely repre-
sented by their samples. Let the sampling lattice be denoted by the matrix—
vector pair: [V, pl. The vector §'is the offset vector of the sampling lattice
from the origin of the £ plane. The matrix
VvV = {{?”ﬁgf o BN

is referred to as the sampling mairiz. Each column vector, ¥, indicates
the direction of the it” sampling dimension and its norm is the sampling
interval in that dimension. Thus. V governs the periodicity of the geometry
of the sampling lattice. Let f() be the output function of the sampler:

o

Il

> FVi+p)s(E - Vit - ),
where

oo

DD IINTEDS

Tepom—0Q Tg==00 T = OO

i

-

and 6(f) = 6(t1)6(tz)---6(tn) is the N-D Dirac delta function. Without
loss of generality, we let 7 be the zero vector. The spectrum of f(£) replicates
periodically:

}f’({}) = Zf(zﬁ)ewg'Qmﬂ"Zﬁ

e
DY F(7-Unm), (3.3.1)

where

U= [t || - |in]
and D = 1/[V]| is the sampling density. The matrix U is referred to as
the periodicity matrix. Its N column vectors, referred to as the periodic-
ity vectors, govern the replication pattern of I3 (7). Clearly, V is required
to be non-singular. In other words, the N sampling vectors are required
to be linearly independent. An illustration of a sampling geometry of a
two-dimensional function and the corresponding replication pattern is il-
lustrated in Fig. 3.3.

A N-D cell. denoted as C, is defined as a period of £(#). For N-D func-
tions, there are many possible cell shapes. The two cells in Fig. 3.4 are

|
|
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(b)

FIGURE 3.3: A 2-D illustration of a sampling geometry and the corresponding
replication geometry.

the two possible cell shapes corresponding to a sampling matrix. Methods
of constructing these cells are discussed by Dubois [267]. Of all possible
cell shapes, the parallelopiped shape cell is the most straightforwardly con-
structed. Each pair of its parallel “legs” is constructed by a periodicity
vector. For our running example. the parallelogram cell in Fig. 3.5 is con-
structed from the two periodicity vectors.

Given the samples, the signal is restored by the following interpolation
formula:

F@) =D FVa) h(F - Vi), (3.3.2)
where ”

h(f) = —;3 /D I
and

/dﬁ:/ dz/l/ (Zl/g"'/ dvpy.
vy va vy

The region D, as shown in Fig. 3.5, is any region enclosing only the zeroth-
order replication of F/(7).

The function f(#) is said to be sampled at the Nyguist density (whose 1-D
counterpart is the Nyquist rate) if the corresponding spectral replications.
F(7), is the most densely packed of all sampling geometries [588]. The
sampling of a 2-D circularly band-limited function at the Nyquist density
is illustrated in I'ig. 3.6. The corresponding sampling geometry is hexagonal
geometry.
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(@) (b)

FIGURE 3.4: Two different cell shapes corresponding to the same periodicity
matrix.

3.3.2 M-D GSE FORMULATION

Analogous to its 1-D counterpart, the NM-D GSE starts with the parti-
tioning of the baseband cell. denoted by Cy. The baseband cell for a 1-D
2o-band-limited function is the support of the function’s spectrum, (—o, a).
For M-D band-limited functions, the baseband cell is a cell which encloses
the zeroth-order replication of F(7). In the 1-D GSE, this baseband cell is
partitioned into m identical partitions. For the M-D GSE. each leg of the
parallelopiped cell is partitioned into & identical partitions. (This restric-
tion will be relaxed later.) This partitioning of Cy gives L = kv identical
partitions. Each subcell is geometrically congruent to the cell C. And each
dimension is scaled by a factor of k.
A subcell is a cell corresponding to the sampling matrix

V,=kV.

The corresponding periodicity matrix is.

1
U,= U
Following the procedure outlined in Section 3.2 , we need to locate a sub-
cell as a reference subcell. In Section 3.2, the first partition in the region
(=0, —o +c) is taken as the reference subcell. For the M-D GSE, this refer-
ence subcell is located at one of the vertices of Co. With reference to [211],
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- B
e

FIGURE 3.5: The parallelogram cell corresponding to the replication pattern in
Fig. 3.3, B is the support of the spectrum, C the cell and D the region enclosing
the support.

this particular vertex is chosen to be at the point

DO b

N
Vo= =35> @ (3.3.3)
t=1

By denoting this reference subcell as Cgg, the it" subcell is expressed as
Co={Pl7e(CpoU,z)}: i=0toL—1, (3.3.4)

where the & denotes offset by. The vector §;, which denotes the position
of Cy;, is an N-dimensional vector of integers ranging from 0 to k — 1. In
particular, the vector ¢ is a k—ary representation of the integer 1.

N—1
=) giph?.
p=0

The partitioning of the baseband cell also partitions the spectrum F(7).
For now, we require that the support of F(7) be totally enclosed within
Cy. By positioning the partitioning mesh over F(J). we obtain L partitions
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FIGURE 3.6: (a) The hexagonal sampling locations corresponds to the N yquist
density sampling of a hexagonal band-limited function. {(b) The resulting spectral
replications.

of F(77). Let F;(7) be the partition of F(#) enclosed within the 7t* subcell,
Cgc':

Fz{ﬁ) — { F(ﬁ) ve Cg@‘

0 otherwise.

Given f (f} the common input, a total of L sample sets are collected at
the output of L linear systems: Hy(¥), k =0 to L — 1. The sample sets are
obtained with the sampling geometry [V O] The sampled function from
the output of the k** system is thus

k() = > gV m)s(f — V).

For 7 € Cgg, the spectrum of this sample set is

L1
Gi(7) =Dy Y Hp(F+U,G)F(#), k=0toL 1. (3.3.5)
=0

where F;(7) is the i** partition of F(#7) shifted to Cyo.

F(9) = F(F +U,q)
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and Dy is the sampling density of each sample set:
1 1
Dy= — = —.
SV, LY

The formulation of (3.3.5) parallels (3.2.2). Proceeding in a similar manner,
we first write (3.3.5) as
G=D,HF, (3.3.6)

where

b ~ . ~ . ~ IR T
F = (Fo(0). F1(D),.... Fr1(9))
Define the carrier vector E, whose (p + 1)t element is equal to
E, = exp( j?ﬂqTUTf) p=0to L -1 (3.3.7)

Secondly, parallel with (3.2.9), Y is solved from the following matrix equa-

tion: ~ .
HTY = E. (3.3.8)

where in this M-D extension
Y = (Yo(5.0). V4 (5. 9),.... Yo, (7.5)7.

Given Y, the L interpolation functions are obtained by

() = '1}"’ };(J.ﬂeﬂ””rfdﬁ. i=0toL—1, (3.3.9)

and the signal is restored by the interpolation formula

L-1
=2 > sVl = V). (3.3.10)

i=0 7

Equations (3.3.8) to (3.3.10) form the core equations of the M-D GSE.

3.3.3 EXAMPLES

We now consider two fourth-order (L = 4} sampling expansion examples of
a 2-D function. The support is a circle of radius A. Circularly band-limited
functions can easily be generated by passing a coherent or incoherent image
through an circular pupil [339]. In order to make the example simple. we use
the rectangular sampling geometry where the sampling matrix is diagonal:

_[12xn 0 ] .
Z—{ 0 1/-2,\J‘ (3.3.11)
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FIGURE 3.7: The rectangular cell corresponding to the rectangular sampling
geometry used in Examples 1 and 2. The circular support is enclosed within the
rectangular cell.

As shown in Fig. 3.7, the spectrum F(¥) is totally enclosed within a rect-
angular cell. The sampling matrix of the four sample sets is

[1/A 0
0 1/x
The corresponding periodicity matrix is
r

v=|*01

=910 A
The cell C is a square of dimension 2\ and the subcell C; is a square of
dimension A.
Example 1: Signal-Derivative Sampling
The four linear systems used in this example to generate the four set of
samples are respectively:

Ho(vy.vm) = 1.

Hi(v.g) = j52m4.

Hol(ipovn) = j27us. (3.3.12)
Hs(vy.vg) = —driwe = Hi(vy. ) Ha(vy, 1s).

The second and the third systems are the first-order differentiators ori-
ented in {1 and {5 directions, respectively. The fourth sample set is obtained
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by & direct array product of the second and the third sample sets. The sam-
pling density D, of each sample set is A? and the matrix H is

1 j2my 127wy — 4720119
yT - 1 j2n(vy + A) J2muy —472 (v + Mg
= 1 j2mn j2m(vg + A) —4m2%u1 (vg + )
1 j2n(vy +A) 2r(va +A) —4m? (v + A)(g + A) -

whose inverse is

. -1 —1
BT =5 %

472 (v 4+ N (o + X)) AT (i + A) 4Antu (v + X)) 4Arfuiu
—j2m(vg + A) —j2m(vg + A) —j27ue —j2mug
—j27 (v + ) j2min j2m{v1 +A)  —j2my

1 —1 -1 1

The carrier vector E in this example is
E = (1 ed2mit gi2mite eJ2mA{t+t2) )T. (3.3.13)
According to (3.3.3), the region Cyo lies at the lower left corner of C.
Cop = {(ul.z/g}] —A<v.1g < O}.
The four interpolation functions are computed by using (3.3.11).

.2 / .2 \
sin®( Aty /2) sin“(Atg/2)
yg(tl.fg) = 16 /‘\4t%t% .

s 22 .2 .

sin“(At;/2) sin“(Ato/2)
ty.t = 16 =

Yo(t1. t2) 0 X102

s 27 22 /
sin{Aty/2) sin®(Aig/2)
yolls. ¢ = 16
yo(ti.t2) )\4t§t2

win 2/ 42 /
sin“(Aty/2) sin® (Mg /2)
Yolty. L = 1€ -

Yyo(ti-12) 6 N,

. (3.3.14)

Note that the expression for the four linear systems in this example can also
be expressed as an outer product of four 1-D linear systems. Specifically,
these four linear systems are the linear systems corresponding to two 1-D
signal-derivative sampling problems.

Problem 1 :

hig(tn) =1 and hy () = j2muy.
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Problem 2 :
higlig) =1 and hyi(mm) = j2ms.

An outer product of these four expressions produces the expression of the
four linear systems used in Example 1.

ho(ty, ta) hio(t1)hao(ta).
hi(titz) = ha(t)haeo(ta),
ha(ti ta) = hiolti)ha(t2),
ha{ti tz) = hu(ty)haa(ta).

With reference to Papoulis [706], the interpolation functions for the two
problems are:

Problem 1 ;

.. 2 .9
: sin®(At;/2) sin®(Aty/2)
ylo(tl) == 4—_"-—""‘>\2t? and ygo(tg) == 4._.....)\.—22_%._.-—.—
Problem 2 :
s 2 . 9
sin”(Aty/2) sin®(At2/2)
vi(t) =4 3T, and  yoi{tz) = 4__/\272_,.

Clearly, the four interpolation functions in (3.3.14) are also the outer pro-
duct of the two sets of interpolation functions. This relationship is always
true if the expression for the M-D systems are outer products of the ex-
pression of 1-D systems.

Example 2: Interlaced Sampling

The four linear systems in this example are

holviovg) = 1.
hl(Vl 1] ) == €j277(l/1d11+u2d12)‘
ho(vi.vg) = pd2m(vida+uadaz) (3.3.15)
hg(l/l.lj2) = ejgﬁ(uld3l+u2d32).

The d;; coefficients specify the offset of the sampling locations of each
sample subset from the origin. It follows that

T _ 1.
ﬁ - ﬂlﬂ.%
where
1 1 1 1
IJ 1 ej27r/\d]1 8j27r/\d21 ej27r)\d31
=1 1 ejzﬂ/\dlg ejzﬁ)\dgg €j27'r/\d32
1 ed2ni(diitdiz)  i2nA(daitdaz) o327 A(dar+dsz)
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and
H, = diag [ 1 ef2m(vsdiitradia) 2w (vidas+radae) ej?n(uldmu?dsz)]

Given the numerical values of A and the d;; coefficients, inversion of I, can
be done numerically. In particular, let 3;;, 4,5 = 0 to 3 be the (i+1, j+1)Ek

element of [_]_{T]'l. Then, with reference to (3.3.8),

3
Yé(l/], Vs, tl; tz) == €-j2ﬁ(uld“+ugdw) Z /31']'6_7' (tl tg), (3316)
=0

where e;(t1.%3) is the (j + 1)!* element of the vector E in (3.3.13). Also.

let
ﬁl]/ / e tl t2>632ﬂ"(u1t1+u2t2)dyll/2

= i sinc(Aty) sinc(Atg)ed A ratitriata) - (3.317)

faj(t1-t2)

i

where the ordered pair (11, 7;2) is the bipolar representation (binary repre-
sentation except 0 is replaced by —1) of the integer j. The four interpolation
functions follows as

3

yilty, to) = Zfdj(tl —diy.tg — dig). i=0to 3. (3.3.18)
5=0

Clearly from this example, the evaluation of interpolation functions for 2-
D interlaced sampling is not as trivial as its 1-D counterpart. For 1-D
interlaced sampling, the matrix H, is Vandermonde [513] and therefore
the inversion can bhe evaluated straightforwardly in closed form. Whereas
in M-D interlaced sampling, this is not generally the case. The inversion
of H, in most cases needs to be evaluated numerically.

An utilization of M-D GSE is for sampling density reduction [211, 215].
A first-order reduction is illustrated by the following example.

Example 3: Sample Density Reduction

If one of the partitions of F(7). say Fy(7), is identically zero. the first col-
umn of H in (3.3.6) can be eliminated and thus the system becomes an
overdetermined system. Since, however, the system is also consistent, we
can further eliminate a row of H. Eliminating, for example. the first row.
of H also eliminates an entryv. Go(¥), from G. Thus, the sample group,
{90(¥,7)} is dropped from being used to reconstruct f (f). After all elimi-
natious, Eq. (3.3.6) becomes a system of dimension L — 1
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The double subscripts denote respectively the indices of the eliminated
row and the eliminated column. Since one sample subset is eliminated, the
overall sampling density is reduced by a factor of 1/m. Note that Fy(P) = 0
can occur even at Nyquist densities (e.g., see Fig. 3.6 for circularly band-
limited functions). If this is the case. the removal of a sample set will result
a sampling density below that of Nyquist. The subject of such sampling
density reduction is treated more fully in Part IT of this chapter.

3.4 FExtension Generalization

In this section, we will consider relaxing the formulation of the matrix V.
This relaxation can result in the creation of subcells which are no longer
congruent to the cell. In addition, more freedom in the sampling geometry
for the sample sets is allowed. We will also consider the cases where the
support of the spectrum does not match the cell shape and therefore cannot
totally be enclosed within a cell.

In a more general setting, we can express

V=Vl (3.4.1)

where M is a non-singular integer matrix of dimension N. So far we have
used Af = k. In this more general setting, L, the number of sample sets,
is equal to |Af], which may not equal to k. The subcells, in general, need
not be congruent to the cell. Consider a circularly band-limited function
being sampled at a rectangular sampling geometry whose sampling matrix
is specified (3.3.11). A sampling geometry corresponding to the sampling

matrix, }_/_g, where
1 -1
=[]

is shown in Fig. 3.8. and the corresponding subcell is a rhombus, Fig. 3.8.
Clearly, this subcell is not congruent to the square cell. For this example.
|A4] = 2 and thus L = 2.

The support of the function may not be totally enclosed within a cell.
Consider our running example again. If a circularly band-limited function is
sampled rectangularly, the support of the function’s spectrum is totally en-
closed within a rectangular cell. If the function is sampled with a hexagonal
geometry

v { /22 174 } . (3.4.2)
0 1/V3x
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FIGURE 3.8: A sampling geometry in {a) which produces a rhombus, subcell
which is not congruent to the rectangular cell as shown in (b).

which corresponds sampling at the Nyquist density. the corresponding cell
shape is a parallelogram. As shown in Fig. 3.9, the circular support is not
totally enclosed within this cell.

Restoring the function f(¢) under these two scenarios requires no extra
formulation. As can be seen from (3.3.6) and (3.3.8), the M-D GSE always
restores a period, though possibly not in the same shape of the original cell
of the spectral replications, F'(#). It is well-known that Fourier series coef-
ficients are invariant to the cell shape [268]. The Fourier series coefficients

=1

here are the samples of f(f) at locations {_\{, OJ. We can therefore restore
the function discretely by the M-D GSE:

oc L-1
R = 3T gV i)y (VA ~ Vi)
m=—ot k=0
oo L-1
Do Y eVemy (VR ~ AR)).  (3.4.3)

me==—o0 k=0

Restoring the function at those sampling locations is equivalent to restoring
the samples’ spectrum, F(7). Given that the samples are restored, the
function is reconstructed by the traditional low-pass method,

[& = 3 V(- Vi), (3.4.4)

== -0

where h(f), an ideal low-pass filter impulse response of magnitude [V],



Robert J. Marks Il, Editor,

102 Kwan F. Cheung

X

FIGURE 3.9: The hexagonal sampling geometry produces a parallelogram subcell
which does not enclose the zeroth-order replication.

extracts only the zeroth-order replication. For our running example, h(f)
may have hexagonal support, as shown in Fig. 3.10.

3.5 Conclusion

In Part I of this chapter. we have extended Papoulis’ generalized sampling
expansion to multidimensional band-limited functions. For cases where the
cells do not enclose the support of the function’s spectrum, restoration of
the function is achieved by discrete interpolation followed by a low-pass
processing.

We have also demonstrated that the GSE formulation can be utilized to
reduce sampling density if certain conditions are satisfied. We will expand
on this point in Part I1.

Part II L
Sampling Multidimensional Band-Limited
Functions at Minimum Densities

In contrast to the Nyguist density sampling which yields the most densely
packed spectral replications, the minimum density sampling vields samples
linearly independent of each other. In the following section, we will show
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FIGURE 3.10: An ideal low-pass filter with the support of a hexagon is used to
reconstruct the function from its samples.

that for 1-D band-limited functions, the two densities (or rates) are iden-
tical. For higher dimensional band-limited functions, Nyquist densities can
be significantly higher than minimum densities.

3.6 Sample Interdependency

If the shape of the support of a function’s spectrum is not a period of the
spectral replications (or the support is not a cell C), gaps exist among the
replications. For 1-D band-limited functions, the support is a period of the
replications and thus no gaps exist. For higher dimensional band-limited
functions, gaps may exist even when the function is sampled at the Nyquist
density. Consider sampling a 2-D circularly band-limited function at the
Nyquist density. The corresponding sampling geometry has a hexagonal
geometry. As shown in Fig. 3.6, gaps exist among the replications.

If gaps exist among the spectral replications, samples are linearly inter-
dependent. To show this let h(i) — H(D) be some ideal bandpass filter
whose passband is only defined in gap regions. Thus.

H(P)F(F) = 0.
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Correspondingly,

S fAR(E- Vi) =0,

Since h(f) is nowhere identically zero, by definition the samples are linearly
interdependent.

A sufficient condition for sampling a band-limited function at the mini-
mum density is that no gaps are contained among the spectral replications.
Clearly, the interdependency among samples is dictated by the support
shape of F(¥). If the support shape is identical to the cell shape, gaps
(e.g., rectangular or hexagonal) cease to exist and samples are linearly in-
dependent of each other.

The condition implies that the Nyquist rate is also the minimum sam-
pling rate for 1-D band-limited functions. For higher dimensional cases,
sampling at Nyquist densities may leave gaps among the spectral replica-
tions and hence the samples are linearly interdependent. Thus, the samples
in our running example of sampling a 2-D circularly band-limited function
are linearly interdependent.

Linearly interdependency among samples implies oversampling {588, 586,
596]. If there is no aliasing, we can straightforwardly define the oversam-
pling index as

_areaof C
" area of F(9) ©

If r = 1, the function is sampled at the minimum density. Otherwise, the
function is oversampled. The sampling of a 2-D circularly band-limited
function at the Nyquist density corresponds to r = 2/v/3 ~ 1.15 [211, 721].

For 1-D cases. every support has a corresponding minimum sampling
rate. Thus, if gaps exist in the replications, the sampling rate can he scaled
and gaps closed. This, however, cannot be applied to higher dimensional
cases. For our running example, the support shape is a circle. Clearly,
this shape does not have a corresponding sampling geometry. As shown in
Fig. 3.11, a direct down scaling of the sampling density on every sampling
dimension will result an aliased spectrum. This example illustrates that
sampling M-D band-limited {unctions at densities below that of Nyquist is
not trivial.

(3.6.1)

3.7 Sampling Density Reduction Using M-D GSE

If gaps exist among the replications and if L is large enough, the L**-order
M-D GSE allows the restoration of the function with less than L sample
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FIGURE 3.11: By decreasing the sampling period, we obtain an aliased replica-
tions. Note that gaps still exist among the aliased replications.

sets. Since fewer sample sets are used, the sampling density is reduced. If
only L—gq sample sets are used, the sampling density is reduced by a fraction
of g/L. As discussed in Example 3, given a function initially sampled at
the Nyquist density. any reduction of sample sets will immediately result a
density below that of Nvquist. We will show that the minimum sampling
density is equal to the area of the support of the function’s spectrum.

The formulation of the L**-order M-D GSE starts with partitioning the
baseband cell, Cq, into L partitions. Each partition is referred to as a sub-
cell. If gaps exist among the replications, gaps also exist in Cp. Let Ap
denotes the gap regions within Cy. If L is large enough, then a number of
the subcells, say g, will be totally subsumed within Ap. Consider the sam-
pling of the 2-D circularly band-limited function. For illustration purposes,
the function is sampled at a rectangular geometry as specified in (3.3.11).
The corresponding baseband cell is a square of dimension 2X. As shown in
Fig. 3.12, if we have k& > 7. we have subcells totally enclosed within gap
regions. In particular, for £ = 7, we have ¢ = 4 (Fig. 3.12a). For &£ = 10,
we have ¢ = 12 (Fig. 3.12b).

We will use these two cases as our running exampie in the discussion to
follow. The ¢ = 4 case will be referred to as the fourth—order case, and the
g = 12 case the twelfth—order case.

Let M be the index set corresponding to the subcells subsumed within
Ap.

M ={m|Cym € Ap}. (3.7.1)

The cardinality of M is ¢. Each subcell holds a partition of the baseband
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FIGURE 3.12: (a) The partitioning of Cy corresponds to the case of k = 7. The
total number of partitions is forty-nine, four of them are subsumed within gap
regions. (b) By increasing the total number of partitions to one hundred, k = 10,
we obtain twelve partitions subsumed within gap regions.

spectrum, F(7). Hence. the partitions of F(¥) within those subcells speci-
fied in M are zero partitions:

Fo(#)=0., me M. (3.7.2)

With reference to (3.3.6). this corresponds to ¢ zero entries within the vec-
tor F'. We can therefore remove these entries from F and the corresponding
columns from the matrix . The result is

G = D,H o F. (3.7.3)

The subscript denotes the set of the removed entries. The matrix H 5, has
a dimension of L x (L — ¢) and thus (3.7.3) is overdetermined. Since the
solution is consistent, a combination of ¢ entries in G, and q corresponding
rows in A ,,. can be deleted. Removal of ¢ entries in G corresponds to the
removal of ¢ sample sets, Let D be the index set corresponding to the ¢
removed sample sets

D = {p|{gp(V M)} removed}. (3.7.4)

Clearly, the removal of these sample sets also implies the sampling density
is reduced by a fraction of ¢/L. We thus obtain a more compact system of
dimension L — ¢ relating the non-zero partitions of F(7) to the spectra of
the L — ¢ remaining sample sets

Gp = DyHp pFum. (3.7.5)

é
S

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

3. A Multidimensional Extension of Papoulis’ Expansion 107

Note that the problem has transformed to a (L — ¢)**-order M-D GSE
problem. If Hp 44 is invertible for every 77 in the reference subcell Cyg, we
follow steps (3.3.6) and (3.3.10), and obtain the interpolation formula for
restoring f(f) from the remaining L — ¢ sample sets

B =3 gV iyf - V7). (3.7.6)

igD @

where the spectra of the L — ¢ interpolation functions in Cgo are solved
from the matrix equation

0L YD = Enm. (3.7.7)

The methodology presented here is analogous to playing a jigsaw puzzle
game. The puzzle is the spectrum F(7) and the pieces are the L partitions of
F(7). In assembling (7). the blank pieces (those partitions subsumed with
gap regions) are discarded. Corresponding to every discarded partition. a
sample set can be removed. The finished puzzle is the spectrum without
blank pieces.

Thus, if gaps exist among the spectral replications, a subset of the sample
sets can be removed. Given that ¢ subcells are totally subsumed within Ap,
a combination of g out of L sample sets can be removed from reconstructing
the function. The overall sampling density is reduced by ¢/L. The problem
of removing g out of L sample sets in a M-D GSE setting is referred to as
the ¢*"-order reduction problem.

3.7.1 SAMPLING DECIMATION

In this section, we will first demonstrate that regular sampling of f({)
can always be formulated as an L*-order M-D GSE problem. Thus. if
gaps exist among the spectral replications, F (7). a number of sample sets
can be removed without loss of information. Thus, by implementing the
decimation at the sampling stage, the function can be sampled directly at
reduced densities.

Consider the sampling of an N-D band-limited function, f(f), at some

regular geometry, [_Z. 6} The samples can be sectioned into L = kY sub-
groups in the following manner:
gp(V i) = f(V it +Vhk,). p=0toL~1, (3.7.8)

where V., = kV. The vector i.:p is an integer vector which is the k-ary
representation of the integer p (Subsection 3.3.2). Thus the p** sample
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subgroup can be obtained by sampling f(#) with the geometry [ng lgp].

Here, we identify the pt* sample subgroup as the pt* sample set in the M-D
GSE setting. The L corresponding linear systems are therefore

Hy(7) = 727 YR 5o (4oL -1, (3.7.9)
Hence,
C(5) = i2nITVE T 7 € Cyo,
p(V) = e = ;‘51 B /R E (), b= Ote L1 (3710

Equation (3.7.10) can be written in matrix form as follows:

G =D,H, H,F. (3.7.11)
where .
H, = diag |27 YRy = 0 10 L - 1} (3.7.12)
and
H, = [pqth element = eﬂ”gg’zl’/k} , (3.7.13)

Note that H, is an N~D DFT matrix and is therefore orthogonal.
T
Hy[H;]" = LI
The superscript * denotes complex conjugation. By letting

G = H[G
_ {J-zjmﬂzEFG N .
e L(P)p=0to L — } : (3.7.14)

which corresponds to offsetting the position of the p* sample subgroup by
the vector —~Vk,. we obtain ‘

G = D,H,F. (3.7.15)

Following (3.7.2) to (3.7.3), given the index set M. we delete the corre-
sponding ¢ columns from Hs in (3.7.15) and obtain

G = DyHy s Fpa. (3.7.16)
After the index set D is determined, ¢ columnns in Ha p are removed. We

thus obtain a compact system of dimension [ — ¢ relating the non-zero
partitions of F(7) to the spectra of the L — ¢ sample subgroups

Gp = Dgﬁz,M,DFD» (3.7.17)
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In the setting of sampling decimation, Eq. (3.7.7) becomes
HT \ p¥p = Enm. (3.7.18)

If Hy a4 p is invertible, we can proceed to solve for the L — g interpolation
functions. Note that every element in H, ,4 p is an Euler quantity and can
be converted into a complex number. Thus, the inversion of Hy ¢ p can
be also be computed numerically.
s e : -1
Let Gpq,p € D.qg € M, to be the pgth element of {-_H?TD,M,Q} . Then

. T T —_—
Yo(0.8) = ) Bpge?*™alet,  peD.ieCa (3.7.19)
geM
The overbar denotes the set complement. By substituting (3.7.19) into
(3.3.9), and with reference to (3.3.4). we obtain the pt" interpolation func-

tion for the pt* sample subgroup:
1 o T —
yp(f) = R Z / /quejz’thdJ. peD. (3.7.20)
9 seni” 7€Caq

The Fourier transform of yp({) yields the spectrum
— qu —
Yo (7) = Z_-B;—Hq(u). (3.7.21)
geM

where
L1 Tely,
Hq(l/) _{ 0 otherwise.

Thus, every yp(f) is a low-pass/bandpass function whose passband is de-
fined within the subcells {Cgq|¢ € M}. The magnitude and phase of Y,(7)
is staircase type over the passband, equal to |8,4] and Z08pg, respectively,
inCgq.q € M. Such functions can be implemented modularly [397).

The interpolation formula follows as:

F@ =" f(V, i+ Vi yp(f =V, — V7). (3.7.22)

p¢D 7

The existence of solutions relies on the invertibility of H, y4 p. Since
H, is a orthogonal matrix, H, 4 is an orthogonal column space. There
always exists at least a set of D such that H, », p is invertible. In other
words, there exists at least one combination of ¢ sample subgroups that
can be removed without loss of information. The sampling density is thus
reduced by a fraction of ¢/ L. If the removal of sample subgroups are directly
implemented at the sampling stage. the function is directly sampled at a
reduced density. We refer this implementation as sampling decimation.
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3.7.2 A SECOND FORMULATION FOR
SAMPLING DECIMATION

An alternate formulation presented here for sampling decimation is to treat
the removed samples as lost samples. We will formulate the interpolation
formula to recover the lost samples only, instead of reconstructing the en-
tirety of f(£), from those remaining. When ¢ < L — ¢, the computational
complexity of this formulation can be much less than that the previous
formulation.

Since H, is an orthogonal matrix, with reference to (3.7.15),

D, H) G =F (3.7.23)
or
1 S emzj“géq/kﬁj%ﬁ?w?pa (7) = F, () v e Ca,
LD, = / v W g=0toL-1.
(3.7.24)

Given Fg(¥) = 0. ¢ € M. we have

L—1

DT iy =TT
Z e27kp kq;’keﬂﬂufl{kﬂ(}p<g> = (. 7 € Cyp. (3‘7.25)
p==0

By separating the decimated sample subgroups from those remaining in
the summation. we have

Z e~2jg§gq/kejzngzEpgp<Iy) — Z 6-—2j1;pTEq/kcj2ﬁD'T}£l;pGp(&v)‘
peD pgD
ve Cy (3.7.26)

which in matrix form is
H, 5565 = H, 75 pGo- (3.7.27)

Here, H Hy w5 is formed from ¢ columns of H 2 W and therefore is a square
matrix of dimension g. If it is invertible, the spectra of the removed sample
subgroups are a linear combination of those remaining

65 = [l,3 } 27100 (3.7.28)
. -1
Let 7, be the pgt" element in the matrix product r_H_ 2T 5} “H, %o
Then o
Gp(7) = = 3 pge YRR e LeD, (3.7.29)
9¢€D
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Since
= 1 e 2B Y A
(V7)) = o Gp()e =" di. (3.7.30)
g V7€Cqo

Substituting (3.7.29) into (3.7.30), and with reference to (3.7.8), yields the
interpolation formula to recover the pt® sample set:

FWii+VEp) = D> f(V g+ V)

geD ™

X Ipq (Zg(ﬁ ~ 17) = V (kg — 1?@) (3.7.31)

where L
R jomi? P
qu(t} = 5" ~ “(’pq ] it di. (3732)
g JPelg0
We now apply this formulation to the fourth—order case example and the
twelfth—order case example discussed in Example 5.

Example 4: Fourth-Order Sampling Decimation

Consider the case illustrated in Fig. 3.12 where a circularly band-limited
is sampled at a rectangular geometry. When the samples are divided into
L = 49 sample subgroups (k = 7). we obtain ¢ = 4 subcells subsumed
within gap region. Thus, four sample subgroups can be removed and the
sampling density is reduced by a fraction 4/49 or around 8.16%.

Without loss of generality, we let A = 1/2 such that the function is a unit
circularly band-limited. Initially, the function is sampled at the rectangular

sampling geometry {K,O} where

v=[o 3]

The sampling geometry of the pt* sample subgroup is {l«fg,kp% where

Z9~7Vk {plkpg} kpi.kp2=01t06, a11c1>z7kp2+kp1

The four subcells subsumod within the gap region reside at the four
corners of Cy. The corresponding four position vectors for these four subcells
are

d

ke = (0.0)7.
ke = (6.0)7T,
ki = (0.6)7.
;;48 = (6 ()>T

The indices of these four vectors constitutes the index set M. The four sam-
ple subgroups chosen to be removed constitutes a rectangular decimation
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geometry. The four corresponding offset vectors are

B = (0,007,

Fp = (m,0)7.
frn = (0,7)%,
E7n+m = (m,n)T,

where 1 <m,n < 6. The indices of these four vectors constitutes the index
set . The matrix H, ;3 follows as

1 1 1 1
N 1 e~ J2mbm/7 1 e~ iZmbm/7
ﬂg’ﬁ’l_ﬁ = 1 1 e-—j?wﬁn/7 C—j?ﬂ'ﬁm/7
1 emi2wbm/7 e I2nbm/7 emj2ﬂ6(m+n)/7

At this decimation geometry, the inverse of H T can be found in close
form:

} _ 1
| =

{—27\75 (e=92m6m/T _ 1)(e=i2n6n/T _ 1)

e»—j27r6(m+n)/7 “e-j216m/7 “e-j27r6m/7 1

5 _Et—?ﬁﬁn/? _€—j27r6n/7 . 1 ~1
e~327r6m/7 1 €-]27r6m/7 —1
1 -1 -1 1

We obtain the four interpolation functions:
. . 1 . 1
fo,q(t1.t2) = —sinc ?[tl — kg,1] | sinc —_f[tg — kg.2]
sin( 8 [kq,1 — m]) six

0.2~ 1)
sm(-—m) '

in(5F [k
in(%Fn)
frg(tite) = sinc(%[tl — kq,I]\) sinc(-_l}[tg — (kg2 — n)})

sin(% [ky 1 — m]) sin(Zk, 5)

sin(§—’5m) 5111(67” )

(1 1
f?n,q(t1= tz) = SlllC(—T“{ﬁl i (’fq 1 )}) Sll]C<7[t2 - quz_})

sin(% kg 1) sin(%E [ky 2 — n)
sin(&m) sin(%n)
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) 1
fraemaltsvta) = —sine( 3o = Gy =)

sin(8 kg 1) sin($Fkg2)

Sin( Zm) sm(m n)

X sinc(%{tg — (kg2 — "H)

Note that the four interpolation functions are real. This is because the four
subcells subsumed within gap regions are symmetrical about the 7} — and
Jg— axes.

Example 5: Twelfth-Order Sampling Decimation

As shown in Fig. 3.12, if £ is increased to twelve, we obtain twelve subcells
subsumed with gap regions, thus ¢ = 12. The corresponding twelve position
vectors for these twelve subcells are

ke = (0.0)7,
ko= (1.0)7,
ks (8.0)7,
ks = ( 07,
E}.O - )T
kg = (9 7,
ko = (0.8)T
kso = (9.8)T
ko = (0.9)7
ko = (1,97
ks = (8,9)7
kes = (9,97

The offset vectors for the twelve manually chosen sample subgroups are as
follows:

Ey = (0,007,
ke = (4,007,
ks = (8,07,
ke = (2,2)7,
ks = (6,2)7.
koo = (0,4)7,
kg = (4,47,
kg = (8,4)7,
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ke = (2,6)7,
EG‘S = (656)T7
ko = (0,8)7,
EBQ = (978)T

The inversion of the matrix H, 3 is carried out numerically. The nu-

. -1

merical values of [ﬂ 2,74"5j are available elsewhere [211].
By truncating the extent of the L — ¢ interpolation functions. the in-
terpolation formula in (3.7.31) becomes a FIR (Finite Impulse Response)

estimation of the sample f(V 7 + Y_Ep):

D D Wi+ V)

geD MEWp n

X qu (Y—-g(ﬁ - 7?1} - Y,(}::q - Ep)) (3733)

F(V gt + Vhy)

where W, , is the extent of the FIR filter window centered at the position
of the sample f(Zgﬁ + Vikp). In particular, Wy = Wy o @ (V71 + Vip)
and Wy is the window centered at the origin:

Woo = {n"’z = (my.mq, coomy)Tmi = =M to M,i=1to N}.

The output of the FIR filter at each deleted sample’s location is the least
square estimate of the decimated sample at that location [268]. An example
of this FIR estimation is given in Chapter 4 in [211]. The quality of the
recovery of the decimated samples depends on the condition of H, 77 5.
which in turn depends on three factors: 1. the interdistance between the
deleted samples [248]. 2. the uniformity of the decimation geometry [596],
and 3. the total number of decimated samples enclosed within the FIR's
window. Ching [219] performed an extensive empirical examination on the
effect of these three factors on the quality of restoring the decimated sam-
ples.

3.8 Computational Complexity of the
Two Formulations

The bulk of computational overhead in the two formulations of sampling
decimation lies in the inversion of matrices. As mentioned in Section 3.7,
the inversion of both matrices can be carried out numerically. For the first
formulation, the matrix requires inversion of f 2. M, D whose dimension is
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L — g. For the second formulation, the matrix is I:IQ’m;ﬁ, whose dimension
is q.

If ¢ < L—gq, the second formulation will have less computational overhead
and may be more preferable over the first formulation. For the fourth-
order case, if the first formulation were used, we would have to invert a
matrix of dimension forty—five, instead of four with the second formulation.
On the other hand, for the ¢ = 12 case, the dimension will increase to
twelve and eighty—eight, respectively, for the second formulation and the
first formulation. Clearly, the second formulation is more favored for both
cases.

/ Lgo

FIGURE 3.13: An example of a spectrum with sparse spectral support. The shape
of the support is a donut shape.

For similar reasons, the first formulation is favored when ¢ > L — ¢. This
corresponds to most of Cp being occupied by Ap. As shown in Fig. 3.13, a
donut (annulus) shape spectrum is an example of such a case.

3.8.1 GRAM-SCHMIDT SEARCHING ALGORITHM

In exercising either approach to the decimation problem. we encounter a
task of deciding which ¢ sample subgroups are to be removed. As already
stated, if M is known, there exists at least one combination of D such
that either the Hj 44 p in the first formulation or HzM‘ﬁ in the second
formulation is invertible. If the inversion of both matrices | is to be done nu-
merically, the condition of the two matrices becomes important. We desire
a combination wherein the condition of either of the two matrices is the
best overall combination.



Robert J. Marks Il, Editor,

116 Kwan F. Cheung

In a ¢*-order decimation problem, the total number of combinations is
equal to LI/[(L — g)lq!]. Normally, this number can he quite large even if
g is small. Consider the fourth-order decimation problem in Example 4:
the total number of combinations is equal to 211,876. Clearly, an exhans-
tive search for the best combination is impractical. In this section, we will
discuss a search algorithm which will locate the optimal combination. The
algorithm is iterative. For a ¢**-order decimation problem, the number of
iterations is g.

Since the objective is the same regardless of which formulation is used,
we will use the second formulation in our discussion. With reference to
(3.7.25) and (3.7.26), -H—z,?\?i,ﬁ is formed by the g columns of -H—27\/T The

desired H 2,74 18 an orthogonal matrix which has the best condition. One
translation of this desired property is that the g column vectors chosen out
of H 2 7 be orthogonal or almost orthogonal to each other. Using this as the
criterion, one can apply the Gram~-Schmidt procedure to single out ¢ such
column vectors, This procedure has been successfully employed in adaptive
least mean square signal estimation [7] and neural network training [213].

The algorithm is as follows.

Let {h;]i = 1 to L} be the L column vectors off{2 w1 and {Z;]7 =1 to ¢}
be the ¢ chosen vectors. ’

1. We arbitrarily pick /i to be z.

2. The m.1 £ m < ¢ chosen vectors, {#;|l7 = 1 to m}. span a linear
subspace L,,. The projection matrix of projecting onto L, is equal
to

Ppo=F,(ELF) 7 Fr (3.8.1)
where

-

E, =[5 7]

3. The projection of every column vectors in o 707 onto L, corresponds
to a matrix product: ’

Ry =P Hy 5 (3.8.2)

1. th . F e . s .
The k (-,o}mnn vector of /. 7, 1. i the projection of the k" column
vector of H 2. A7 Onto Ly, We then form the ervor vector:

€k = Tk — I’Alk, k=1to L,

and the error norm is
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The column vector, say h, which yields the largest error norm is
chosen as Z,,.1. The projection matrix is then updated via the Gram-
Schmidt procedure:

P =P, 4+ (3.8.3)

4. Go to step 3 and repeat until m = ¢.

For the fourth-order decimation problem in Example 4, the algorithm
found that one of the best combinations is when m = n = 4, which corre-
sponds to

D = {0.4,28.32}.

For the twelfth-order decimation problem in Example 5, the algorithm

found the following twelve sample subgroups as one of the best combi-
nations:

D ={0,15.23,28,41.45,58,63.70.75,93,97}.

Clearly. this set is very different from the one in Example 5, where the set
is arbitrarily chosen.

3.9 Sampling at the Minimum Density

In this section. we consider expanding the decimation order to infinity. As
k — o0, the area of each subcell becomes infinitesimally small. The ratio
of ¢ to L approaches asymptotically to the ratio of the area of Ap to the
area of Cy:

q area of A

A (3.9.1)

k—oo L area of Gy

Let D be the sampling density after ¢ sample subgroups are removed,

D =D -gqD,. (3.9.2)
Since D = area of Cg, and also. as k — oc. gDy — area of Ap. we have
lim D = areaof C; — area of Ap
k—00

= area of the support of F{7). (3.9.3)

Thus, the minimum sampling density of a M-D band-limited function is
equal to the area of the support of the spectrum of the function.

For 2-D unit—circularly (radivs = 1/2) band-limited functions, the min-
imum density is 7/4 & 0.785. This minimum density can be achieved arbi-
trarily close by expanding the decimation order. The following table lists
the ratio of 1 — ¢/L and r, the oversampling index, as k increases.
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k| L=k gl 1—gq/L T
7 49 4 0.918 | 1.170
10 00 . 12 0.880 | 1.120

16 225 32 0.858 | 1.092
20 400 56 0.860 | 1.095
30 900 144 0.840 | 1.070
50 2,500 | 460 0.816 | 1.039
160 | 10,000 | 1976 (.804 | 1.022
o0 oc oC 0.785 | 1.000

Clearly, the sampling density approaches the minimum density as the dec-
imation order increases.

3.10 Discussion

Note that the minimum density can be achieved arbitrarily closely by the
sampling decimation technique regardless of any initial regular sampling
geometry. For our running example, this technique is applicable to both the
rectangular sampling geometry as well as the hexagonal sampling geometry,
which yields the sampling density equal to that of Nyquist. For this case,
Cheung [211, 215] demonstrated that, if & is increased to eight, one sample
subgroup can be removed. The sampling density is reduced by 1/64. After
the decimation, the function is sampled at a density below that of Nyquist.

The decimation technique can also be applied to sample multiband func-
tions {131] at the minimum rate or density. Like band-limited functions,
the support of the spectra of multiband functions is finite but fragmented.
Bandpass functions are examples of multiband functions. There are multi-
band functions of higher dimensions. In particular, the TV chrominance sig-
nal is a 3-D multiband function: 2-D spatial and 1-D temporal. Dubois [267]
posed such a challenge to sampled TV chrominance signal at the minimum
density. Dubois showed that the 3-D spectrum of the TV chrominance sig-
nal has a diamond-shaped band centered at the origin and eight smaller
diamond-shaped bands symmetrically stationed at the eight corners of a
cube. The decimation technique can be applied to close the gaps among the
diamond-shaped bands and thus avoid the unnecessary waste of the band
space.

Our decimation and the interpolation formulation is also a M-D exten-
sion of the digital signal processing methodology discussed by Crochiere
and Rabiner [236, 235]. In this sense, Part II of this chapter has laid a
foundation of extending the multirate digital signal processing to process
functions of higher dimensions, such as images.

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

3. A Multidimensional Extension of Papoulis’ Expansion 119
3.11 Conclusion

In the second half of this chapter, we have developed a sampling decima-
tion technique based on the formulation of the M-D GSE. A band-limited
function is first sampled at some sampling geometry [V.5]. If gaps exist
among the spectral replications, then, by employing the decimation tech-
nique, samples can be deleted without loss of information. The sampling
density is thus reduced. The function can be restored with the remaining
samples. The decimation can be implemented at the sampling stage such
that the function can be directly sampled at the reduced density. This
reduction can even be applicable when sampling is performed at Nyquist
densities. The minimum density is equal to the area of the support of the
function’s spectrum.
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4

Nonuniform Sampling

Farokh Marvasti

4.1 Preliminary Discussions

In this chapter we present an overview of the theory of nonuniform sam-
pling. Examples of nonuniform sampling include the loss of one or more
samples from a sampled signal, uniform sampling with jitter, and periodic
nonuniform sampling. !

One might argue that nonuniform sampling is the natural way for the
discrete representation of a continuous-time signal. For example, consider
a non-stationary signal with high instantaneous frequency components in
certain time intervals and low instantaneous frequency components in oth-
ers. It is more efficient to sample the low frequency regions at a lower
rate than the high frequency regions. This implies that with fewer samples
per interval, one might approximate a signal with appropriate nonuniform
samples. In general, fewer samples mean data compression: i.e., it signifies
less memory and processing time for a computer and faster transmission
time and/or lower bandwidth for digital transmission. This observation is
an underlying reason for some vocoders in speech data compression ap-
plication, ? sample-data control, antenna design, ® nonuniform tap delay
lines and filter design from nonuniform samples in the frequency domain.
Another potential application is in the area of error correction codes, where
oversampling and discarding the erased or erroneous samples is a potential
alternative to error correcting codes [632] . Nonuniform sampling recon-

'In each period there is a finite number of nonuniform samples which are re-
peated in other intervals. Therefore, periodic nonuniform samples can be regarded
as a combination of a finite number of uniform samples.

2A voiced sound can be represented by three or four formants which are
nonuniformly spaced in the frequency domain.

3In fact, the classical paper by Yen in 1956 [980] was motivated by antenna
design considerations reported by the same author in another paper [981].
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struction techniques are also important in the demodulation of frequency
modulated [954], phase modulated, pulse position modulated [500], and
delta modulated signals [320].

In addition, there are some cases where there is no choice but to process
nonuniform data. Some of the examples are:

1. Data measured in a moving vehicle with fluctuations in speed for ap-
plications in seismology and oceanography, where random or uniform
samples with jitter are inevitable.

2. Data tracked in digital flight control.

3. Data read from and recorded on a tape or disk with speed fluctua-
tions.

4. Data loss due to channel erasures and additive noise.

In this chapter, we address a number of interesting aspects of nonuniform
sampling including the conditions under which nonuniform samples repre-
sent a signal uniquely, evaluation of spectra from nonuniform samples, and
interpolation technigues from nonuniform samples. For a more comprehen-
sive treatment of nonuniform sampling, see the monograph written by the
author [628].

4.2 General Nonuniform Sampling Theorems

Unlike uniform sampling, there is no guarantee of the uniqueness of a band-
limited signal reconstructed from arbitrary nonuniform samples. This is
true even when the average sampling rate is equal to the Nyquist rate. For
example, suppose there is one solution to a set of nonuniform samples at
instances {t,}, and assume that it is possible to interpolate a band-limited
function of the same bandwidth at the zero-crossings {t,}. Now, if we
add this interpolated function to the first solution, we get another band-
limited function (of the same bandwidth) having the same nonuniform
samples. Thus, nonuniform samples do not specify a unique band-limited
signal. For a given bandwidth, this ambiguity is related to the set {¢,}.
Therefore, we must choose the {¢,} instances such that the existence of
a unique solution is guaranteed. A set of these sampling instances that
assures unique reconstruction is called a sampling set. We thus derive the
following lemma [758]:

Lemma 1 If the nonuniform sample locations {¢,} satisfy the Nyquist
rate on the average, they uniquely represent a band-limited signal if the
sample locations are not the zero-crossings of a band-limited signal of the
same bandwidth.
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Various authors have proposed sufficient conditions for {¢,} [541, 84].
Lemma 1 implies the following important corollary:

Corollary 1 1If the average sampling rate of a set of sample location {t,}
is higher than the Nyquist rate, the samples uniquely specify the signal and
{5} is a sampling set.

Proof The average density of zero-crossings (real zeros) of a signal band-
limited to IV is always less than or at most equal to the Nyquist rate (21)
for deterministic [903] and random signals [764]. The sampling positions,
therefore, cannot be the zero-crossings of a signal band-limited to . From
Lemma 1. we conclude that the samples are a sampling set. This has been
proved by Beutler [85] in a different way for both deterministic and random
signals.

Another interesting observation is that even if the average sampling rate
is less than the Nyquist rate. if {¢,} is a sampling set, the reconstruction
is unique. 4 This fact has no parallel in the uniform sampling theory [85].

4.2.1 LAGRANGE INTERPOLATION

To find an interpolation function corresponding to nonuniform samples, we
look at {e/“=} as a basis function in the frequency domain [85, 391]. The
basis function {e?“!»} is complete if any signal band-limited to W can be
represented in the frequency domain as

X(f) = D cae?t |fl<W (4.2.1)

n=—00

The inverse Fourier transform of (4.2.1) is

oo
z(t) = Y casincl2W(t - t,)], (4.2.2)

Thams =00

where ¢, is the inner product of x(¢) with another function ¥,(¢) — which
is called the biorthogonal of sinc[21V (¢ — ¢,)]. i.e.. [391]

n = //'Oc 2(t) W (t)dt, (4.2.3)

J =00

where

- \ e OTT (4 - 1-, ]\ =N
/CDC Ui (t) sine[21V (¢ — t,)]dt = {0? k0,

*Notice that for the case of undersampling, no band-limited signal with a
bandwidth smaller than or equal to W can be found where {t,} is a subset of its
ZEros.
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The problem with (4.2.2) is that ¢, is not in sampling form, ie., ¢, #
z(ty,) except when ¢, = nT. Equation (4.2.2) can be written in the sampling
representation as

o0

z(t) = Y z(tn)Ta(t). (4.2.4)

ns=—0oo

The above equation can be proved by multiplying both sides by
sinc[2W(t — #;)] and then integrating both sides. By invoking the Parse-
val relationship and the definition of the bi-orthogonal function in (4.2.3),
Ea. (4.2.4) is verified. The above equation cannot be of any practical use
unless some criteria can be found on {t,} guaranteeing that {e/“'»} is in-
deed a complete basis for the band-limited signal in the frequency domain.
Our previous discussion (Lemma 1) that the sampling set {¢,} cannot be
the zero-crossings of ancther band-limited signal (with the proper band-
width) also guarantees that {e/“!n} is a complete basis function. Another
hurdle is the explicit evaluation of ¥, (¢) from sinc[2W (¢ — ¢,,)]. An explicit
T, (t) is not known for a general sampling set {,. But if we limit ¢,, around
nT (where T = 5 at the Nyquist rate) such that [465]

T
t, —nT]< D < T n=20,+1,+2,..., (4.2.5)

then {e/“=} is a basis for band-limited signals in the frequency domain, ®
and U, (¢) can be shown to be the Lagrange interpolation function [698]

H(t)

Wa(t)

Uo(ty) =1, and P, (tg) # 0 for k # n,

where

Hit) = (t-to) ] (1—i>. (4.2.7)

te
k=m0, k0 k

Condition (4.2.5) guarantees the convergence of (4.2.6). ¢ H(t) cannot
be a band-limited function; however, ¥, (t) is a band-limited interpolation
function as explained by Requicha [758]. The ¥, (¢) functions, unlike sinc
functions, have their maximum at ¢ $# ¢,. This might create a dynamic

SEquation (4.2.5) is a sufficient condition. There are other sufficient conditions

discussed in [85] and [392].
6The Lagrange interpolation in this case is uniformly and pointwise conver-
gent.
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range problem when ¢, — t,_; is large [480]. In general, H (t) may not
have a closed form; however, under certain conditions, H(t) can be written
explicitly in a closed form. For some examples, see Higgins [391]. If one
replaces the sampling set {t,} by a finite set, say {tn:0 < n = N}, one
derives the classical Lagrange interpolation of polynomials of degreé less
than or equal to N. Hence, (4.2.4) and (4.2.6) can be considered as the
generalized Lagrange interpolation.

If condition (4.2.5) is not satisfied but {n is higher than the Nyquist rate
on the average and satisfies )

ltw =nT| <L < oo, |t, — tm| > 6 >0, n#m. (4.2.8)

then the Lagrange interpolation — (4.2.4) and (4.2.6)- is still valid but
the product in (4.2.7) does not converge. However. the following product
converges pointwise and uniformly:

— at t +/
Ht) = ettt —t0) [](1 = F-et/in. (4.2.9)
kA0
where
»".\1
a = N
igo U

The omission of a finite number of samples does not change the uniqueness.
and (4.2.9) is still valid.

The above Lagrange interpolation provides a general interpolation for
any sampling scheme. Indeed, many interpolating functions can be shown
to be special cases of (4.2.4), (4.2.6) and (4.2.9). The following examples
illustrate this point.

e Uniform Sampling Interpolation

The well-known Shannon sampling theorem can be derived from the La-
grange interpolation by taking the sampling set {tn} to be {nT}. In this
case, the product in (4.2.7) converges to %sin(%). Equation (4.2.6) be-
comes [590]

(—=1)™sin(Zt) ¢
\I/ (t = —*——-——-——7L- == "; > —
a(t) T nT) SHC(T n).

e Kramer’s Generalized Sampling Theorem

.Let I' = [a.b] be some finite closed interval and Ly the class of square
integrable functions over I. Suppose that for a real ¢, we have [503]

z(t) = '/; K(s.t)g(s)ds. (4.2.10)
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where g(s) and K(s.t) € Lo(I). If the sampling set {¢,} is such that
K{s,t,} forms a complete orthogonal set of functions in Lo(/), we have

¥ o0

2(t) = > a(ta)Sa(t). (4.2.11)

n=—0o0
where

S K (s, 8)K*(s,t,)ds
fz [ K (s, tn)|?ds

Sn(t) (4.2.12)
where I(*(s,t) is the complex conjugate of K(s,t). A proof of the above
interpolation is to write g(s) in terms of the orthogonal functions K*(s.1,,).
ie.,

9(s) = D cnK*(s.tn).
n=-—00
where
. f‘, s} (s, tn)ds z(tn)
" J; 1K (s.tn)]2ds fj K (s,tn)|2ds

By multiplying the above equation by K (s, ¢) and formally integrating term
by term, we obtain Eqs. (4.2.11) and (4.2.12) [440].

Zayad, 1linsen and Butzer have recently shown that Kramer’s interpo-
lation can be represented by Lagrange interpolation when the kernel
K (s, t) arises from a Sturm-Liouville boundary-value problem [999].

@ Bessel Interpolation

Candidates for orthogonal basis functions in Kramer sampling interpolation
are Bessel functions. If the function z(t) is the Hankel (Bessel) transform

z(t) = /s.]m(sz‘.)X(s)d.s"
I

where I implies that z(t) is J,,—Bessel band-limited to the interval I =
[0. W], the interpolation function is

z(t) = > l(t"><tn—t>Jm+1(tn)” (4.2.13)

n=-—oc,n5#0

where J,,,(¢) is the m**-order Bessel function of the first kind and {t,} are
the zero-crossings of J,,(t). For extensions to sampling at t, with deriva-
tives, see Jerri [440].
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To derive the above equation from Lagrange interpolation, we know
that the zero-crossings of J,,({) satisfy the sufficiency condition [940] given
in (4.2.5). Therefore, H(f) in (4.2.7) can be modified as

oo f N .
Ht) = ™ ] (1 - m)
tk
k= —00,k#0
where t™ is used because the Bessel function J,,(¢) has an mth-order zero
at t = 0. From Watson [940],

H(t) = Jn®)2"T(m+1). (4.2.14)

where I' is the Gamma function. Using jm(tn) = —Jm+1(tn). one can
derive (4.2.13) from (4.2.6) and (4.2.14),

Rawn [754] has shown that a Jp, — Bessel band-limited signal can be ex-
panded similarly to the Lagrange interpolation given in (4.2.4) and (4.2.6)
provided that |, —(n—1/4)l < 1/4d and ¢, = —t_,,mn = 1,2,... . This ver-
ifies the statement by Zayed [999] that the Kramer sampling interpolation
can be represented by Lagrange interpolation under certain conditions.

e Migration of a Finite Number of Uniform Points

Suppose in a uniform sampling scheme (sampled at the Nyquist interval
T), N uniform samples are migrated to new positions (tq, -, t,) [628]. Yen
has given an explicit reconstruction (interpolation) formula which can be
derived from the Lagrange interpolation, i.e., H(¢) from (4.2.7) becomes

1980]
fl(-2) L, () - Bpeion®

t _ i
k=1 k/ gt k>N T )

The following relations are derived if the above equation is substituted
n (4.2.6), viz.,

a(t) =D w(tm)Um(t). (4.2.15)

TILTS e O

where t,,, is equal to the nonuniform instances when 1 < m < N and is
equal to mT otherwise: ¥, (¢} is the interpolating function and is given by

[Ty -t [T, m7-i7 sine(® - m) J m <0
ﬁ; (t— zT)H (mT=ty) T | m>N

Hq#m(b mﬂ (mT=iT)  gin(ant)

: s 1<m< N,
[ L, () Snlere) T

(4.2.16)
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Yen proved the above interpolation from the uniform sampling theorem
[980].

When all the uniform samples (z(t,,); m < 0,m > N) are zero, the
interpolation function (4.2.16) represents a band-limited function interpo-
lated over N nonuniform samples in an interval of N7 having uniform zeros
outside the interval, Eq. (4.2.15) becomes

N
z(t) = Y z(tm)¥m(). (4.2.17)
el

The interpolation over N nonuniform samples is not unique. Yen used a
“minimum energy” signal criterion for unique interpolation. An interpolat-
ing function on N nonuniform samples with minimum energy ( ffzo z2(t)dt)
is

N
Umn(t) = D Cgmsinc2IV(t — 1), (4.2.18)
g=1

where agm’s are the elements of the inverse of a matrix whose elements are
sinc[2W (t, —7g)]. m.g=1.2..... N

Chen and Allebach [207] showed that this interpolation is a minimum mean-

squared estimate. Applying the projection theorem, Yeh and Stark [979]

and Calvagio and Munson [186] have shown the optimality of Yen's inter-
polation in the sense of Mean Square Error (MSE).

e Sampling with a Single Gap in an Otherwise Uniform Distribution

Let us take the special case as shown in Fig. 4.1, ie,,
f = +nT. n<0
T AGaT, n>0.
If & < T, then x(¢) is uniquely specified. The interpcolation function is

[eo}

z(t)= > @(ta)tnlt).

where
(=PI 2WA +n)
FEWHIE2WA - t)n!
\ { (n+2W¢)~L, n<0
(n+2W(A-t)"t. n>0.
where I' denotes the Gamma function.

Yen [980] actually proved the above theorem using vmiform sampling the-
ory and solving a set of infinite linear equations. However, Eq. (4.2.19) can

Uy (t) =

(4.2.19)
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bx (1)

AT e

3T 2T -T |A A+T

v
wop

FIGURE 4.1: Shifted positive uniform samples.

be also derived from Lagrange interpolation (4.2.9) although the derivation
is not as obvious.

® Pericdic Nonuniform Sampling

For a given set of V delays, 7, let the sampling times be as illustrated in
Fig. 4.2, i.e.,

k=1.2..... N.
bk = nNT + 7. n=0%1.4£2 ... (4.2.20)
_ 1
T= o

The interpolation formula is
o0 N

a(t)= Y D fltak)vnk(t). (4.2.21)

nE 00 k=l

* AMPLITUDE

~NT M NT !

FIGURE 4.2: Periodic nonuniform sampling.
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where

N sin 2ZW (¢ ¢
o = 15, i — i) : (4.2.22)
2rIV(t — tar) Hz"‘l izt S0 2R (7 — )

Unlike the sinc function. ¥,y does not take its maximmun at the sampling
times; but rather it attains its maximum between nomumiform samples.

The above equation can be derived from the Lagrange interpolation, i.e.,
we can write H(t) in (4.2.7) as (see Fig. 4.2)

Hy = [] (1 - i) . to #0. (4.2.23)

k=00

or

my = ] !..‘(1«i> I (1-}-)1’]‘..

k=0.N2N,.. N Lk [kl=1,14 N, 142N, b
(4.2.24)
Each product in (4.2.24) converges to
L 2nW
Ky sin "7 -(t — 71, (4.2.25)
where K} is a scale factor equal to K, = w{mil(?"wt )]71. which can be
determined from H(0) = 1. Hence. Eq. (4.2.24) can be wr 1tten as
=K H sm t - Tg). (4.2.26)
where K = H,‘L—Ol K. From (4.2.26) we can find H(t,), i.e.
: I\ 27’rﬂ
H(t,) = [ sin2nwi(t, — =). (4.2.27)
ki#n
Equation (4.2.6) then becomes
N sin 252 2”W t— 7
U (t) = Hk =0 (= ) (4.2.28)

27 Wt = t5) [Tppen Si0 27 W (£, — 73)

A comparison of (4.2.28) with (4.2.22) shows that these two interpolating
functions are equivalent.

Papoulis [707] has derived (4.2.22) from the generalized sampling func-
tion (see Marks [590] for an extensive discussion on Papoulis’ generalized
sampling). The periodic nonumiform samples are regarded as N different
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uniform samples of z(¢) interlaced in time {bunched samples). For the spe-
cial case when N = 2 and 1, = —7 = 7, the following relationship is
derived:
) cos 27Wr — cos 27t
z
QWW sin 2n W r
(2nT+71) 2207 —71)
. 4,2.29
8 z_; [t—2nT—T t—2nT +r1 ( )

Using Papoulis’ powerful method, one can generalize (4.2.21) and (4.2.22)
to a combination of periodic nonuniform samples of a signal at instances ¢
and samples of N — 1 derivatives at the same instances taken at 713 times
the Nyquist rate. Another application of Papoulis’ generalized sampling
theorem is a nonuniform scheme interlaced among the signal samples and
a combination of n**-order derivative samples. Cheung et al. [215, 590]
have shown that such kinds of sampling under the umbrella of Papoulis
generalized sampling theorem might be severely sensitive to noise (i.e., ill-
posed) at the Nyquist rate. They have found out that, in certain cases, by
oversampling, the sensitivity to noise goes away.

4.2.2 INTERPOLATION FROM NONUNIFORM SAMPLES OF A
SIGNAL AND ITs DERIVATIVES

The interpolation of a band-limited signal from the samples of the signal
and its derivatives was known back in 1960s [545]. Recently. Rawn [755]
has shown an interpolation based on Lagrange interpolators: the theorem
is as follows.

Let z(¢) be band-limited with bandwidth 1V and let the samples of z(t)
and its R — 1 derivatives be known at ¢,,. Let ¢, be such that |t, — nRT| <
{ﬁ. Then

o]

w0 = 3 )+ (11 ) male)

Tz 00 4

R-1
N (1-%) 2ot [T ()R (4.2.30)

where W, (t) is the Lagrange interpolator as defined in (4.2.6) and

(—1)kek a* [{ z(t) }

xltn) = —73 dtk | [, (t))R

Convergence of the series in (4.2.30) is uniform on (—oc, oc). For the case
t, = nTR, (4.2.30) reduces to the uniform derivative sampling interpola-
tion given by Linden and Abramson [545] .

0<k<R-1

t=t,
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4.2.3 NONUNIFORM SAMPLING FOR NONBAND-LIMITED
SIGNALS

We can show that certain classes bf non-band-limited signals can be rep-
resented by a set of uniform samples violating the Nyquist rate (see, for
example, Marvasti and Jain [629]). By the same token, there is a class
of non-band-limited signals that can be represented uniquely by a set of
nonuniform samples. We will discuss some special cases first and subse-
quently give a general theorem. Assume that a band-limited signal goes
through a monotonic non-linear distortion, y(t) = flz(¢)]. Although y(¢) is
a non-band-limited signal, it can be represented by nonuniform samples if
t, is a sampling set for the band-limited signal z(t). The reconstruction is
shown in Fig. 4.3. Necessary and sufficient conditions for such non-band-
limited signals have heen established [629]. Another example is a set of

y (1) 7( y(2,) x(t,) ["NONUNIFORM |*(®) y(2)
. — e ] f_l ()] SAMPLING fl 1 p—
L, INTERPOLATION

FIGURE 4.3: Reconstruction of a non-band-limited signal from nonuniform sam-
ples.

non-band-limited signals generated by a time varying filter when the input
is a band-limited signal. If the system has an inverse, then the samples of
the output(the non-band-limited signal) are sufficient to reconstruct the
signal. This non-band-limited signal is essentially a time-warped version of
the band-limited signal. A non-linear time varying example is a frequency
modulated signal that can be reconstructed from a set of samples that
satisfy the Nyquist rate for the modulating band-limited signal. e.g.. the
zero-crossings of the FAI signal [628].

Uniqueness of a non-band-limited finite energy signal (or in general an
entire function) by a set of nonuniform samples has been discussed [758].
Basically, if the sampling set ¢, cannot be the zero-crossings of a non-band-
limited signal of finite energy (or an entire function of the same class),
then the sampling set ¢, uniquely represents the non-band-limited signal.
This uniqueness theorem. however, does not give a constructive method of
interpolation of the non-band-limited signal from its nonuniform samples.

An exact interpolation for a certain class of non-band-limited signals is
possible and is the topic of the next section.
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4.2.4 JITTERED SAMPLING

By jittered samples, we mean nonuniform samples that are clustered around
uniform samples either deterministically or randomly with a given proba-
bility distribution. This random jitter is due to uncertainty of sampling at
the transmitter end. We will not consider the jitter of uniform samples at
the receiver end due to channel delay distortion.

For deterministic jitter, Papoulis has proposed an interesting method for
the recovery [701]. The problem is recovery of z(t) from the jittered sam-
ples, z(nT — pn), where p, is a known deviation from nT. The main idea
is to transform z(t) into another function g(7) such that the nonuniform
samples at t,, = nT — p,, are mapped into uniform samples 7 = n7T. Con-
sequently, g(7) can be reconstructed from g(nT) if g(r) is band-limited
(W < 5%). Now. z(t) can be found from g(7) if the transformation is one-
to-one (Fig. 4.4). Let us take the one-to-one transformation as ¢ = 7 — o(r),

x (1)

._ZT/ g ‘ z
Vol o, T 2T 1, \

(a)

42(7)

)
FIGURE 4.4: The deterministic jittered samples.

where 6(7) is a band-limited function defined as

0(t) = Z fip sine[27 Wi (1 — nT)].

=m0

where Wy < 517 is the bandwidth of #(7). Since we assume the transforma-
tion is one-to-one. the inverse exists and is defined by 7 = ~(t). Note that
8(nT) = pn and t, = nT — 6(nT). Let us assume

g(r) = afr=6(r)]
—  g(nT) = 2[nT — 8(nT")} = z(t,). (4.2.31)
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However, g(7) is not band-limited in general. But if u, and, as a result,
0, (7) are assumed to be small. g(7) is approximately a band-limited func-
tion [701] . Using the uniform sampling interpolation for g(7), we get

g(1) = Zg(nT) SillC{;:(T - nT)l .

Using the substitution 7 = (¢}, we derive

e o]

2(t) =gl ~ 3 a(t,)sinc {;%(y(t)—nnT)}. (4.2.32)

n=—00

Comparing Eq. (4.2.32) to the Lagrange interpolation (4.2.4), we con-
clude that W, (t) &= sinc[Z(v(t) — nT)]. The Lagrange interpolation and the
sinc function are both equal to 1 when t = t,. and they are both equal to
0 when t =tk # n.

Clark et al. [224] have suggested that the Papoulis transformation for
jitter (4.2.31) and (4.2.32) can also be extended to a certain class of
non-band-limited signals. If a(t) is band-limited. g(v) - in Eq. (4.2.31)
- cannot be band-limited in general and, therefore, (4.2.32) is only an ap-
proximation. But if g(7) is band-limited, then x () cannot be band-limited;
hence (4.2.32) is an exact representation for this class of non-band-limited
signals, i.e.,

o

t)= 3 altn)sinc F{;(’y(t}—ﬂT}}" (4.2.33)

T e OO

4.2.5 PAST SAMPLING

From Lemma 1. we conclude that when the average sampling rate is higher
than that of Nyquist, the nonuniform samples represent uniguely the band-
limited signal. As a special case, these nonuniform samples could be the past
samples. The past samples at a rate higher than the Nyquist is a sampling
set because no signal of handwidth W can be found that has zero-crossings
of density greater than Nyquist in an infinite interval. In fact, these past
samples could be uniform. That is, past uniform samples of a band-limited
signal that are slightly higher than the Nyquist rate uniquely represent
the signal [627. 628]. The topic of prediction by samples from the past is
discussed in depth in the chapter by Butzer and Stens in this volume.

An infinite number of samples in a finite interval also form a sampling set
for a band-limited signal. For example. the nonuniform samples at ¢, = %,
n=1,2,... form a sampling set but have no practical value since they have
the same problem as the extrapolation of a signal from the knowledge of a
portion of the signal in an interval. We show in the next section that these

kinds of sampling sets do not provide for stable restoration.

4. Nonuniform Sampling
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4.2.6 STABILITY OF NONUNIFORM SAMPLING
INTERPOLATION

By stability, we mean that a slight perturbation of nonuniform sample
amplitudes due to noise leads to a bounded interpolation error {.516]. The
necessary and sufficient condition for nonuniform samples of a finite energy

signal to be stable is [976].

E, = /ﬁa:(t)lzdtéc i lz(ta) [, (4.2.34)

s - 00

x () X g (6, 7)

FIGURE 4.5: System model for an interpolator.

—y (1)

where 2(t) is any signal band-limited to 1. and E and C are, respec-
tively, the energy of z(t) and a finite positive constant. In order to see why
Eq. (4.2.34) conforms to our definition of stability, let us take‘ the error
in the samples as e(t,). The energy of the error signal, e(t). is 51.113.11 if
the errors in the samples are small. This is because e(t) is a band-limited
function derived from a linear interpolation such as Lagrange (4.2.4) (sce
Fig. 4.5). Therefore. e(t) satisfies (4.2.34). viz.,

Eezfie(t)[thgC S Jelta)l”

Equation (4.2.34) may be derived from inequalities discussed by Duﬁin
and Schaeffer [270]. Specifically. we can show that for a condition similar
to (4.2.8), i.e.,

th=nl| <L <. n= 0,+1.£2...., (4.2.35)
Ity =tm| >0>0. n#EmM.

the following inequalities are valid:

o0 . 2
Lnzos Bl p (4.2.36)
where A and B are positive constants which depend exclusively on t, and

the bandwidth of z(t). Equation (4.2.36) implies that under the condi-
tion (4.2.35). Yoo oo [2(tn) 2 cannot be zero or infinite. The exact value
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can be calculated from Parseval relationship as will be shown later when
we get to spectral analysis of nonuniform samples.

Yao and Thomas [376] have shown that whenever Lagrange interpolation
is possible, the nonuniform samples are stable; but for cases such as past
sampling, or infinite number of nonuniform samples in a finite interval, the
sampling set {t,} is not stable.

4.2.7 INTERPOLATION VIEWED AS A
TIME VARYING SYSTEM

It is instructive to compare interpolation for uniform and nonuniform sam-
ples. Consider the system in Fig. 4.5, where g(t.7) is a time varying inter-
polating function. If the sampling process is uniform and g(t.7) is a sinc
function representing an ideal low-pass filter, the output is equal to the
input and the overall system is a linear time-invariant (LTI) system. If the
sampling process is nonuniform and the same low-pass filter is used for
g{t.7), the system is not LTI anymore but rather is a linear time varying
system. The reason is that if the input is delayed. the output is not equal
to its delayed version. In general, the output is given by
(&)

W) = [emetndr= Y altgltts). (@237

TL== e OO

where x4(7) is the sum of nonuniform impulsive samples. The overall system
(sampler and the time varying interpolator in Fig. 4.5) is modeled as

yl(t) = /00 h(t, m)z(r)dr. (4.2.38)

-0
If the nonuniform samples satisfy the conditions in (4.2.5) or {4.2.8), we

can use Lagrange interpolation. Comparing Lagrange interpolation (4.2.4)
to (4.2.37). we conclude that

glt.t,) = U,(2), (4.2.39)
where W, is defined as in (4.2.6) or (4.2.9). In this case, the output is
equal to the input (y(¢) = 2(#)), and the system h(t.7), as a whole. is
LTI - although g(t.7) = ¥(¢,7) describes a time varying system. In order

to find a relationship between g(t.7) and h{¢.7). we proceed as follows:
From (4.2.37). we have

y(t) = /_m Z 6(7 — to)g(t, tn)z(r)dr. (4.2.40)

ThE= OO

Comparing (4.2.40) to (4.2.38). we conclude that

(e}

h(t,r) = > g(t.tn)d(r —tn). (4.2.41)

T - GO
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The bi-frequency transfer function of the time varying system, h(t,7), is
defined as a bivariate Fourier transform

(e oC . .
H(f,\) = / / h(t,7)e 323 fted2mA gt dr. (4.2.42)

From (4.2.41), the bi-frequency transfer function for the interpolator be-
comes

H(f.A) ://Zg(ntn)é(vmtn)e”jgﬂftejz"’\Tdta’T. (4.2.43)

The above equation can be simplified as

H{f.A) = i D, (f)exp(i2wAty), (4.2.44)

TLHR OO0

where ®@,(f) is the Fourier transform of g(t.t,). Equations (4.2.41)
and (4.2.44) ave valid for any interpolating function including Lagrange in-
terpolation. However. since the Lagrange interpolation is exact. i.e.. y(t) =
z(t) in the system shown in Fig. 4.5. we expect to get an impulsive bi-
frequency transfer function (H(f.A) = 6(f — A)) because the output is
given by

Y(f) = /X()\)H(f,)\)d/\. (4.2.45)

In order to see this, from (4.2.39), we write (4.2.43) as

%Y

H(f,)\)z/ e”jQ”ftZ\Iln(t)eﬂ”“”dt. (4.2.46)

Since U, is an interpolating function for any signal band-limited to W, we
have

Z U, (t) exp(j2mhty) = exp(j2nAt). A < W (4.2.47)

From Eq. (4.2.46) and (4.2.47), we couclude that
H(f.A) =6(f—A). (4.2.48)

As an example. consider an ideal low-pass filter as an interpolator for a set
of nonuniform samples. Then. g(¢.t,) in (4.2.41) becomes

g(t.t,) = sinc[2W(t — t,))]. (4.2.49)

The bi-frequency transfer function can be derived from (4.2.43). The result
is

H(f.N) =) expljenta(A = f)]. If]. Al < W (4.2.50)
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If we substitute (4.2.50) in (4.2.45), we obtain the following expected result

Y(f) =) altn) exp(~j2ntaf). |f|<W. (4.2.51)

n

If the set of samples are uniform, (4.2.50) reduces to (4.2.48) for |A| < W,
i.e., the output becomes equal to the input.

Calvagio and Munson [186] have plotted the bi-frequency transfer func-
tion of different interpolating functions for a finite set of nonuniform sam-
ples. The plots give a better insight on properties of interpolating functions
on a comparative basis.

4.2.8 RANDOM SAMPLING

All the theorems we have thus far presented can also be applied to ran-
dom sampling of random signals. This has been shown by a number of
researchers [85, 90. 89].

Beutler and Leneman [90] have proven that random samples with Poisson
distribution. uniform samples with jitter. and uniform samples with a few
skips are all valid sampling sets, We shall explain these processes in the
next section on spectral analysis of random samples.

Removal of a finite number of samples [t,,. n # 1,2, ... N] does not affect
the uniqueness property of the set when the sampling rate is higher than
the Nyquist rate. This observation also agrees with Lemma 1 and Corollary
1 since removal of a finite number of samples does not affect the average
rate and hence the set [t,, n # 1.2..... N] is still a sampling set.

4.3 Spectral Analysis of Nonuniform Samples and
Signal Recovery

The spectrum of a periodic impulse train is well-known and is given below:

fe e (o2} 1 e o]
' sonT n
E 6(t = nT) — g et = — E 5( ~—>.
T f T/

n=—00 n=—oc n=—oc
where f = 2. The above equation implies that the Fourier transform of
a periodic impulse train is another periodic impulse train in the frequency
domain. However. the spectrum of a set of nonuniform impulses, in general,
is not another set of (uniform or nonuniform) impulses 7, i.e.,

o0 G

D blt—ta) = D & =G(f).

=00 TrE— 00

"The exception is periodic nonuniform samples. The spectrum consists of uni-
form but complex weighted impulses.
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The value of G(f) is not known in general. It may resemble white noise
or it may not be convergent at all. The above relationship implies that
the spectrum of nonuniform samples might be totally smeared (aliased) in
the frequency domain. This implies that we cannot use any linear time-
invariant filter for signal recovery. Although the spectrum of the form
S oo E(tn)e?¥n seems to be totally smeared in the frequency domain,
under some conditions we can determine the approximate shape of the spec-
trum. These conditions are related to the observation that jittered uniform
samples, or nonuniform samples at a much higher rate than that of the
Nyqguist, can be low-pass filtered and the original signal can be recovered
with negligible error. Before we lock into the shape of the spectra of the
samples, we develop a general theoretical background for future use.

Lemma 2 The spectrum of a finite number of nonuniform samples is
bounded and continuous and belongs to the class of uniformly almost pe-
riodic (a.p.) functions &.

Proof The spectrum of a finite number of nonuniform samples can be
represented by

N
Za:(t;g)ﬁj“"t".

k=1

Since the above equation is a finite trigonometric polynomial, it is an
almost periodic function [98].

Lemma 3 The spectrum of a set of infinite number of nonuniform samples
of an L? band-limited signal that satisfy (4.2.8) and/or condition (4.2.5) is
a bounded almost periodic function.

Proof If condition (4.2.8) is satisfied, Lagrange interpolation is possible.

8 A function f(t) is defined uniformly a.p. when, for every ¢ > 0 , there exists
a relatively dense set of translation numbers 7 of f(z) corresponding to e [98].
A translation number 7 of f(z) for each ¢ is defined as a real number such that
Ift4+7) = f(t)] € e for —oo < t < oo. The set E of all real numbers 7 that
satisfy the above condition is called relatively dense if there are no arbitrary
large gaps among 7’s or, to be exact, if some length L exists such that every
interval @ < ¢ < a+ L of this length contains at least one number 7 of the set E.

The fundamental theorem of a.p. functions state that the Fourier series of a.p.
functions is given by

SO

O = > anen, (4.3.1)

TLTm e 0

where a, = M[f(t)e’*""] = limr—co 5 fOT f(t)e™7¥ntdt | M| ) is the mean oper-
ator and wy’s are discrete real numbers.
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Therefore, the following relationship holds:
zs()Un(t) = 2(tn)d(t — tn). {4.3.2)

where x5(t) is the set of impulsive nonuniform samples. The Fourier trans-
form of (4.8.2) is

X(f) % Pu(f) = 2(tn)e 727Iin, (4.3.3)

where X,(f) and ®,(f) are the corresponding Fourier transforms of 2,(¢)
and WU, (¢). From (4.3.3), we deduce that X (f) is either a distribution func-
tion or a bounded function since ®,(f) is a band-limited function and is
zero when | f| > W. However, the set of samples of an L? band-limited sig-
nal that satisfies (4.2.8) is a square summable sequence as shown in (4.2.36).
This fact implies that X, (f) belongs to the space of signals of finite energy
over any finite interval [286].

Theorem 1 (Reisz-Fischer) To any series > x(t,)e?*™/t» for which
3, |z(tn)|? converges, there corresponds an almost periodic function which
converges in the mean (B? a.p.).

Proof See the reference book by Besicovitch [83].

Now, we can discuss the extension of the Parseval theorem to nonuniform
samples.

4.3.1 EXTENSION OF THE PARSEVAL RELATIONSHIP TO
NONUNIFORM SAMPLES

The Poisson Sum Formula for uniform samples is given by

o

> b =1 ¥ |x(p)

n=—oo i=—00

2

where {z(nT)} are samples of a real signal and {X (% L)} are samples of the
Fourier transform X (). The above equation reduces to the following when
% > 2W, where W is the bandwidth of z(t),

=%} o5} w
x(nT 2=~1~ 2())? :_}_ 2df.
> ko= [ o) T/_WIX(f)i df

7= 00 %

The above equation is the same as the Parseval relation for discrete signals
when e’“ is used instead of (f). For the extension of the Poisson Sum
Formula to nonuniform samples, see Marvasti [607].

This reference discusses the nonuniform sampling set that follows the
zero-crossings of an FM signal or the nonuniform positions of a pulse posi-
tion modulated signal.
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1t is our objective to show the Parseval relationship for a general stable
sampling set t,, that satisfies condition (4.2.8) and hence (4.2.5) . We would
like to show that

i 2 (ta)]? = -/ t)ap(t)dt (4.3.4)

TR = OO

= 1 [ xixipe

where z;,(t) is the low-pass filtered version of the nonuniform samples,

T = "IW and X;,(f) is the corresponding Fourier transform.

Proof z,(t) is obtained by the following interpolation:

aip(t) = Z x(t,) sine[2W (¢ — tn)]. (4.3.5)

7

The Fourier transform of (4.3.5) is

X0 =101 (55 ) (436)

where X,(f) is the Fourier transform of the ideal nonuniform samples (the
Fourier transform exists because of Lemma 3) and H(zw is an ideal low—
pass filter with a bandwidth of W. Substituting (4.3.6) into (4.3.4). ¥

get
L[ xnxin - | xxn Tl (55) @

/ T X)X (4.3.7)

i

After invoking the Parseval theorem for L? signals, Eq. (4.3.7) becomes

oG

/_m X(NHX2(f)df fw z(t) Z 2(tn)8(t — t,)dt
- /OG nf (o (tn)|26( — tn)dt

X pz=—oo

= Z lz(tn) 2. (4.3.8)

TL== - OO0

and we have proved Eq. (4.3.4). The Parseval relationship for uniform
samples is also a special case of Eq. (4.3.7) and (4.3.8) since Xip(f) =



Robert J. Marks Il, Editor,
142 Farokh Marvasti

[1(5)Xs(f) = X(f), for % > 21 and

i

1 [ .
7| xXnx

- .% [ 2 X (F)12df. (4.3.9)

That is, for any set of uniform or nonuniform samples which satisfy condi-
tion (4.2.8) and/or (4.2.5). we have

1 [ \ ;
7| XOxuna

o N7

z i”(tn);?ﬂ

TR e OO0

X(HXs(f)df

J-W

W
- 1/ X(F)X5()df

= T/ ’I[p t)df

4.3.2 ESTIMATING THE SPECTRUM OF
NONUNIFORM SAMPLES

Il

The Fourier series expansion of nonuniform samples can be derived as fol-
lows:

2s(t) = z(t)ay(t). {4.3.10)
where

=) 8(t — t). (4.3.11)
k

From the theorv of generalized functions, we can write
(¢ = ti) = [9(8)lolg 1)) (43.12)

provided that g(tk) =0, g(tr) # 0 and g(¢) has no other zeros than t;. One
possible g(t) can be written as

g(t) =t — kT — 6(¢). (4.3.13)
where () is any function such that ‘
gltx) =t — kT — tx) = 0.

i.e., O(tx) = tp — kT is the deviation of the samples from the uniform
positions. From (4.3.12) and (4.3.13), we get

S(t —t) = |1 — O(1)|6]t — kT — 6(¢)]. (4.3.14)
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provided that 1 # 9( } (see Marvasti and Lee [633] for the sufficient condi-
tion that assures §(t) is not equal to 1). Substituting (4.3.14) in (4.3.11),
we get
[ee}
zp(t) =11 = 6(t)] D 8[® - kT, (4.3.15)

k= —00

where @ =t — 6(t). The Fourier expansion of (4.3.15) in terms of & is

- 2
zp(t) = §1~—9(t)’~fk§, ES
L= N (2mkt  2mk6(t) ,
= T 1+2;£05 T T 7 . (4.3.16)

1 ZJ—*—'LI—Q cos(—zﬂt"——«';zﬂ‘ﬁ}
T T T T
b e b
T §31 ATTMOonIC f
.~ TN Ve .
"o 1 2
T T

FIGURE 4.6: Spectrum of nonuniform positions with unit area.

monics that resemble phase modulated (PM) signals. The index of mod-

ulation is 21’5 The bandwidth is proportional to the index of modulation

(-24;‘:]9)., the band\\ idth of 6(t) (< 57) and the maximum amplitude of 6(t),
which in our case is related to 6(tx) = tx — k7. The spectrum of z,(t)

is sketched in Fig. 4.6 for the case 1 > 6. The spectrum of nonuniform
samples can be determined from (4.3.10) and (4.3.16) i.e..

zs{t) = ;E(t)'rp(t) (4.3.17)
= z(t )ll {14—220& (—Q—Z}img—ﬁﬁ(i))}

The spectrum of (4.3.17) is sketched in Fig. 4.7 for the case 1 > §. Now if we
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FIGURE 4.7: Spectrum of nonuniform samples x,(t).

assume the bandwidth of 8(¢) is less than 712;3 the phase modulated signal
at the carrier frequency % is a narrow band PA and has a bandwidth of
approximately twice the bandwidth of 8(¢). i.e., < % Therefore, low-pass
filtering x,(t) (see Fig. 4.6 ). vields

\ 1-46
Tp, (1) = 5 (4.3.18)

where we have assumed that 1 > 6.

If the bandwidth of 8(¢t) is taken to be Wy, as long as % — Wy =W >
W + Wy, there is no overlap between the narrow band PM signal and
X(f )*(‘Te) (see Fig. 4.7). Thus. low-pass filtering the nonuniform samples,
xs(t) (with a bandwidth of TI" + 1173), gives

Ty, (1) = (1) a ;9) (4.3.19)

The above spectral analysis reveals a reconstruction method that will be
discussed in a separate section.

4.3.3 SPECTRAL ANALYSIS OF RANDOM SAMPLING

In the case of random sampling, similar results can be derived [610, 611].
We can show that the power spectrum of the random samples consists of
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the power spectrum of the original signal plus additive uncorrelated noise.
It is instructive — for the purpose of spectral analysis and signal recovery
~ to model a general random sampling process as depicted in Fig. 4.8.
This figure consists of the input signal z(¢) (deterministic or a wide sense

(@ . 4xO

\. A} | X, ()

bs(0)
Pttt H t
ty t, Ly 1 4ty
(@)
x ([
x (1) — B (1) é}—u(r)

(b)

FIGURE 4.8: (a) A general random sampling process (s(f) = § + §z,(t) is the
random sampling process). (b) The model of (a).

stationary continuous-time process band-limited to W) and the random
point process ¢ (a non-zero mean wide sense stationary process) with §(¢)
equal to the AC component and s equal to the DC component. In Fig. 4.8,
z5(t) is the random sampled process. The impulse response h(f) in this
figure is an ideal low-pass filter with a gain of 1 and a bandwidth of W.
This filter recovers the signal from the random samples z,(¢). The gain
after the low-pass filter is a scale factor. Now. z,(t) can be written as

zs(t) = Sx(t) + 5(t)a(t) = 3z(t) + n(t). (4.3.20)

The above equation implies that the set of random samples is proportional
to the original signal plus *additive noise.” It can be shown that if the
point process has a Poisson or uniform probability distribution, the noise

®By a point process we mean unit pulses or impulses at random instances 1.
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term n(t) is uncorrelated to the signal z(t). Therefore, the power spectrum
of (4.3.20) is
P:cs(f) = '§2P:c(f) +pn(f)
= FPf) + Ps(f) * Palf),

where P(f) is the power spectrum 1° and * is the convolution operator.
Equation (4.3.21) is illustrated in Fig. 4.9. The shape of P,(f) depends

(4.3.21)

4 POWER SPECTRUM

5.

/

S,

/

- f

FIGURE 4.9: The power specirum of random samples.

on the type of pulse used to represent the point process s(t). For the case of
Poisson or uniformly distributed impulsive sampling, the power spectrum
of the point process, s(t), is

Po(f) = X+ A%(f).

where 5 = A is the average number of impulses per unit time. Equa-
tion (4.3.21) becomes

sz (f) = )‘2Pz(f) + )‘Rx(o)~

where R,(0) is the total signal power. The above equation shows that
Pr(f) is the spectrum of white noise for an impulsive Poisson or uniformly
distributed random samples. Likewise, we can derive the same relationship
as (4.3.21) for rectangular pulses, random samples of variable pulse widths.
uniform sampling with some missing samples, and finally. uniform samples
with jitter [610, 611]. We have shown [611] that the mean square error of the
recovered signal decreases with increasing A. The results are summarized
in Table 4.1.  The reader should note that we have assumed that s(t) in

(4.3.22)

(4.3.23)

1%1f 2(t) is deterministic, then P, (f) = X (N2
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Type of
sampling Py, (f) Comments
1
Impulsive plf)+ ;\-rm(O) see 1

1.,
Rectangular | P.(f) + :\-Slnczf'r * Po(f) see 1 and 2

Variable 2X(1 —p)
pulse width Po(f) + {p,\z +p(2nf)? * Pe(f)

see 3

Uniform
sampling : )
B, T(1-p
with skips | Po(f)+Y  Pal f~f)+—-]—)—“Rx(D) see 3
k#0
Uniform
sampling :

Pa(f)+ TPl f = FIGCE) + HU) | sen
k#0

with jitter

TABLE 4.1: Power spectrum of random samples of z(¢).

Comments :

1. Poisson or uniform distribution: A is the average number of pulse/unit
time, x is a band-limited signal, P(f) is the power spectrum and R(0)
is the total signal power.

2. 7 is the pulse width.
3. p is the probability of having a pulse.

4. G(f) is the characteristic function {Fourier transform of the proba-
bility density) of jitter. H(f) is equal to T[G(f7) = |G(f7)|? = P,(f)].

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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the model of Fig. 4.8 has a DC component. Therefore, any point process
such as alternately reversed pulses would lose the signal component P.(f).

In summary, we have shown that nonuniform or random samples of a sig-
nal consist of the signal component and a noise term. Thus in the frequency
domain, we generally expect the original signal to be corrupted by noise.
This observation leads to practical reconstruction methods to be discussed
in the next section.

4.4 Discussion on Reconstruction Methods

There are several methods for signal recovery. We shall only discuss the

most promising ones, namely. the non-linear technique and the iterative
technique discussed in [628] .

4.4.1 SigNnaL RECOVERY THROUGH NON-LINEAR
METHODS

Equation (4.3.19) reveals that. by low-pass filtering the nonuniformly spaced
samples. we get the original signal plus an additive distortion. Compar-
ing (4.3.19) to (4.3.18). we conclude that simple division yvields a good es-
timate of the signal. The reconstruction procedure is depicted in Fig. 4.10.
As a special case of nonuniform sampling. we have considered a set of uni-
form samples where some of the samples are lost. Simulating this special
set of nonuniform samples for speech signals, we have obtained impressive
results [624]. The signal to noise ratic for a recovered speech signal from
lost samples is shown in Fig. 4.11.

The dotted line is the recovered signal using low-pass filtering as an
interpolator; the solid line is the improved signal to noise (S/N) ratio using
the non-linear technique illustrated in Fig 4.10.

4.4.2 ITERATIVE NMETHODS FOR SIGNAL RECOVERY

An iterative procedure has been proposed by Wiley [956] which can recover
a signal from a set of nonuniform pulses without any distortion after infinite
iterations. This method is an extension of demodulation of wideband FM
signals [954]. Each iteration improves the signal to distortion ratio. The
iteration is based on the theorems of Duffin and Schaeffer [270] and Sand-
berg [789]. The extension of this method to ideal ** nonuniform sampling
[622, 623], and random sampling of a random process [611] has been done by
the author. Here. we try to present a unified treatment for both nonuniform

" Other forms of sampling such as sample-and-hold, flat top sampling, and
natural sampling are also considered.
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X () = Y x(kT)8(1~KkT)

k= [i]

ngp(ﬁ x(0)

LPF -

XPlp (I)

x, ()

- ] R LPF

bx, (1) L, (1)

—— N

FIGURE 4.10: A non-linear method for signal recovery from nonuniform samples.

and random samples using the model illustrated in Fig. 4.8. The result
of low-pass filtering the nonuniform (or random) samples (Eqgs. (4.3.19)
or (4.3.20)) is '?

At) = a(t) +elt).

where e(t) is the error term. Now, if the error norm is less than the sig-
nal norm, ¥ the error norm can be reduced with additional iterations
[610. 611]. The iterations are depicted in Fig. 4.12. For the case of power
deterministic signals and random signals. the signal to noise ratio after
iterations is

7\5 =1- N, dB. (4.4.1)

Equation (4.4.1) shows that improvement is possible if 75\} > 0dB. For

instance, for Poisson random sampling, at the output of the low-pass filter,

12 After proper scaling by T for the deterministic case and 1 /& for the random
case,

®For deterministic energy signals, E. = ||¢]|? = J=2 €*(t)dt and for random
power signals S, = |le||* = E[e*(t)].
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FIGURE 4.11: S/N ratio versus the percentage of lost samples.
shown in Fig. 4.8, we have (from (4.3.23))
5 A
— = 4.4.2
N 2W ( )

We deduce from (4.4.2) that the average sampling rate should be greater
than the Nyquist rate. The above analysis gives a unified treatment to
both deterministic nonuniform and random sampling. It also accommodates
impulsive and other types of sampling (s(¢) = 5(¢)+3 in the sampling model
of Fig. 4.8 is valid for any pulse shape sampling).

For deterministic nonuniform sampling, the iterative method converges
if set t,, is relatively separable, i.e.,

(tn—H - tn) 2d>0
and
(tn, — nT)| < L.

where T is the average Nyquist interval and d and L are real positive
numbers. The above conditions are sufficient for {¢,,} to satisfy (4.2.36)
and be a stable sampling set (Eq. 4.2.34). This stability satisfies Sandberg’s
inequalities, i.e., for any pair of band-limited square-integrable signals x(t)
and y(t) [789], we have

Je el

/ (Sa — Sy)x —y)dt = K / (x —y)2dt (4.4.3)

-0
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FIGURE 4.12: The iterative method.

and

oo oo
/ (PSx — PSy)? < 1:2/ (z —y)%dt. (4.4.4)
—50 —oo
where P is the band-limiting operator and S is the sampling process.

If (4.4.3) and (4.4.4) are satisfied, according to Sandberg’s theorem, we
have |

z(t) = lim a,(t),
n—00 ’

where

k
Tni1(t) = —i;}(PSr ~ PSz,) + T, (4.4.5)
2
and

37020.

For simulation results, the reader is referred elsewhere (622, 623]. Some of
the results are shown in Figs. 4.13-4.16 and Tables 4.11-4.IV.
At rates lower than the Nyquist rate, the iterative method diverges.
The simulation is based on a low-pass signal band-limited to IV = 100 Hz.
The original signal and the ideal nonuniform samples, at the Nyquist rate.
are shown in Fig. 4.13. The nonuniform samples are initially taken at the
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Mean Square Error

1teration | Variable S&H | Constant S&H Ideal Natural
0 1.864412e-1 4.365404e-1 1.580624e-1 | 5.428200e-1
1 2.684877e-2 9.017097e-2 2.535609e-3 | 1.208514e-1
2 4.488294e-3 2.132896e-2 1.74657%e-3 | 2.655716e-2
3 1.975845e-3 6.128620e-3 1.607121e-3 | 6.746200e-3
4 2.217043e-3 2.903171e-3 1.575803e-3 | 3.343687e-3
5 2.644699e-3 2.641249%e-3 1.522073e-3 | 3.220765e-3
6 2.940791e-3 3.070048e-3 1.475997e-3 | 3.551968e-3
7 3.122244e-3 3.567942¢-3 1.439057e-3 | 3.817421e-3
8 3.233513e-3 3.97791%e-3 1.411968e-3 | 3.975198e-3
9 3.305488e-3 4.280155e-3 1.392150e-3 | 4.059322¢-3
10 3.356229e-3 4.491736e-3 1.378551e-3 | 4.101327e-3

TABLE 4.1I: Mean square error at the Nyquist rate; the nonuniform samples are

to within (%) intervals from uniform positions.

!

Mean Square Error

Tteration No. | Nyquist rate | 2x Nyquist 3x Nyquist
0 1.580624e-1 | 1.905335e-1 | 4.7484000e-1
1 2.535609e-3 | 2.485873e-2 | 4.2737980e-2
2 1.746579%e-3 | 5.125920e-3 | 1.2164360e-2
3 1.607121e-3 | 1.089340e-3 | 4.5758700e-3
4 1.575803e-3 | 7.573805e-4 | 2.1398690e-3
5 1.522073e-3 | 5.363611e-4 | 1.1480990e-3
6 1.475997e-3 | 5.348017e-4 | 5.3484040e-4
7 1.439057e-3 | 4.930233e-4 | 4.4935560e-4
8 1.411968e-3 | 4.781214e-4 | 2.7248240e-4
9 1.392150e-3 | 4.545103e-4 | 3.1401990e-4
10 1.378551e-3 | 4.353163e-4 | 2.5662360e-4

TABLE 4.1I1: Mean square error at the Nyquist rate.

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

4. Nonuniform Sampling 153
""""""" Original Signal
4 - — Nonuniform Ideal Samples
2 —
0 1 | i
-2
i
4 —
f I f I
0 0.01 0.02 0.03 0.04 0.05
sec

FIGURE 4.13: The original signal and its nonuniform samples (to within a .

Nyquist rate. The instances are chosen randomly such that |¢j, — kT) < %
This is a sufficient condition to ensure a stable sampling set. The recon-
structed signal from the ideal nonuniform samples at the Nyquist rate is
shown in Fig. 4.14 after 10 iterations. The mean square error (MSE) for
the first 10 iterations is shown in Table 4.IT under the column “Ideal.” If
we relax the sufficient condition |t — kT| < %, there is no guarantee that
the sampling set converges at the Nyquist rate. For a specific sampling
set that is to be within [t — kT| < % the iterative technique slowly con-
verges; Iig. 4.15 shows the result after 10 iterations. * When the samples
are totally random. we observe an even slower convergence as shown in
Table 4.IV. 13

Obviously, if the average sampling rate is higher than the Nyquist rate,
the convergence is guaranteed '8 and is faster. For instance, at twice or

14Pigures 4.13-4.15 are optimized for % experimentally; the optimum values
are somewhere between 0.5 and 1.

15Clearly, the results for random sampling are different for each realization of
the random samples. At the Nyquist rate, it may or may not converge. Even if
it converges, the convergence rate depends on the configuration of the random
samples. If the samples are clustered in a small interval, the convergence is slow
and the segmental MSE is high at other regions of the waveform where there are
no samples.

8 Random samples at the higher than the Nyquist rate is a sampling set and
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FIGURE 4.14: Reconstruction from ideal nonuniform samples at the Nyquist rate
(% interval).

three times the Nyquist rate, from Table 4.111 we can deduce that if the
nonuniform samples are restricted to within %./ where T is the Nyquist
interval, we have a faster convergence after 10 iterations compared to the
Nyquist sampling. This conclusion is also true for Table 4.1V where we
sample randomly at twice or three times the Nyquist rate.

The reconstructed signal from the nonuniform samples with sample-and-
hold (S8 & H- constant and variable width ) and the reconstructed signal
from natural samples ave listed in Table 4.1 *7 This table shows that for
the cases of ideal samples, the iteration converges slightly faster than other
sampling schemes. For good signal recovery, 5 to 30 iterations are sufficient
in most cases, depending on the sampling rate.

Another iterative method is shown by the method of projection onto
convex sets [979]. This topic is treated separately in this volume in the
chapter by Stark.

The iterative method can be used for interpolation of uniform samples
when some of them are lost. The signal to noise ratio for this type of

"The oscillations shown in this table for non-ideal sampling cases are due to
quantization error and approximation of a convolution integral with a discrete
one.
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FIGURE 4.15: Reconstruction from ideal nonuniform samples at the Nyquist rate
(% interval).

sampling (after low-pass filtering) can be evaluated from Table 4.1, i.e.,
St P
Ny 2T(1 —p)W’
where p. T and W are. respectively, the probability of having a sample. the

sampling interval and the signal bandwidth. At the Nyquist rate. T = 515,
we obtain

(4.4.6)

S
Ny 1-p

From (4.4.1) we know that the iterative procedure can improve upon this
process if %‘; > 1, which implies p > % This analysis signifies that less
than half the uniform samples (at the Nyquist rate) can be lost without
any loss of information. The same iterative method can be used for uniform

samples with time jitter.
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FIGURE 4.16: Reconstruction from ideal nonuniform samples at the Nyquist rate
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Mean Square Error

Iteration No. | Nyquist rate | 2x Nyquist | 3x Nyquist
0 1.672375e+0 | 4.450645e-1 | 2.719940e-1
1 1.143412e+0 | 2.49131%-1 | 9.645810e-2
2 6.669778e-1 | 1.789243e-1 | 4.881012e-2
3 9.370443e-1 | 1.405293e-1 | 2.707859e-2
4 8.414620%e-1 | 1.131710e-1 | 1.639921e-2
5 8.303990e-1 | 9.394870e-2 | 1.104171e-2
6 7.694325¢-1 | 7.923566e-2 | 8.194261e-3
7 7.596434e-1 | 6.719316e-2 | 6.596941e-3
8 7.190652e-1 | 5.758550e-2 | 5.629838e-3
9 7.089961e-1 | 4.926686e-2 | 4.992424e-3
10 6.810131e-1 | 4.243471e-2 | 4.530937¢-3

TABLE 4.1V: Mean square error for random sampling at different sampling rates.
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Linear Prediction by
Samples from the Past

P.L. Butzer and R.L. Stens

5.1 Preliminaries

If a signal f is band-limited to [—#W. 71| for some W > 0, then f can
be completely reconstructed for all values of t € R from its sampled values
Jk/W), k € Z, taken just at the nodes k/W, equally spaced apart on the
whole R, in terms of

J(t) = k}; ! ( W) w(Wt - k)

This is the famous sampling theorem, often associated with the names
of E. T. Whittaker (1915), V. A. Kotel'nikov (1933) and C. E. Shannon
(1940/49). However. K. Ogura (1920). H. Raabe (1939) and I. Someya
(1949) could just as well be associated with it. (Concerning the history of
the sampling theory see. e.g. [177. 393, 179, 558. 853, 590].)

The samples in (5.1.1) are taken not only from the whole past but also
from the future. relative to some time ¢ = t5. But in practice a function or
signal f is only known in the past, i.e., if #p is the present instance, then
only the values f(¢) for ¢t < tp are at one’s disposal. So the question arises
whether it is possible to reconstruct a signal f, at least in the band-limited
case, from samples taken exclusively from the past of tg. Obviously this is
a problem of prediction or forecasting of a time-variant process. Although
this problem is often treated in a statistical (or stochastical) frame, let us
begin by counsidering it in a deterministic setting and later carry it over
into a stochastic one.

One answer to this question is the following: If the signal f is band-
limited to [—1Vm W], then for each 0 < T < 1 one can find so-called
predictor coefficients ax, € R such that f can be uniquely determined

(teR). (5.1.1)
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from its samples taken at the instants to — 7'//W, to — 2T /W, to — 3T /W,
..., in terms of
3
Flto) = nlji};;(Lknf<tg - %T—> (to € R). (5.1.2)
This would yield the value of f at the present instance t = lo.

Here a new parameter comes into play, namely, T', which can be chqsen
arbitrarily from the interval (0, 1). Obviously, the closer T is to 1 the wx(.ler
apart are the sampling points kT/W, k € N. But in any case 'thre.san’lplmg
rate T/W in (5.1.2) is strictly greater than the Nyquist rate 1/Win (a'.l,l),
Note that the limiting case T = 1 has to be excluded here; just apply (5.1.2)
with 7= 1 and ty = 0 to the function (sin7wi¥t)/7IVL.

Concerning the proof of (5.1.2), one turns to the frequency space and
obtains by Schwarz’s inequality that (see Section 5.2.1 for the definition of
the Fourier transform f”)

il kj‘v
HOED I (t - “ﬁ*)
k=1 »

1 ™ - i : ivkT /W
o | SO = Y anne T

2

i —aW Ee=1

W /2 ¢y =T n e l? 1/2

< |f (v 2(1’0} {——-—-—/ 1- Qjne'™” dv} .
<{[ 1wl oz |

(5.1.3)

The problem of predicting band-limited signals from past samples amounts
to that of approximating the constant function 1 by (one-sided) trigonom.ev
ric polynomials 3 p_; tgn exp(ikt) in the L?[—#T, nT}-norm. By applying
a result due to G. Szegd (1920) or a more general one due to N. Levinson
(1940) one can show (see, e.g.. [855, pp. 27, 28] or [275, p. 189fL.].) tha't for
each T with 0 < T < 1 there exist coefficients ay, such that the latter inte-
gral in (5.1.3) tends to zero for n — oo and hence (5.1.2) holds uniformly
intg € R. .
Regarding the problem of the actual construction of the agy, the optimal
solution would consist in trying to minimize the right-hand side of (5.1.3)
for each fixed n. Using the orthogonality of the trigonometric system the
optimal coefficients can be found to be the solutions of the linear system

iaknsin‘n(k - )T _ sin TjT (1<j<n). (5.1.4)
(k=3J) J

It is of Toeplitz structure [369] and there exist algorithms for computing
the solution: see. e.g.. [254]. However. since these have many handicaps.
ecoveral anthare coneht to determine non-optimal coefficients agy.

k=1
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Thus L. A, Wainstein and V. D. Zubakov [932] (1962) showed that (5.1.2)
is valid with ag,(—1)¥*1(}) provided 0 < T < 1/3. This means that for
these ag, the sampling rate has to be three times as large as for the ay, of
(5.1.4). J. L. Brown Jr. [122] (1972) extended the rangeof T to 0 < T < 1/2
for the coefficient choice agn=(—1)¥*!(})(cosnT)*: the coefficients now
depend on T. Then W. SplettstoBer [855, 851] (1981/82) extended this
result even further, showing that (5.1.2) holds uniformly in {5 € R for
apn=(—1)FF ("TET1) 47k with 0 < T < Larccos (—1) = 0.5399... . This
result improves the possible sampling rate in (5.1.2) to approximately twice
the Nvquist rate, and the coefficients ay, are even independent of T. He
also constructed predictor sums for larger T'. namely, 1/2 < T < 2/3, but
the corresponding ag, are much more complicated and dependent on 7. For
a continuation of the foregoing approach of Splettstofer in the matter the
reader is referred especially to Mugler and Splettstosser [664, 666, 665, 667].
The T-independent coefficients in the range 0 < T" < 1/2 have been derived
[134]. A survey of the ficld has also been penned [170. pp. 35-43].

Now it is known that a function being band-limited is a rather restrictive
condition. In fact, beginning with band-limited functions f € I;Q(R), then
f can be extended to the complex plane as an entire function of exponential
type mW, so it is extremely smooth. Further. such a function cannot be
simultaneously duration limited, and it is the latter class of functions which
actually occurs in practice. The next question therefore is whether predic-
tion can be carried out for functions that are not necessarily band-limited.
In this respect SplettstoBer [854] showed that if the (r + 1)th derivative
U+ is uniformly continuous and bounded on R, then

! - . n ) kTN
sup | f(t) — (-—1‘“’1( )(cos ) f(t— = )|
tGR% ; ’ k ( W ):

(5.1.5)
- O((]. +cosaT)" 7! 4 (sinaT)"VIF) (0. — oc)

for each 0 < T < 1/2. Since both terms on the right of (5.1.5) contain a
factor tending to zero and one to infinity for n, 1" — oc, one has to choose
n independent of 117 (or vice versa) such that both terms still tend to zero.

The disadvantages in the prediction procedures described so far are

(i) The sampling rates are just T/W with 0 < T < 1 instead of the
Nyquist rate 1/117,

(if) The sample points depend on g (or 1), thus all the sample values
have to be computed or measured anew when the series is evaluated
for another tg.

(iii) In the case of prediction of not necessarily band-limited functions
the number of samples plus the distance between the sample points
generally has to be appropriately regulated (recall (5.1.5)).

(iv) To improve the approximation of f by the series in (5.1.2) or (5.1.5)
the number n of samples has to be increased.
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(v) Neither the sampling series in (5.1.2) nor that in (5.1.5) have the
classical convolution structure for sums as given by the Shannon
series (5.1.1). A

To avoid these disadvantages, let us try to reconstruct functions from

past samples by the convolution series

H= Y f(%)gp(thk) (5.1.6)

k=—oc0

for W — oo, where the kernel ¢ will be assumed to be continuous and
have compact support contained in [Ty, 73] for some 0 < Tp < 73. This
means that (Wi — k) # 0 at most for those & € Z for which k/IW €
(t = T1/W,t — Ty/W). so that only a finite number of samples taken from
the past will be needed to evaluate (5.1.6), and this number will be fixed
for all f, W and ¢. Increasing 17 in the series (5.1.6) will only mean that
the distance between the sample points will decrease. Further, f need not
necessarily be band-limited. Of course, the coefficients (Wt ~ &) depend
on t, but the evaluation of ¢ should be simpler than that of the signal f to
be sought.

Note that our results enable one to predict or extrapolate the value of a
signal even arbitrarily far ahead of the saunple values, at least theoretically.

Connections of the present study with the seminal work of A. N. Kol-
mogorov [497] (1941), N. Wiener [951] (1949) as well as of M. G. Krein
[606] (1954) in the subject sketched in [176]. For text book coverage of
this rather difficult approach, see, e.g., [276, pp. 2-9, 82-96, 146-278, 279-
291] and [530, pp. 3564-439]. For further literature on prediction theory
see, e.g., the extensive reference list in the commentaries on the work of
N. Wiener. edited by P. Masani [952].

Concerning possible applications, one of the main ones is to speech pro-
cessing (see Markel and Gray, e.g.. [578]). including differential pulse-code
modulation [383]. Further applications are to economic prediction and
forecasting (see Box and Jenkins [107]. to geophysics and medicine. see,
e.g., [566]).

5.2 Prediction of Deterministic Signals

5.2.1 GENERAL RESULTS

Concerning notations. let R be the real axis, Ng, N, Z be the sets of all non-
negative integers, all naturals, and all integers, respectively. For an arbi-
trary finite or infinite subinterval I C R let C(J) denote the space of all uni-
formly continuous and bounded functions f: /+— R endowed with the supre-
mum norm || fllgy=supse; |f(t)]. and C(D)={f € C(I): f™) € C(I)}
for » € Ng. The space Coo(R) consists of those f € C(R) which have
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compact support; C&? (R) is defined analogously. If g: R— R is integrable
over R with respect to Lebesgue measure (i.e., g € L*(R)). then its Fourier
transform is defined by g (v)_ (u)e'“’u du, v € R. Some elementary
properties of the respective oper a’monal calculus are collected in the follow-
ing lemma (cf. [159, Chapter 5]).

Lemma 1 o) For g € LY(R) and h € R there holds
lo(ut W) = €¥g"(v) (v e R),
b) If g € L*(R) N C(R) is such that g™ € L*(R) for some r € N, then
9T (v) = (iv)"g"(v)  (vER)

¢) If g € LY(R) is such that u"g(u) € L*(R) for some r € N, then g €
C(R) and

() = (i) g(w)] (v)  (veR).
For ¢ € Cgo(R) and f: R— R consider the sampling series
(S¢f)(¢t Z f( ) (Wt—k) (teR:W >0). (5.2.1)

Since ¢ has compact support. the series consists of only a finite munber
of non-zero terms, namely, for those & € Z for which Wt — & belongs to
the support of . It defines a continuous function of t € R for each fixed
W > 0. Moreover, one easily verifies that {5}, }w o is a family of bounded
linear operators from C(R) into itself with operator norm

156 oy = mole) (W >0).

m,() denoting the absolute sum moment of order r € Ng, namely,

m(@)= sup Z lu — k| [o(u — k).

ueR k=-—oc

We are interested in conditions on the kernel function ¢ such that

M}Q};(Sg}f}(t) =/f@t) (teR) (5.

[
Do
(2]
~—

In this respect one has:
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Theorem 1 If ¢ € Cyo(R) is such that

o0

Y, wlu—k)=1 (ueR) (5.2.3)

k=0

then there holds (5.2.2) for each function f R+ R al each point t € R
where f is continuous. Furthermore, the operator family {S§, }w>o defines
a sirong approximation process on C(R), i.e.,

Wl'igloo - S:fyfﬁc(n) =0 (f € C(R)). (5.2.4)

Proof In view of (5.2.3) one can estimate for any § > 0 and W > 0
7@ = (Sw DO

= ( >+ 2 )if(t) -—f(%})ligo(w"t_k);
IWt—ki<fW  [We—k|>6W
= 51+ 5.

say. Since f is continuous at the point ¢, to each € > 0 there exists a
§ > 0 such that |f(¢) — f(k/W)] < € for all {t — &/W]| < §. This implies
§1 < emp(p). Now take § fixed. If 1V is so large that the support of ¢ is
contained in [—61, 617], then S, = 0, and (5.2.2) follows. The proof that
{(5.2.3) implies {(5.2.4) is quite similar, since the uniform continuity of f in
this case implies that é can be chosen independently of {. =

It should be noted that condition (5.2.3) is not only sufficient for (5.2.2)
or (5.2.4) to hold but is also necessary. This can be seen by taking f(t) = 1.

In practice it may be difficult to decide whether a function ¢ € Cp{R)
satisfies (5.2.3) or not. The following lemma is useful in this respect.

Lemma 2 For ¢ € Coo(R) the condition

Nomk) = { 1, k=0 (5.2.5)
0, heZ\{0}

is equivalent to (5.2.3).

Proof By Poisson’s summation formula (cf. [159, pp. 201, 202]) there holds

oo o0

Z wlu—k)~ Z @ (2mk)et? TR, (5.2.6)

k=—oc k=—o0
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where the sign ~ means that the right-hand side is the Fourier series of
the 1-periodic function on the left. Hence, if (5.2.3) holds, then the Fourier
series of the left-hand side in (5.2.6) reduces to the term for k = 0, which
must be equal to 1. Conversely, if (5.2.5) holds, then the Fourier series on
the right of (5.2.6) is finite and hence represents the continuous function
on the left, i.e., there results (5.2.3). =

At this point one should mention that the sampling series (5.2.1) can be
regarded as a discrete analog of the singular convolution integral

(I8 F)(t)=W /i = Fe(W(t—w))du (teR;W>0). (52.7)

In fact, (5.2.1) is a Riemann sum of the integral (5.2.7). For the latter it is
well-known (cf. {159, Lemma 3.1.5]) that the condition

c,aA(O) = /oo wlu)du =1,

o 00

ie., (5.2.5) for & = 0 only. is a necessary and sufficient one for
. @ 4
Jimf = I flom, =0 (f € CR)). (528

This means that (5.2.8) holds provided (5.2.5) is satisfied for k = 0 only,
whereas for (5.2.4) to be satisfied the whole of (5.2.5) is needed. In other
words, (5.2.4) for sums implies (5.2.8) for integrals, but not conversely.

With the aid of Lemma 2 it is easy to give examples of kernels  satisfying
(5.2.3), and hence (5.2.2) and (5.2.4). The most convenient examples are
the so-called central B-splines. Recall that a function ¢: 7+~ R is called a
(polynomial) spline of order n € N (degree n — 1) with knots a; < ag <
v < ag in I, if it coincides with a polynomial of degree n — 1 on each of
the intervals (a,. a,41).

The central B-splines of order n € N are defined by

J\[n(t)s(n _1 ol jz:;)(q)j(?) (g +t-j):“1 (teR) (5.2.9)

where x7, = max{z",0}. They have knots at the points 0. £1, £2,...,£n/2
in case n is even and at £1/2. £3/2,...,4+n/2 in case n is odd, and their

support is the compact interval [-n/2,n/2]. The Fourler transform of the
M, has the simple form

e ." 2 "
Mi(v) = (“;’;2/ ) (ve Rin e N), (5.2.10)
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(see [800, pp. 67-71], [801, pp. 175, 176], [803, p. 12] or [805, §4.4]). If n = 2,

then A, is the familiar roof-function, namely, My(¢) = (1 — |¢|)+, and for
n = 3.4 one has the piecewise polynomial representations

FUt+2)2 - 3(t) + 3)2. it <3
Ms(t) =< (=]t + 2)2 F<ItI<3
0, It| > 3.
T+ 22 -3t + 12 |t <1
My(t) =< g(—[t|+2)3 1<t <2
0, t] > 2.

For higher n such representations can be deduced likewise from (5.2.9).
But it should be noted that in order to evaluate A, one usually uses the
recurrence formula (see, e.g., de Boor [102, Chapter X] or Schumaker [805,
Chapter 5])

(5 + 1) Mu1(t+3) + (5 =) Mna(t - 3)

Ma(t) = ~ . (5.2.11)
n-—1
Iy
| ﬁ\
-1 ! 1 -1 1
The B-splines My and Mjy
A
r1
-3 -2 -1 1 2 3
The B-spline My
-1
3 2 K] 1 3 3

The B-spline Ms

In order to study the basic question as to the rate of approximation in
(5.2.4), one has to assume that in addition to (5.2.3) certain higher order
sum moments of ¢ vanish.
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Theorem 2 Let ¢ € Coo(R). If for some r € N

s - L =0
Y k) = 5.2.12)
L (U }@(U ) { D', j:LZ’,.,H-,?“"}: <O :

k=—00

forallu € R, then

1 =S5 flom, < RPNy (5.2.13)
(f € CO(R): W >.0).

Proof An application of the operator va to the expansion

[ | Ny, :
o .f(y){\t) v 1 “ T { o 4
fw =Y et + =5 [ )iyt (5214)

considered as a function of u yields, by (5.2.12).

(S H)t) = f(#)
oo kywW . —
- £ [ e ) " wsore-n

k=

Now the integrals can be estimated by

kW 1 r—1 T
0w (e -e) ] e w10,

T

This immediately yields (5.2.13). =

For r = 1, condition (5.2.12) rveduces to (5.2.3). This means that (5.2.13)
for r = 1 holds already under the assumptions of Theorem 1.

Corollary 1 If o € Cyo(R) satisfies (5.2.12) for some v € N, then
(Syypr-1)(t) =pra(t)  (t€R)

for each algebraic polynomial p._1 of degree r — 1.

The proof follows by the same arguments as in the proof of (5.2.13),
noting that the remainder in the Taylor expansion vanishes for polynomials
of degree r — 1.

As in the case of condition (5.2.3) there exists an equivalent characteri-
zation of (5.2.12) in terms of the Fourier transform of .
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Lemma 3 For ¢ € Coo(R) the condition

1, k=j=0
(D @2rk)=4 0, kez\{0}, j=0 (5.2.15)
0, keZ, j=1,2.....,r—1

is equivalent to (5.2.12).

Proof One uses again Poisson’s summation formula, this time applied to
the function (—iu)?¢(u). By Lemma 1(c) one has

(if 3 =Ko=K~ 3 (D (@mk)emr

k=—o0c k=00

and then one proceeds as in the proof of Lemma 2. =

Conditions of type (5.2.5) or (5.2.15) are to be found in connection with
finite element approximation: see, e.g., Fix and Strang [297].

The foregoing approach can be generalized to kernels having unbounded
support; [767], [170, Section 4.1, 4.2]. Reconstruction of signals in terms
of splines using a finite number of samples from the past as well as from
the future has also been considered [150]. It is also possible to approximate
functions having jump discontinuities by sampling sums [163].

5.2.2 SPECIFIC PREDICTION SUMS

In this subsection we use series of type (5.2.1) in order to predict a signal
at time ¢ € R. provided that only sample values f(k/W) for /W < t are
known. In order to apply the results of Subsection 5.2.1 one has to assume
that the support of the kernel function ¢ is contained in (0, oc), since in
this instance (1t — k) vanishes for all k with £/W > ¢, and so the series
(5.2.1) can be rewritten as

(SHHm= Y. f(7)pWt-k)  (FeR:W>0.  (5216)
/W<t

The problem now is to construct kernels ¢ satisfying (5.2.12) for different
values of 7 having support contained in (0. oc). The following theorem gives
a general approach to this problem, starting off with the B-splines A/, of
(5.2.9).
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Theorem 3 Forr € N, r > 2, let €0 < €1 < -rr < gry be any given

real numbers, and let ayp. 1 =0,1,... 7 — 1. be the unique solutions of the
linear system

-1 . ] 1 ()
Zayr(—zay)j = (MA) (0) (1=01.....,7=1), (5.2.17)
u=0 T '

where i = +/=1. Then

r—-1

er()=Y auM(t—¢,) (teR) (5.2.18)

u=0

18 a polynomial spline of order r satisfying (5.2.12) and having support
contained in [gg — /2.6, +1/2]. 4

Proof The assertion concerning the support follows from the correspond-
ing property of the B-splines. In order to show that (5.2.12) holds. the
equivalent characterization of (5.2.12) by Lemma 3 will be used. For this
purpose, consider the Fourier transform of ., namely, (cf. Lemma 1(a)),

( r—1

on(v) = Af:(v)i Z awe_ie“”} =: M, (v)p(v).
I

=0

Obviously one has that () (27k) =0 for k € Z \{0and 0<j<r—1
by (5.2.10). Furthermore, since -

rl )
P(v)(O) = Zayr(“ifﬂy’ - (/;}J (0) (r=0.1....r-1)

by (5.2.17), one has immediately

()9(0) = i(ﬁ)(wﬂ%)(}\—}\)M@

=0 T
1\W
= | M —=] (0)
M,
_ =0
0, 1<j<r—1.

This completes the proof. =
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To solve the system of linear equations (5.2.17), the derivatives (1/M;))(0) -

(d/dv)? ({(v/2)/sin(v/2))"|y=0 need to be known, at least for smaller values
of . This can be achieved with the,aid of the expansion

v/2 \T & (r=1-2k)! z2*
(sinv/?) . ;}('”k e LT 2R

(lv] < 2m),

where t(r, k) are the central factorial numbers of the first kind ([164, 165],
[771, Chapter 6]). Since M, is an even function, the right side of (5.2.17)
vanishes for j odd. Hence the imaginary unit ¢ can be cancelled out, and
the solutions a,, are always real.

. Hool 1] 23| afs
2 | 1] o | — | — ] — | -
3] 1] o ;11 S B
4 1 | o % o | — | —
5 1 0 = |0 % _
6 | 1| o % 0 g 0

1 ()
TABLE 1: (Kf) (0) for r =2,3,4.5,6: j=0,1.2,...,r — 1.

T

Corollary 2 Given any r € N, one can construct a kernel ¢, € Cog(R)
with support in (0.00) such that the associated generalized sampling series
approzimates all f € C(R) with order O(W™"), W — oc. Moreover,
the kernel ¢ can be chosen such that the number of samples needed for the
evaluation of the series is v + 1 at most.

Proof Taking ¢ > r/2 in Theorem 3 yields a kernel ¢, with support in
(0,00), and the generalized sampling series built up from this kernel has
the required order. Furthermore, choosing, e.g., g = r/2+ 1 and £, =
r/2+3/2, then the associated , has support in [1,7 +3/2], and one easily
verifies that @(1Vi — k) # 0 for r + 1 integers. k at most. =
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Observe that it is an open question whether there exists a closed form
of the solutions ayr, p = 0,1,...,7 — 1, of (5.2.17). So far the construction
can be used in actual practice only for smaller values of r. However, as we
will see below, even the case r = 2 gives a pretty good upper bound for the
approximation error, namely, 15| f”|| oR) Ww-2,

Let us now consider what sample values are needed in order to evaluate
the series (5.2.1) in case the kernel ¢ = o, is of type (5.2.18). If one
sets Tp=¢q — /2, T1=¢,_1 + /2. then the support of ¢, is contained in
[To, T3], and moreover [Tp.Ty] C (0.2c) provided one chooses g9 > /2, to
be assumed in the following. So to approximate f(¢) by the series (5.2.1)
with ¢ = ¢, sampling points k/W taken exclusively from the interval
[t—T,/W,t—Tp/W] will be needed. This means that the last point required
lies at least Tp/11 time units previous to the time ¢ for which one wishes
to determine f(f). One can expand the interval (t — Tp/W.t) by enlarging
€g; this implies an enlargement of Ty for W > 0 fixed. In this process
the moments m, () increase. however, so that the upper bound for the
approximation error (5.2.13) grows. This is not surprising. In fact, it can
be shown that m,.(p) behave like &f.

In the following, the kernels ¢, for r = 2, 3,4, 5 are constructed according
to Theorem 3, where ¢g is chosen as r/2 + 1 if r is even, and as /2 + 1/2
if r is odd. The other ¢, are taken as ¢, = ¢, +1, u=0.1.....7 - 2,

More specifically, if 7 = 2, eg = 2, so that [Ty, T1] = [1.4], then the
system (5.2.17) reads, noting Table 1,

agz  + aj;2 = 1,

—*Qialg - Sialg = 0.

The solution is agz = 3. a;p = —2, giving the kernel
walt) =3 M5(t —2) - 20L(t—3). (5.2.19)

Thus if one would want to predict the signal f(t) fort € (5/W, (j+1)/W),
any j € Z, the associated sampling series S;,’;f [ would cousist of three terms
only, namely, those for k = j—3, j —2, 7 — 1 for which t — 4/ < &/W <
t—1/W <t. If /e C(R), then

1S5 f = flle < 15)1 /" [leW 2.

Hence vaz f enables one to predict a signal at least 1/¥ units ahead with
error O(W'~2). Note that my(p,) < 30. (This estimate for my(2) as well
as the corresponding estimates for the kernels below were calculated nu-
merically by using a computer.)

Now take r = 3, o = 2. so that [Tp. T3] = [1/2,11/2]. The system
(5.2.17) then reads

aps  + a1z + a3 = 1,
—2ia03 - 3'i(113 - 4ia23 = O,
~4ags  ~ 9a13 — 16az = 1
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which has as solutions ags = 47/8. a13 = —62/8, aq3 = 23/8. So
\ 1 \
pa(t) = {47 My(t = 2) — 62 My(t — 3) + 23 M(t ~ )},

the sampling series now consisting of those k € Z for which ¢ — 11/2W <
k/W < t—1/2W < t, thus of five terms at most. Concerning the approxi-
mation error, one has in particular that

If = 55 flle < 841/ "leW™* (/" € C(R)).

since ma(ws)/3! < 54.
In case r = 4, gg = 3 one has [Ty, 71| = {1, 8]. By solving a system of four
equations in four unknowns one can readily show that

ea(t) = %{115]&14@ ~3) — 256 ALy (t — 4)
+ 203 My(t — 5) — 56 My (t — 6)}.

This time the series consists of seven terms at most, namely, those k € Z
for which t — 10/1V < k/TV < t — 1/W < t. In particular. if f® ¢
C(R), then the corresponding rate of approximation can. in comparison
with the first examples, be improved to O(1 %) with O constant given
by 970§If(4)1§C{R). Let us finally take » = 5, g9 = 3 so that [T, 73] =
[1/2,19/2]: then

1

= 5767 Ms(t — 3) — Ms(t — 4
1152{367671 5(t — 3) — 108188 M5 (¢ — 4)

ws(t)
+ 127914 My(t — 5) — 70268 Ms(i — 6)
+ 14927 Ms(t — 7)}.

Here nine samples will be needed. the order of approximation being O(117 %)
provided f) € C(R). The constant in the order is however very large: in
fact ms(ws) /5! < 3600.

We conclude these considerations with a slight generalization of the ker-
nel @y of (5.2.19). If one would take r = 2 as above, but ¢g > r/2 = 1
arbitrary and 7 = g¢ + 1, then [T, T3] = [eq — 1.60 + 2] C (0,0¢), and

992,£g(t,\i = {1+ ¢gg)Ma(t — gg) — egMa(t — o — 1).

In particular, ifgg = 8 and t € (/. (j+1)/W) for any j € Z, the sampling
series based on the kernel (3 g consists of three terms at k = j — 9, j — 8,
j — 7, for which &/T1" < t — 7/ < t. So the kernel ¢y 5 allows one to
predict at least 7/117 units ahead. The moment mq(p28) is, however, much
larger than in the case g = 2, in fact mo(p2,5)/2! < 612. This procedure
can be applied to all kernels constructed above, and it would enable one to
predict a signal arbitrarily far ahead. at least theoretically.
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The choice of €, made above is of course not the only possible one, but
choosing €,41 = ¢, + 1 the sampling series based on the kernel ¢, can be
rewritten as

k=—0C )}
[eS] -1
—— k — )
"= { 2 aurf{ W’L >}M’(m —&o — k)
k=—o0 p=0
Ny r—1
k _ u 4 £ §
-2 { 2 a“’f(”W) }Mr(‘"?”vf -e—k)  (5.2.20)
k=Ny \ p=0

with Ny = [=1/2 — g + Wi] + 1 and Ny = [r/2 —gq + W] + 1, [z]
denoting the largest integer < z. Representation (5.2.20) is very convenient
for computational purposes.

Table 2 gives the kernels ¢, for » = 2,3,4, 5, and g as just constructed.
The entries in the second column give the number of samples needed for
the evaluation of (5.2.20), whereas the third column contains an estimate
for the constant m.(p,)/r! in (5.2.13). In the rightmost column. one has
the best possible order of approximation which can be achieved according
to Theorem 2.

Kernels r  Samples Order
w3 (¢)=3 Mz (t-2)—2 Mz (+-3) 3 15 OWw—2?)
w3 (t)=4 {47 Ma(t-2)—62 M3(t-3)+23 M3 (t—4)} 5 54 ow ™)
wa(t)= 4 {115 My(t-3)—-256 My (+-4)+203 My(t-5)} 7 970 oW
@5 (t)= 7 {36767 Mp (+-3)—- 108188 My (+—4)+127914 My (+-5) 9 3600 ow=%)

— 70268 Ms (t-6)+14927 M5 (t-7)}
w2,8(t)=9 My (t-8)—8 Mz (t+-9) 3 612 ow—?)

TABLE 2: . for v = 2.3,4,5, and @28

It is worthwhile to note that the foregoing kernels have nothing in com-
mon with the familiar bell-shaped kernels normally used in approximation
theory. For example, the kernel o has the piecewise polynomial represen-

tation
0, t<lort>4

3t—3. 1<t<2
13-5t 2<t<3
2% -8 3<t<d

©a(t) =
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For the other ¢, such representations can readily deduced from (5.2.9).
Note that for the evaluation of the o, one should make use of the recurrence T40
formula (5.2.11) rather than of the piecewise polynomial representation.
+30
t, +20
13 +10 L//‘\
r T f } : t Ay +
1 5 10
T1 171
+-10
1 5 1 6 20
-2 1 +-30
The kernel 2 The kernel ps
1 +10
~ The kernel g3 -8
+6
rd
+15
+2
+10
| 5 T T L R é’ T T T 10
\ L
f T L] T é \1/“‘1
+-4
1-5
-6
1-10
+-8
T-15 The kernel @25
+-20
The kernel @4
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5.2.3 AN INVERSE REsuLT

At this point one may ask whether it is possible to construct other kernels ¢
based on polynomial splines of order 7 such that the order of approximation
is better than those for the kernels constructed by the method of Theorem
1. The answer to this question is given by the following inverse-type result.

Theorem 4 Let ¢ € Coo(R) be any kernel consisting of piecewise poly-
nomials of degree v — 1 for some r € N, r > 2. with knots at the points
ag < a1 < -+ < Ay for some m € Ng. Then for each s € Ng with s < r
and each € > 0 there exists a function f* € C9)(R) such that

1" = St S llomy # OV ™75 (W — ).
Moreover, if for some [ € C(R) there holds
If =S fllem, =oW™") (W =), (5.2.21)

then fis a constant.

The first part of this theorem shows that when using spline kernels one
cannot approximate the elements of the whole class C(®)(R) with a rate
better than Q1 7*). In its second part the theorem states that for spline
kernels of order r the best possible order of approximation which can be
achieved for non-constant functions f is O(W "), even if f is arbitrarily
smooth.

The remaining part of this section is devoted to the proof of this theorem.
To this end we introduce the concept of a medulus of continuity. It is defined
for fe C(I)and r € N by

wr(b: f;CI))= sup AL f ey (6> 0). (5.2.22)
[h|<é

where A} f is the difference of f of order r, namely,

T S '
(ArH(0= ;“”J(k)f““” BrThEl hem,
G, elsewhere

Note that the right-hand side of {5.2.22) can be replaced by
Supgcp<s | A4S lloqy in view of the identity

(ARNE) = (1) (ALf)(E + h).

Whereas the results of the previous sections give upper bounds for the
error occurring when approximating by generalized sampling series, the
next lemma gives a lower bound in terms of the modulus of continuity.
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Lemma 4 Let ¢ € Coo(R) be as in Theorem 4. Then for each f € C(R),
we (WL £:0[0,0¢)) < (2+4r/d)" sup || f — ST flicp,eo)(W > 0) (5.2.23)
Vew

for some d > 0 depending on  only. The same result holds for C[0.00) in
(5.2.23) replaced by C(~o0,0].

Proof The assumptions upon  imply that for each f € C(R) the series
Sf f considered as a function on [0, o¢) is a piecewise polynomial of degree
7 — 1 having knots at the points 0 < by < by < b3 < -+, where the b, are
of the form b, = a, + j with g € {0.1..... m} and j € Z. Thus, setting
by =0, Svf, f coincides with an algebraic polynomial p,_1 of degree r — 1
on each interval Iy (v)=[b,/W. b, 1/W]. v € Ny, W > 0. Hence, since
(ATp,_1)(t) = 0 for all t,h € R, it follows that (A}S%, f)(t) = 0, provided
¢ and t + rh belong to the same interval Ty (v).

Now,lett € R and 0 < h < d/2rW, where d > 0 is the minimal distance
between two consecutive points b, and b,.41. There exists a vy € Ny such
that t € Iw(vp). Let us distinguish the cases t < (by, + byo+1)/2W and
t > (by, + bug+1)/2W. In the first case, t + rh € Iy (vg) too, implying

HARN®) S AR = S MO < 271 = Sy fllcfo,o) (5.2.24)

in view of the considerations made above.
In the second case, choose Wi=b,,.1/t.
Then, by (byy + byg+1)/2W <t < byyq1/W, one has W < Wy < 21 and

buo+l b;/ +2
S =t <t trh < 2
T T
the right-hand inequality following from
b 1 d b 41 T d by, +2
t+rh < oy Yo < etz
TS Sy Taw W W

Hence, t and t + rh belong to Iy, (v+1), and one obtains, as above,

(AN < 27 11] = S5 Fllciome)- (5.2.25)

Noting that ¢ € [0, oc) was arbitrary and that Wy > W, the inequalities
(5.2.24) and (5.2.25) can be combined to give

wy (d/2rW: f:C[0.00)) < 27 sup ||f — Sy Fllcio,ce)-
VW
This proves assertion (5.2.23) since (cf. [461, (2.4)])
we(8: £2C(D) < (1 + A" we (A6 f1C()) (6, A > 0).

The case C'(—o0,0] can be treated by considering f(—t) and ¢(—t). =
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Proof of Theorem 4. Let 1,5 and 0 < ¢ < 1 be given. Since the case
s = r is contained in the second assertion, one can assume s < r. For
those s and ¢ there exists a function f* € C{)(R) which is 27-periodic
and satisfies

we(6: fC(R)) = OEF/%) (6 — 0+),

where the exponent of § cannot be veplaced by a larger one: see [900,
pp. 77,337 | and [461, (2.7)]. Now, if there would hold

1" = Sp flom) = OW™7%) (W — ),
then Lemma 4 implies
wp(8; f*: C[0.00)) = O(5°TF) {6 — 0+).

which is a contradiction to the choice of f*.
Concerning the second assertion, condition (5.2.21) yields again hy
Lemma 4 that

wr(8; f:C[0.00)) = o(W™T) (6 — 0+).

Hence by [461, p. 291] the function f is a polynomial of degree r—1 on [0, o0)
which must be a constant since it is bounded. The same considerations for
the interval (—oc. 0] show that f is a constant even on R. =

5.2.4 PREDICTION OF DERIVATIVES f(*) BY SAMPLES OF f

The aim of this section is to show that the derivatives f{*) of a signal f
can be predicted by the derivatives (S;';, 1) e, by

(SN ) =W i f(%)p(s)(Wt—k), (5.2.26)
k=—cc

thus by samples of f only, provided the kernel ¢ belongs to Cég)(R) and
satisfies (5.2.12) for some 7 > s.

Lemma 5 Let je Ng.rseNwithj.s<r—1.Ifp e Cé?(R) satisfies
(5.2.12), then

e , (—=1)°st, j=s
> (k) e (u—k) = CY (5.2.27)
0, j#s.

k=00
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The proof follows by mathematical induction or by Lemima 3, noting that
in view of Lemma 1(b), (¢) and Poisson’s summation formula,

(=Y (= kPe =k ~ 3 () @) e

k=—o00 k=00
(5.2.28)
The counterpart of Theorems 1 and 2 for the approximation of derivatives
now reads:

Theorem 5 Letr,s € N, s <r—1, and assume thal ¢ € C’ég)(R) satisfies
(5.2.12).
a) If f: R—R is such that f(9)(t) ezists for some t € R. then

(S NO() = fO).

lim
W—o0
b) Furthermore, one has

Jim (|7~ (S5 HOllew) =0 (f € CUR)),

and there holds the error estimate

(8
E} 8 Tn“'f’ "?7 ) T J—r+8
179 = (SN logy < T oy wer

(f e COR): W > 0).

Proof Since f(®)(t) exists, one has the representation
2.
fluw) = Z—i—;—!g—)(u_t)”—F(u~t)sp(u — ) (v e R)
=0

with p: R~ R satisfying limy.q p(u) = p(0) = 0. Now let £ > 0 be given.
Choose § > 0 such that |p(u)] < ¢ for all |u| < 6. Then it follows by (5.2.27)
that

(Sé'izf)(”(t):ﬂ”’if (:),<t) i (% —) Ot~ )
v=0 T k=—oo
SO . s 3
+we S5 (% -1 p(-{‘”— =) e (Wt = k)

= e OO

=fOW+ Y (k- Wt)sp(%} - t) (Wt — k)

k=Wt <6W
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for all W > 0 so large that the support of ¢ is contained in the interval
[—6W, 6W]. This yields part (a) since lp(k/W —t)] <€ for. all k£ in gues-
tion, implying that the absolute value of the latter series is bounded by
emg(™).

(io(fceriling the proof of (b), choose & > 0 such that FE ) —FO(y) < e
for all |t—y| < 6. An application of (5.2.26) to the Taylor expansion (5.2.14)
with r = s yields, in view of (5.2.27) for all W sufficiently large,

S HOH = Y f(m)e V=)

o= Wi|<6W
we KW k =1
= > FOw) (s —v) dyoP Ve —h).
(s T k—wil<sw Ut
So one obtains again by (5.2.27) that
( % £\(s) W Y@ - 1O
0w - SENOOl= ooy 2 | P01

x (k — Wy)*~dy o' (Wt - k;)]

ems (')

0
_5_ T S LA (T Y] <
<5 STt — kP PO (Wt - k) £ —

T k=—o0

This establishes the first assertion of part (b). The proof of the error esti-
mate is similar to that of Theorem 2, applying now (5.2.26) to (5.2.14) as

it stands. =

Examples of kernels satisfying the assumption of Theorem 5 are (3,
@4 and s of Table 2 with s < 1, 5 < 2 and s < 3, respectively. The
associated sampling series (SfVT f )(3) again only need samples from the past.
This means that these series can be used to predict the derivatives f(8) in

terms of samples of f. o
Let us consider the kernel o3 in more detail. Since the derivatives of the

B-splines can be calculated according to the formula
M) = M_q(t +1/2) = My _1(t — 1/2) (te R).

which can be easily deduced from (5.2.10) and Lemma 1(b) (see also
Schoenberg [803. p. 12]). it follows that

oh(t) = %{47]\[2@~3/2)-109A12(t—5/2)
4 85 My(t — 7/2) — 23 My(t — 9/2)}.
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Hence it follows by Theorem 5 that for f € C®)(R)
”W'kz f(ﬁ;)%”s(Wt - k) = f'Olemy = O(W™2), (W — ).

This result enables one to predict the derivative f'(f) in terms of a series
which involves just five samples of f which all lie to the left of 1 —1/2W < ¢.

5.2.5 RounD-OfFF AND TIME JITTER ERRORS

When setting up the sampling series (5.2.1) it may happen that one does not
have the exact sample values f(k/WW) at one’s disposal but only rounded
values f(k/WW). differing by mp=f(k/W) — f(k/W) with |ng| < 7. for all
k € Z and some 7 > 0. In digital signal processing this is the case when, for
example, the sample values are replaced by the nearest discrete (quantized)
values,

In this respect one is interested in the error occurring when f(t) is ap-
proximated by the series

(SeH= > Fk/W)p(Wt = k).
k=-—00

This error can be split up in the form

I£() = S F(@6)] < (1) = (S D]+ (Qnf)(). (5.2.29)

The first term on the right is the error arising when the exact sample values
are used, and the second term is the so-called total round-off or quantization
error, defined by

Qnf(1)=1(Sy £)(2) = (S H(@)]-
Now the latter one can be estimated by
1@uf)ley = 5w | - mep(Wt = k)| < mmol).
teR ' oo

meaning that the maximal error due to rounding is, apart from a constant,
as large as the maximal difference |f(k/W) — f(k/W)|, k € Z.
Hence (5.2.29) can be replaced by

INf— S;/JF“C(R) <|If- Si'}fllc(ﬁ) + nmo(@). (5.2.30)

where the first term on the right-hand side can be estimated further by the
bounds given in Subsections 5.2.1 and 5.2.2.
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It may also happen that the samples cannot be taken at the instants k /W
but at (/W +68;), the sampled values now being f{k/W + 6 ). These errors
in timing give rise to the so-called total time jitter error

1 o0 . k 20 k
=] 3 F(55)elwt =) - P 1 (55 + 66 (Wt = k).
=00

=5 - 00

Assuming that |8 < é for all k € Z and some 6 > 0, this error can be
estimated using the mean value theorem in terms of the derivative of f,
namely,

S0
e f oy < sup { sup 17(5) = f(t+ 80l p s S lsp(t = k)
= ez LR :engw (5.2.31)
< smo@) I lomy.

So the jitter error essentially depends on the smoothness of f. For the
associated approximation error it follows that for each f € C(R)

HOREDYS f(%m - 5,‘;)@(1" ' _k)HC(R)
k=—00

Using the concept of moduli of continuity introduced in Subsection 5.2.3
the right-hand sides of (5.2.31) and (5.2.32) could also be rewritten in terms
of wi(é: f; C(R)) instead of Hf/HC(R)' The resulting estimates would then
hold for each f € C(R) rather than for f € C(R) only.

The results of this section show that the sampling series Sy, f are much
more stable in regard to round-off or time jitter errors than is the classical
Shannon series. This is due to the fact that the S;’;, define linear operators
that are uniformly bounded with vespect to W > 0. whereas Shannon's
series does not. For round-off and jitter error in connection with Shannon’s
series, see [170]. also [144], and the literature cited there.

5.3 Prediction of Random Signals

5.3.1 CONTINUOUS AND DIFFERENTIABLE STOCHASTIC
PROCESSES

Given a probability space ({2, A. P), a real-valued stochastic (random) pro-
cess, namely. an A-measurable function

X=Xt =Xt w)
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of win € for each t € R, belongs to L2(Q). if the norm

X(1)]?)}/? (5.3.1)

j]X(t")HZE{/QiX(tf‘*’)?ZdP(w)}l/ZE{E(

is finite for all t € R. X is said to be weak sense stationary (w.s.s.) if its
autocorrelation function (a.c.f.)

Rx(t.t+7)= /Q X(t,w) X(t+ 7.w)dP(w) (5.3.2)

is independent of t € R. i.e,, Rx(t.t+7) = Rx(7). Note that for w.s.s.
processes Rx(7) is an even function with sup, R |Bx(7)] = Rx(0). In
particular, the norm (5.3.1) is independent of ¢ and equals {Rx(0)}/2. A
process X € L2(0) is called continuous in the mean (ian.) at ig € R if

. o , 1/2
gl_l;%{/ﬂ])&(fo -+ hu)) *—X(t{),w){QdP(w‘)} = {}.

and differentiable i.m. at {5 € R if there exists a process X' € L2(Q)) such
that

X'(tg,w)[Q a’P(w)}l/Q -

lim {/ {X(to +hw) ~ X(to,w) _
Q

h—0 h

Higher order derivatives X () are defined iteratively.

Lemma 6 Let X € L?(Q) be a w.s.s. process and s € N.
a) The following conditions are equivalent:

(i) X is continuous i.m. at some tg € R,

(ii) X is continuous i.m. on R,

(iil)  Rx € C(R).

b) The following conditions are equivalent:

(i) X©) egists i.m. at some to € R,

(i) X ) exists i.m. on R,

(i)  Rx € C?)(R).

Furthermore, if X(s) exists, then it s w.s.s. too. and
Ry = (—=1)*RZ,

F<3rj a proof of this lemma see Splettstdsser [849] or Papoulis {710, Section
9-6]. '

%f X is a w.s.s. process, then continuity (differentiability) i.m. at some
point fg € R therefore implies continuity (differentiability) i.m. for all
t € R. So one can simply speak of a continuous (differentiable) process.
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5.3.2 PREDICTION OF WEAK SENSE STATIONARY
STOCHASTIC PROCESSES
When dealing with random signals one often uses stochastic processes which

are stationary in the weak sense as a model. For the prediction of such a
process X € L?(Q) let us consider the sampling series

o0 .
k : \
(85 X)(tw= Y X(ﬁ;.,u.r)p(ﬂ"i —k)  (teRwe). (533

=00

It defines a family of bounded linear operators mapping L2(Q) into itself,
satisfying

I550 1= { > Re(i

,[i—"—'OO

1/2
)L,D(H”f - k) (Wt - ;L)}

< mo(){Rx(0)}? = mo(2)| X |l2-

For the proof of the main result of this section an auxiliary operator is
needed, namely,

e = Z f(

kyp==—o0

B) oWt —k)p(it = p)

(te R:W > 0),

where f € C(R) and ¢ € Cpo(R). UW is a bounded linear operator from
C(R) into 1tself with operator norm HUWH Ry < {mo(p)}2.

Lemma 7 Let ¢ € Coo(R) satisfy (5.2.12). Then
170) = Uy HOL < KIF N emyW
(feCOR):te R:W >0) (5.3.4)

for some constant K independent of f, t and W.

Proof Let f € C")(R). Similarly as in the proof of Theorem 2 one obtains
by Taylor’s expansion

(U £)(8) = £(0)

-1 o0 v
:Z_;L' f(”)(()){ ) (kl;f‘) Q(W’tmk)ga(ﬂftwu)}

kp=—occ

0 (k)W s -
Z (r— 1 / f(r)(y)(kwﬂ -) y

k o
X (Wt — kyo(Wt — p).
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An application of the binomial formula to (b — )" =
1)]¥ shows that the first double series vanishes by (5
follows by an easy estimate of the integrals. e

[(k—Wt)+ (Wt -
.2.12), and (5.3.4)

Concerning the convergence i.m. of S;;,X toward X one has:

Theorem 6 Let v € Cho(R) satisfy (5.2.12) with r replaced by 2r for
some r € N. If X € L?(Q) has a derivative i.m. of order r, then

{B(IX = S5, XY < K{B(XTP)P W= (te R:W >0) (5.3.5)

with K independent of X and V.

Proof The left-hand side of (5.3.5) can be rewritten in terms of the op-
erators U;’;, and SV"’V and the a.c.f. Rx as

E()X — S§,X[?) = (U Rx)(t) — 2(Sy, Rx)(t) + Rx(0)

(5.3.6)
< (U, Rx)(t) = Rx (0)] + 2|Rx (0) — (Sf, Rx)(2)].
Since the a.c.f. Rx belongs to C®")(R) one can apply Lemma 7 and The-
orem 2 with 2r instead of r. This gives

(X - S5, XI%) < KRS | oy W ™" = KIX O3 w2

which is just (5.3.5). =

Concerning applications, the best possible order of approximation ac-
cording to Theorem 6 for the kernels ¢, of Table 2 is O(1W 1) in the case
of vy and 3, as well as O(W ~2) for the kernels 4 and 5.

For error estimates in terms of a suitable modulus of continuity see [175,
176]. For the approximation of w.s.s. stationary processes by the original
Shannon series, see Splettstosser [850].
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6

Polar, Spiral, and Generalized
Sampling and Interpolation

Henry Stark

6.1 Introduction

In this chapter we collect a number of results related to polar, spiral, and
generalized non-uniform sampling. In most cases we shall not give proofs
since those are often lengthy and the proofs are given in other places. A
number of polar sampling theorems and their proofs are given in [858]. How-
ever, these are of limited application since they involve sampling the func-
tion at zeros of Bessel functions. A notable exception is the uniform sam-
pling theorem which has applications in computerized tomography (CT).
Another result with application in medical imaging is reconstruction from
samples along spiral scans. This result was motivated by and has appli-
cation in magnetic resonance imaging (MRI). A generalized reconstruction
formula from non-uniform samples is given in Section 6.4. The derivation of
this result is based on the powerful theory of projections onto convex sets
(POCS) also known as the theory of convex projections. Other results on
non-uniform sampling theory are given by Marvasti in a recent book [628]
as well as in a chapter by him in this book.

6.2 Sampling in Polar Coordinates

6.2.1 SAMPLING OF PERIODIC FUNCTIONS

Let f(t) satisfy the Dirichlet conditions, be periotic in ¢, with period 7.
Assume that f(t) satisfies a Fourier series expansion of the form

K
)= Gl ¥, (6.2.1)

k:’K
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fe., Cp =0 for | k |> K. Then we say that f(¢) is band-limited to highest
(radian) frequency wy, = 3-’%—"{ In that case we can reconstruct f(¢) from

the interpolation formula

sin[#(t — 1Ts)] o
1ty = Zf(ZT ) (2K + 1)sin[&(t - ITy)]’ (6.2.2)

=0

where T, the sampling interval, is Ty = ?27{:—) This result is given in [858]
but apparently is known in the digital signal processing community. It is
a straightforward exercise, using the same technique as in [858}, to show
that (6.2.2) can easily be extended to

Nl sin[£-(t — IT)]

(t) = IT, : .
f\f) s f( T) D[%(f _ ZTS)}

(6.2.3)

where N is any odd integer with N > 2K + 1. For interpolation in azimuth.
the argument ist =8, T =m. t, = % and (6.2.3) takes the form

= 271\ sin{= (9 ]
= N ) Moo= T (6.2.4
f(0) =0 f ( N ) Nan{—g—(gm )’ ,_ )

For N even. the derivation of the interpolation formula is given in [864].
The result is

= (27rl> sin[2(NV - 1)(6 — Z54)] (6.2.5)
P Nsmb—( 2’” ] -
A compact formula valid for arbitrary N, N > 2K, is the following:
f) = NZ 0T sin[Z (2 + 1)(t — IT})] 6961
® — Nsin[Z(t—ITy)] o)
As before, for interpolation in azimuth, we let ¢+ = 8.7 = 27,7, = e,g
and Eq. (6.2.6) takes the form
1
27l sin 6 — 2zi) .
- Zf( j\;) i il ) (6.2.7)
= 4 N 5111{§(9 - MZ\TH

All these results are derived in [864]. It turns out that for N large,
Egs. (6.2.4) and (6.2.5) give approximately the same results except when 6
is near zero or a multiple of 27. When precision at those points is needed
or when N is small, it is important to use the correct formula
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Equation (6.2.4) can be used to interpolate in azimuth a function f(r,8)
in two polar variables: radius r and azimuth 8. Thus given the sample points

fr2nk/(2K + 1))k =0,....2K we obtain as a reconstruction formula
2K
27k
,0) = ( . 8), 6.2.8
.0 =38 (rgiey ) w0 (629
where

(6.2.9)

oo (g 2Tk ) smPEO - )
7 >:U< h21(+1> (2K +1)sin[3(8 — 5255)]

JK+1
This result is rather obvious from the earlier formulas. A somewhat cum-
bersome formula, of limited utility. for interpolating in both r, 8 when the
function is both radially and angularly band-limited is given in [858]. Eq.
(5.2). We repeat it for the reader’s interest without proof. Thus let f(r.8)
satisfy the angular bandwidth constraint
K
F0.0)= > Calr)e™ (6.2.10)
n=-—K
and let its Fourier transform satisfy F'(p,8) = 0 for p > a. Also define Z,;
to be the ith zero of J,(+), the nth-order Bessel function of the first kind:
finally define ay,; = Z,;/a as the scaled zero associated with Z,;. Then it
is proven in [858] that

oc 2K
v ) — P ~1
f(r,6) = ZZf( ao:. zr+1>%( (2K +1)
i=1k=0
+ 22K + 1) ZZZ}’(QM 2K+1)‘I’m‘(?")
n=1 i=1 k=0
2wk
- ) 211
X COS {n( T 1)] (6 )
where
; )
®,(r) = 2aniJn(ra) (6.2.12)

aJns1(ania)(al; —r2)’
The sample points are proportional to the interlaced zeros of the first K
Bessel functions of the first kind. The interlacing refers to 0 < apy <
Ons11 < Qpz < Gpe12 < --- . forn = 0,1,... . To use the sampling
theorem, the zeros could be 5‘co1ed m a Computol or computed by using a
zero-finding algorithm [3], p. 371.

To the best of the author’s knowledge there are very few instances in the
real world where it would be advantageous or serendipitous for sampling
to occur at zeros of Bessel functions. Of much greater interest is a polar
interpolating formula that uses sample points uniformly spaced in radius
and azimuth. Such a formula is oiven next.
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6.2.2 A FORMULA FOR INTERPOLATING FROM SAMPLES
ON A UNIFORM POLAR LATTICE

If a function f(z) is band-limited to W, its Fourier transform. F (u). satisfies

F(u) =0, |ul>W. (6.2.13)

For such a function, the Whittaker-Shannon sampling theorem shows that
f(z) is completely determined by instantaneous samples uniformly spaced
with intersample period X, such that X, < 1/(21%7). At points otiler than
the sampling points, f(z) is given by the interpolation formula

floy= 3 f(nX,)sinc (L:X”X) , (6.2.14)
In particular if X, = 1/(21¥). then
/ 2 . 7 i
() = E — | sine |2W [z — — 2.15
g ) n=-—0go f KQH) s LQH (1 2H')J ’ (6.2”10)

Now consider a function of two variables f (r,8). If the Fourier transform
F(p, d)? O.f f(r.6) satisfies F(p,¢) = 0, p > W and f(r.8) is angularly
band-limited to K, then we can apply Eqgs. (6.2.14) and, say, (6.2.5) in

succession to obtain
! oc
=/ n 27l n
I <-— _) sinc2W (7 — —
P 2W N ( 2W )
y sin[(N — 1)(9 — 2zly]
sin

N

f(r.0) =

) A
N sin[d (9 — ) (6.2.16)

where 0 < 6 < 27 and r > 0 if 7.6 represents polar coordinates., N is

assumed even and f( 757 —2-1"\—}1) is given by
n 2l
Fln2my f(gﬁj'“fv)’ n=0
oW N T ) (6.2.17)
-1 2l |
oI +7, n<(.

We "nf)te that Eq. (6.2.17) is a consequence of the fact that the samples
are originally collected on a bi-polar coordinate system (7, )} where —oc <
7 <oc and 0 < Q < 7. The relation between 7 and r is

,::{7’ itd=0

—r ifO=Q4 (6.2.18)
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Equation (6.2.16) is often used in the Fourier domain, when the image
function f(z,y) is space-limited. Then the following theorem applies.

Theorem: Let f(x,y) be space-limited to 2A. Let its Fourier transform
in polar coordinates F(p, ¢) be angularly band-limited to K. Then F{p, ¢)
can be reconstructed from its polar samples via

oo N-—-1
- n 2k 2A(p —n) 2mk
F(p,¢) = Z ZF(Q—ET) sinc [T}U(¢“7\T>‘,

ne—00 k=0 /

(6.2.19)
where N is assumed even,
sin[$(N —1)¢] i
= — 6.2.20
N sin(3¢)] ( )
and
P ER aso
. ('n 2rk 2A° N
Fi—. = (6.2.21)
24" N o
F( n 2mk +m), n<0
24T N T S

By an appropriate change in the sigma(-) function, Eq. (6.2.19) can be
used with &V odd but in CT. where Eq. (6.2.19) has its major application,
N is usually even.

6.2.3  APPLICATIONS IN COMPUTER TOMOGRAPHY (CT)

CT reconstruction by direct Fourier techniques is based on the projection
theorem [808] (as is the convolution back-projection method). The theorem
states that the Fourier transform of a projection is a center cross section
of the Fourier transform of the image. Thus, if f(z,y) represents the ab-
sorptivity function of the object with respect to a fixed coordinate system
z-y and fg(Z, ) represents the object in a coordinate system &-g rotated
from z-y by an angle o, then the projection of the object at view angle o
is defined as

Po(d) = J/Lf'¢(§7, 9)di, (6.2.22)

where L is the beam path. In practice pys(Z) represents the data that are
actually obtained. For each view angle ¢, pg(%) is sampled at a sequence of
points {&;} determined by the location of the detectors. The angle ¢ is then
incremented by a small amount and the process is repeated. As many as
360 view angles might be used in a given run. We consider only the parallel
beam geometry. i.e.. for each view the Al X-ray sources located on the side
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of the object form Af parallel pencil beams which go through the object
and are detected by A/ detectors on the opposite side of the object. We
shall ignore the fact that ps(Z) is known only over a discrete set of points:
this is done only to prevent obscuring the presentation with the details of
discrete sampling.

The one-dimensional (1-D) Fourier transform (FT) of ps(Z) is given by

SO
Py(u) = j[ pe(d)e 2™ qs, (6.2.23)

— 00

In Eq. (6.2.23), ¢ is held fixed and u is a frequency variable that can be
positive or negative. If F'(p, ¢) denotes the two-dimensional (2-D) FT of
f(z,y) in polar coordinates, then the projection theorem states that

Py(p) = F(p. ¢). p>0. 0<o<2m (6.2.24)

The correct interpretation of Eq. (6.2.24) is that the FT of each projec-
tion is a central cross section of the FT of the object. In theory if F(p, 0)
were known everywhere, it would be a simple matter to convert this FT
from polar to Cartesian coordinates. Assuming this to have been done and
denoting the corresponding 2-D Cartesian FT by Fo(u,v), we can recon-
struct the object function by a Fourier inversion:

fz.y) = jf / Fo(u, v)ed?m e+ gy dy, (6.2.25)
-0 J =00

Perhaps the most serious difficulty with the above approach is that
F{p,¢) is not known everywhere but only on a finite discrete set of points
{pj, ¢x}. The problem then becomes one of interpolating from the known
values at the polar points to the values required over a rectangular Carte-
sian grid which allows the approximate realization of Eq. (6.2.25) via an
inverse 2-D FFT routine.

Because the reconstructed image is highly sensitive to the quality of
the interpolations, most of the commercial machines work in the spatial
domain, using what is known as the convolution-back projection (CBP)
method. In CBP, the projection function pg(Z) is first convolved with an
appropriate filter function k(%) to produce a filtered projection function
gs(s) and then g4(s) is back-projected to form the image f(z,y). In math-
ematical terms this amounts to

go(s) = / ' po()k(s — 2)di (6.2.26)

— 00

(convolution-filtering) followed by

fle.y) :/ 9elr cos(o — 6)]do (6.2.27)
0
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(back-projection).

In Eq. (6.2.27), = rcos ¢ and y = 7sin¢. If N, represents the number
of views, then the CBP method requires O(N3) operations (i.e, multipli-
cations and additions) on the data. In contrast the direct Fourier method,
ie., Egs. (6.2.23) and (6.2.25) can produce satisfactory images using only
O(N? log N2) operations. We now sketch out how the direct Fourier
method is actually used in CT.

In step (1) we compute Fy(u) as in Eq. (6.2.23). In practice the discrete
Fourier transform (DFT) is used and is implemented using the fast Fourier
transform (FFT). In step (2) Eq. (6.2.24) is used to obtain F{p, @) on a
uniform polar lattice. The key step is step (3) in which Eq. (6.2.19) is
used to interpolate F(p, ¢) from a polar to a Cartesian lattice. Usually we
take N = 2K + 2 and evaluate the right-hand side of Eq. (6.2.17) at the

appropriate Cartesian points {uj, vy, l,m,= ..., —=2,-1,0,1,2,...}, where
Plm = \/Ul2 “é"u;?n > 0,
i
w ]
Om = cosT? [-—IJ . (6.2.28)
L Plm

This gives the set {F.(ui. tm) = F(pim, dim)} from which f(z,y) can be
computed by a two-dimensional inverse FFT (i.e., as shown in Eq. (6.2.25)
for the continuous case).

In practice we must use an approximate version of Eq. (6.2.17) since we
do not know the samples at an infinite number of discrete radial points,
The approximate formula is given by

Noy+L,  kotLo n

foo = 3 2 (i) b )

n=n,—L, k=ky—Lg

xo (¢~ mk ) (6.2.29)

K+1

where the nearest neighbors to the interpolated point are [2ap] = n,, [(K +
1)¢/7] = kg, @] means rounding = to the nearest integer, and 2L, + 1
and 2L, + 1 are the total number of points involved in the interpolation
in the radial and azimuth directions. respectively. L, and Ly are usually
determined by trial and error, i.e., by examination of the reconstructed
image. Typically 15 polar points suffice to produce images comparable in
quality to convolution back-projection.

In practice one or more spectral conditioning operations are applied to
improve the quality of the reconstructions. The actual implementation of
the direct Fourier method is discussed in several places including refer-
ences [866] and [867]. Here our intent was to demonstrate that polar sam-
pling and interpolation has important application in real problems. A block
diagram of the direct Fourier method is shown in Figure 6.1.
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Full scan projection data

o eaah Sk

;gccmputlng > of - the
prcjectlmn data fcr that view
anag.thus “Fourier

',:apectrum caver ES pala ‘raster;

Reconstructed
image

FIGURE 6.1: Direct Fourier method (DFM).

6.3 Spiral Sampling
6.3.1 LINEAR SPIRAL SAMPLING THEOREM

Research in spiral sampling and interpolation is motivated by the problem
of determining optimum scanning trajectories in magnetic resonance imag-
ing (MRI). An older, less used. name is nuclear magnetic resonance (NMR)
imaging. The linear spiral sampling theorem (LSST) can be stated in the
space domain or in the Fourier domain. Since its primary application is in
the Fourier domain we shall state it as such.

The main result of this section is an exact interpolation theorem of the
form

F(p.¢) = ZZF Pik k) (p. psk)o (. P). (6.3.1)

where F(p, o) is the polar Fowrier transform of a space-limited function
flz,y) and is assumed angularly band-limited to K and ¥(-,-) and o(-, ")
are the radial and azimuthal interpolation functions, respectively.
Description of a Linear Spiral

A linear spiral in the Fourier plane can be described by the equations

u(yw) = apcosy,
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v(p) = apsing, 0 <y < oo, (6.3.2)

where u(-) and v() are the horizontal and vertical displacement coordi-
nates, respectively, o is a spacing parameter (determined by the extent of
the object f(z,y)) and ¢ is a growing azimuthal angle. We note that for a
linear spiral, the distance to the origin, p(¢). is given by

ple) = [u¥(p) + v2(p)]* = ap. (6.3.3)

By defining ¢ = ¢ mod 27 and the revolution number j as intfp/27]
(intlz] indicates truncating = to the nearest integer not larger than z) we
can describe the sampling grid on a linear spiral scan as

Uik T ik COS Q.
Uik = pjk SN Q.
pie = alpg +2n5), 0 < op <2,
ko= 0.1.2.....Ng—1
i o= 0.12.... (6.3.4)

We let IV, be the number of samples per revolution. Figures 6.2 and 6.3
show a linear spiral and the corresponding sampling grid for N, = 36,
respectively.

FIGURE 6.2: An example of a linear spiral scan in the u,v (frequency) plane.
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FIGURE 6.3: A spiral sampling grid for N, = 36. The figure also shows the
notation used to describe the samples along the line at angle @ from the real axis.

Spiral sampling does not yield uniformly spaced samples. This can be
understood with the help of Fig. 6.3. Consider a line at some fixed angle
6(0 < @ < ) passing through the origin. Hereafter, we will use an alter-
native labeling for the points along a line which is advantageous in this
discussion and for computational purposes. Let (p, ¢) be the polar coordi-
nates of a point on the line. We define r as follows:

6
64 (6.3.5)

i

S {ﬂ-, @
L -p. @
(0<8<m).

Also, the samples along a line will be denoted ry, defined as follows:

_ | p. 1>0 :
Tik = {“ﬂ(~1_1)(k+1<+1)-, 1<0 (6.3.6)

for0<k < K+1and
Tike = Ti(k—K ~1)- (6.3.7)

for K41 < k < 2K +2. Thus. the intercepts of the line with the spiral are
labeled ....7r_gk. r1k. Tok. T1k. . . .. The samples ryi. [ > 0. are located in the
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upper-half plane and the samples 7.1 < 0. are located in the lower-half
plane (see Fig. 6.3, where we omit the index k as we do in what follows,
since k is held constant). Now, the spacings between r;y1 and r,1 > 0,
are uniform as are the spacings between r; and 7,1 for [ < —1. However,
the spacing between rg and r.; is different from the other spacings. It is
convenient to refer to the spacing between and rg and r_; as the sum of
two non-negative numbers ¢1 + ¢ (¢1 > 0, ¢ > 0), where ¢; and ¢ are the
actual distances of samples rg and r_; from the origin v = v = 0. Referred
to the origin, the actual position of r_; is at —co and the position of rg
is ¢,. Note that when ¢; = 0 and ¢ = Ar = Ap the points are equally
spaced, and therefore the sampling is uniform.
For a fixed ¢y = 6.0 < § < 7. it is not hard to see using (6.3.4) that

Ar
Cik = aOkZ'ﬁ;Okf

A .
Cop = Clk+"2—r (5.3.8)

since Ar = Ap = 27a, where o < 1/4wA. Also, the following relation
defines the set of non-uniform samples {r;} along a line, for each ¢y

ekt lbr 1>0 . _
= {“"Czk +(+1)ar 1< #=0(0s0<m) (6.3.9)

and
Tk = Tyk-K-1) Qr=0+m (0 <8 <) (6.3.10)

Thus, the reconstruction of F'(p. ¢) from its linear spiral samples is equiv-
alent to the following interpolation problem: given the set of nonuniform
sample points {ry}, 0 = 0,£1,.£2... ., k=10,1.2.....Ng — 1 specified in

(6.3.6), find F(p,¢). The theorem presented below is a solution to the
problem.

Linear Spiral Sampling Theorem (LSST)

Let f(z,y) be space-limited such that f(z,y) = 0 outside a disk of radius
A—e, 0 <e< A centered at the origin. Let its FT in polar coordinates
F(p. ¢) be angularly band-limited to K. Then, F'(p, ¢) can be reconstructed
from its spiral samples F'(p;i. ¢x) where

pix = %+§{7}’ j=0,1,2....
wk , .
O = m, AZO:{QQI{%‘I (6311)
via
oo 2K-+1
F(p.o)= > > Fi(riox)¥(r.ry)o(o — o) (6.3.12)
l=—o0 k=0
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and where the samples Fy (ry;, ¢ ) are obtained from F (pjk; i) as implied
by (6.3.6), namely,

Flpw, dr). " 1>0

Fpi—y(htx+1), Phtr4+1). 1 <0 (6.3.13)

Fl(”k»@k}"{
for0<k< K+ 1, and

Fi(rig, o) = Fy(rie—k -1y, Pk -1) (6.3.14)

for K +1 < k < 2K + 2. The argument 7 of the interpolating functlons
W(-,-) is obtained from (6.3.5) with ¢ = ¢y as follows

o _Jp 0<k<K+1
r= {m/), K+1<k<2K+2 (6.3.15)
The interpolation function ¥(-,.) is given by

U(r.rix) = Be(r) sinc(24(r — rie)). (6.3.16)

where
F(QAC;C + l) F(l + QA(?“ - clk))
T{1+1) D2A(r +cox)) -
Bk = ) (6.3.17)
[(2Ac, — 1) T(1 — 2A(r + ca1))

. 1<0
I(-1) I'(=2A(r + c1x))
and I'(-) is the standard Gamma function. Also
l
‘é“j +cik. (>0
Tl = L] (6318)
i o 1 <0
and
Oy
<
4 A Osop<r
Cip = (6.3.19)
O — T < 9
M/IWA TS QO < 27
1
Cok = Cip+ 1A
G = ¢ !
2k = C2k = o7
Ck = Cip ot Coke
1
G = ok — ——. (6.3.20)

24
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Finally, o(-) is given by

sin[3(2K + 1 PR
o (6.3.21)
(2K + 2)sin[5¢)]

.| &

o(o) =

The proof of this theorem is given in [989]. Also in [989] are given prac-
tical approximations of Egs. (6.3.12) and (6.3.17). and the performance of
the LSST both as given here and its practical approximation.

We remark in passing that because By (-) in (6.3.17) depends on r,
the interpolating functions ¥(r, ;) can behave in a manner drastically
different from the sinc(-) function. The behavior of W(r,r;x) depends on
the values of ¢y, and ¢, [980]. When ¢y and ¢, have small values and
Ir| becomes large, ¥(r,r;) behaves essentially like the sine(-) function.

6.3.2 RECONSTRUCTION FROM SAMPLES ON
EXPANDING SPIRALS

Equation (6.3.2) described the locus of linear spirals. For linear and ex-
panding spirals. the locus is described by

u(p) = ap* cos(w). (6.3.22)

v(p) = aptsin(p). 0< o < oo, (6.3.23)
Then, with p(@) denoting the distance to the origin, we get
plp) = [u?(p) + 13 ()] = aot. (6.3.24)

where ¢ > 1 and, as before, u(yp) and v(p) are horizontal and vertical
Cartesian coordinates. When u = 1 we obtain the linear spiral: for p > 1,
we obtain an expanding spiral. The sampling grid on an expanding spiral
is described by

Ujk = Pk COS P, (6.3.25)

Uik = Pk SI0 @y, (6.3.26)

¢k=?§:= k=0.1....Ny—1: j=012,..., (6.3.27)
pjk = a0 + 215", pu> 1. (6.3.28)

In Egs. (6.3.25) 0 = » mod 27 and j is the largest integer in 2% not
exceeding == . It is shown in [990] that for arbitrary x> 1. it is not possible
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to reconstruct F'(p, #) (the continuous polar Fourier transform of the object
function f(z,y)) exactly from the set of samples {F(p;, ¢x)}.

At this point the reader might ask why we would even consider the non-
linear case when an exact reconstruction exists for the linear spiral. The
answer is, in short, that, if everything else remains the same, the non-
linear spiral can reconstruct an image with higher resolution than that
reconstructed by the linear spiral. This phenomenon is discussed in [990].

Before continuing. we refer to Fig. 6.4 to show how images in MRI are
reconstructed from spiral samples of the Fourier transform. The spiral sam-
pling itself is generated by the application of appropriate time-dependent
gradients (see Eq. (6) in [989] and also [6]). An interpolation formula for
approximating the samples on a Cartesian grid from samples on a polar
grid that is valid for expanding spiral trajectories is the following:

F(p.¢) =~ F(p.9)

oc 2K +1
= D > Pt ér)Vi(r)o(d — ). (6.3.29)
l;——DC k::D

where Fi (7, ¢r) are the Fourier transform samples of F(-. ) obtained using
the bi-polar variable r (see Eq. (6.3.5)), o(0) is given by Eq.( 6.3.21), and
Wi (r) is given by

Wi (r) = sinc {244 {Tk(r) - ;ﬁ-} } . (6.3.30)
2A
In Eq. (6.3.30), Tk(r) is the transformation required to map radial sam-
pling points on a non-linear spiral to uniformly spaced radial sampling
points. The transformation involves the composition of two separate trans-
formations: the first maps points on a non-linear spiral to points on a
linear spiral: the second maps points on a linear spiral into a set of uni-
formly spaced samples. The procedure is discussed in [990] and the method
for deriving Ty(r) is based on the Clark-Palmer-Lawrence technique dis-
cussed in their well-known paper [224]. In reconstructing high-frequency
objects, Eq. (6.3.29) proved to yield better results with expanding spirals
than Eq. (6.3.12) did using uniform spirals for the same data collection
times. For more on the problem of reducing data collection times see [462].
In the last few sections we dealt with the problem of interpolating from
non-uniform samples to uniformly spaced Cartesian samples. The question
arises: Is there an interpolation formula that deals somewhat more generally
with any set of non-uniform samples? Such a formula is discussed in the
next section.

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

6. Polar. Spiral, and Generalized Sampling and Interpolation 199

6.4 Reconstruction from Non-Uniform Samples
by Convex Projections

As seen in the earlier sections, reconstruction of functions from non-uniform-

Iy spaced samples occurs in a number of practical situations. In MRI we
might want to reconstruct an image from samples on a spiral scan [990].
In direct Fourier CT we wish to reconstruct the two-dimensional Fourier
transform from non-uniformly spaced samples on a polar raster [867]. Ex-
amples of estimating wind velocity from non-uniformly spaced clouds from
successive frames of satellite imagery, and the occurrence of non-uniform
sampling in motion compensation are given in [794]. There are many other
examples of naturally occurring non-uniform sampling that one could cite.
Indeed a relatively large literature exists on the subject and some excellent
references are given in [794] and [628]. To save time and space we refer the
reader to these and other sources (e.g., [85]) for a review of non-uniform
sampling reconstruction methods.

In the following subsections we derive an interpolation formula by the
method of projections onto convex sets (POCS) or, equivalently, the method
of convex projections. POCS has wide application in other areas as well: it
has been used extensively in signal recovery problems and both the method
and some applications are given in [860].

6.4.1 THE METHOD OF PROJECTIONS ONTO
CONVEX SETS

The theory of convex projections developed by Bregman [113] and Gubin,
polyak and Ralik [372] was first applied to image processing by Youla and
Webb [985]. The reader unfamiliar with the method is referred to [985.
816, 983].

Here, for the reader’s benefit, we furnish only the hasic ideas of POCS.
To begin with, assume that all the functions of interest are elements of
the Hilbert space H of square-integrable functions. Now consider a closed
convex set C C H. The set C is said to be convex if z € C and y € C imply
ar+{l—-a)y€C for0<a <1 Forany [ € H, the projection Pf of f
onto C is the element in C closest to f. If C is closed and convex, P f exists
and is uniquely determined by f and C from the minimality criterion

IIf*f’)fH:gfgng~gHu (6.4.1)

This rule. which assigns to every f € H its nearest neighbor in C, de-
fines the (in general) non-linear projection operation P : H — C without
ambiguity. In this discussion. the operator || - || is taken to be the usual
Lg-norm.
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The basic idea of POCS is as follows: Every known property of the un-
known f € H will restrict f to lie in a closed convex set C; in H. Thus, for

m known properties there are m closed convex sets C;. i = 1.2..... m and
f € Co =%, Ci. Then the problem is to find a point of Cy given the sets
C; and projection operators FP; projecting onto C;, i = 1,2,....m. The

convergence properties of the sequences {fy} generated by the recursion
relation

frv1 = PP Pufk. c=0,1..... (6.4.2)
or more generally by
ferr =TnTom—r - T fi: k=0.1.... (6.4.3)

with T3 = T+ A\(P; — I).0 < X < 2, are based on fundamental theorems
given by Opial [689] and Gubin et. al [372]. The A;.1..... are relaxation
parameters and can be used to accelerate the rate of convergence of the
algorithm: 7 is the identity operator. However. determining the ideal values
of the X's is generally a difficult problem and for convex sets that are not
linear subspaces we shall set A's to values somewhat arbitrarily between 1
and 2 in what follows.

6.4.2 ITERATIVE RECONSTRUCTION BY POCS

To avoid excessive notation we proceed in one dimension and give results
in two dimensions only as needed. We are given a sequence of samples
flz), 1= 1,2...., N of an unknown real function f(z) and form the N
sets

C; = {9(z) : g(z;) = f(z:), GWw) =0, |w| >27B}, i=1,2,.... (6.4.4)

In Eq. (6.4.4) B is the bandwidth and G(w) is the Fourier transform of
g(x). In words, C; is the set of all band-limited functions of one variable
whose value at the sampling point z; coincides with the value of the sam-
pled function. Now given an arbitrary function h{z), how do we find its
projection Ph = g onto C;7 We leave this computation to Appendix A and
present only the result

g(z) = hiz)*2Bsinc(2Bx) + [g(z;) — h(z;) * 2B sinc(2Ba;)]
xsine(28(x — ;) (6.4.5)

In Eq. (6.4.5) we use the notation
h{z;) * 2B sinc(2Bz;) = h(z) = 2B sinc(2Bz)| 1=z, (6.4.6)

and * to mean ordinary convolution.y In Fig. 6.5 is shown the realization of
Eq. (6.4.5) using an analog circuit. We observe that the result is intuitively
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satisfying; it says that the projection is obtained by first low-pass filtering
h(z); then using the difference between the correct sample and the sampled
low-pass filtered h(z) to modulate a sampling impulse; and finally adding
the weighted low-pass impulse responses as a correction term to the original
low-pass filtered A(x).

Equations (6.4.4) and (6.4.5) can be generalized in a straightforward
fashion. Thus redefining C; as

C; = {g9(x) € LY : g(x;) = f(x:), G(w) = Flg(x)} = 0. w g Q} (64.7)

where the dimensionality D = 1 or 2, we find the projection of an arbitrary
h(x) onto C; to be

g(x) = Pih(x)

= H(x)* K(x)+ [f(x:) = (h % k)(x)] K%g};‘“
(6.4.8)
In Eq. (6.4.7) we have used the notation
(hx k) (xi) = h(x) * k()| x=x, (6.4.9)

and K (x) is the kernel associated with the support region 2. The op-
erator F denotes the Fourier transform operator. Thus for D = 1 and
Q= [-27B,2rB].

K(z) = k(z) = 2B sinc(2Bz). (6.4.10)
For D = 2 and 0 a square region of side 475 centered at the origin,
K(x) = k(z,y) = (2B)? sinc(2Bz) sinc(2By), (6.4.11)

For D = 2 and Q a circular region of radius 27 B,

1 2n B
K(x) = 2/, po(v/ 2?2 + yip)dp (6.4.12)
- Brems). (6.4.13)
”

where J,, is the nth-order Bessel function of the first kind and

r = /(2% 4+ y?). With P; explicitly defined as in Eq. (6.4.7), and the relaxed
projection T; being I + A(F; — I).0 < A < 2. the iterative reconstruction
algorithim becomes

Jer1(x) = TnTy-1- Tife(x). (6.4.14)
with

fo = h{x). (6.4.15)
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In Eq. (6.4.14), fix(x) represents the kth estimate of a band-limited func-
tion consistent with all the samples, fi.1(x) is the one-cycle improvement
over fi(x), and h(x) is the initial estimate which represents our best guess
about the shape of the unknown function. The initial estimate h can he
chosen a band-limited function so that the convolution in Eq. (6.4.7) can be
omitted. Since P; operating on any function always results in a band-limited
function, the convolution as low-pass filtering would never be necessary in
successive operations. The algorithm given in Eq. (6.4.14) converges to a
point in the set Cp = v, C;.

In addition to prior knowledge of the band-limitedness of the unknown
function, we might have other prior knowledge regarding f/( x) . IfCo.Cp. ...
are closed convex sets of functions that share the prior known properties
of f(x). we can modify Eq. (6.4.14) to include this prior knowledge as

Jew1 = FPoPg - INTN_1--- T f. (6.4.16)

where F, projects onto C,. etc. The use of prior knowledge usually enables
faster convergence to a point in Cy.

One-Step Reconstruction by POCS

Our experimental results with the iterative algorithm confirm the observa-
tion made in [794] that the convergence rate for moderate size images is
slow. The question that then arises is, is it possible to project directly onto
the intersection set Cy? The answer is yves because the N constraint sets

Ci.t=1,...,N are very similar. Let us define the set Cy explicitly as
CG = {(}(X) € L? g(x’l,} :f(xi>* i== 1-,2!”@317\‘*7
and
Glw) = Flg(x)} =0, wgQ} (6.4.17)

where, as usual, F denotes the Fourier transform operator. The reader will
note that Cy defined in Eq. (6.4.17) is identical with Cpy defined as the

intersection of the C;’s, 7 = 1,..., N. In Appendix B we show that the
one-step projection of an arbitrary h(x) onto Cjy is given by
Py h(x) = g(x) + S(x)TA™Y(f - q). (6.4.18)
where
g(x) = hix)=* K(x). (6.4.19)
£ o= [f(x1)f(x2) - Flxa)]T
qa = [q(x1)q(x2) - q(xn))T.
S = [Kx-x1)K(x-x2)...K(x—xy)]T.
A = {azlexf\/

a; = K(x;—-x%j). i,j=1.2.---.N. (6.4.20)
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and * denotes convolution. Eqguation {6.4.20) is a formula for reconstructing
a multidimensional function from N arbitrary sample. As N — oc and the
sampling rate is high enough?®, the reconstructed function approaches the
unknown function regardless of the initial guess h(z).

It is satisfying to note that if the samples are uniformly distributed in
[0.T] (the one-dimensional case is assumed) so that z; = iAz and N is
large enough, Eq. (6.4.20) yields a familiar result. In this case A = 2BI
where I is the identity matrix and A~! = (2B)"'I. Hence

N
Poh(z) = qlz)+ Z fliAz) sinc(2B(z — iAzx))
de=1
N
- Z q(iAx) sinc(2B(x — iAzx)). (6.4.21)
i==1

But since g(x) is band-limited to £ it follows that

N
gla) = Z g(iAz) sinc(2B(z — iAz)) (6.4.22)

i==1
for z € [0, 77 and not too near the end point. Also we assume Az = T/N <

1/2B.
Under these circumstances Eq. (6.4.21) reduces to

S sine 2w B(z — iAx) )
flz) ~ }; fbe) = Ry (6.4.23)

The one-step projection reconstruction which gives a band-limited func-
tion matching all samples in one shot involves the inversion of the matrix
A whose elements depend on the locations of the samples and whose di-
mension is the number of samples. While in some particular cases A may he
of Toeplitz form or of block-Toeplitz form, in general A is not Toeplitz and
its inversion requires O(N3) floating point operations. This is the main
drawback to the one-step projection technigue. In particular when N is
large, the inversion of A becomes very sensitive to noise and the iterative
algorithm, despite its slow convergence rate. may he preferable.

1A necessary condition is that lim N(T)/T = 2B where N(T) is the number
of samples in an interval of length T". For more discussion see [516].
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one step iterative method | iterative method
with magnitude
constrain
data sets | mean sq. err. | mse # of iter. | mse | # of iter.
S1 0442 0754 | 149 648 | 144
S2 00175 275 82 228 | 63
S3 0473 .0889 | 81 786 | 75
S4 48 .196 75 149 | 216
S5 24 2097 | 107 247 | 118
Average | .0655 136 88.2 139 | 89.9

TABLE 6.I: Summary of experimental results on 1-D reconstruction.

6.5 Experimental Results

6.5.1 RECONSTRUCTION OF ONE-DIMENSIONAL SIGNALS

The function fr(z) = exp(—2?/2) cos(6rz) was used as a test signal. If
we take as effective bandwidth B the frequency band within the one per-
cent magnitude level of the spectrum then B = 6. A total of 48 samples
were drawn [rom the interval [—2,2], which made the average sampling
rate not lower than the Nyquist rate. The signal was reconstructed in the
region [—1,1]. The non-uniformly spaced samples were drawn at locations
which deviate from the uniformly spaced locations by independent random
amounts which are distributed according to the normal distribution, The
standard deviation o of the normal distribution was taken to be the in-
terval between samples if they were uniformly spaced. A summary of the
experimental results using five sets of samples as well as averaged values
over ten sets of samples is shown in Table 6.1. Both the one-step projection
method and the iterative method were tested. Since there is a random fac-
tor in the distribution of sample locations, it is possible that two or more
samples might be very close. In such case the matrix A used in the one-
step method would be ill-conditioned, which would usually result in poor
reconstruction. This difficulty can be avoided by first checking the distance
between sampling points. If two points are very close together, then one
of the samples is discarded. Since the sample discarded gives essentially
the same information as the other point. by discarding it we do not lose
any information available. However the effective average sampling rate is
reduced slightly.

Note that on the average one-step method (with overly close points re-
moved) reconstructs the signal better than the iterative method. One pos-
sible explanation is that the convergence rate of the iterative method es-
sentially goes to zero after a certain number of iterations.

Figures 6.6 and 6.7 illustrate reconstructions from two sets of samples.
The last two columns in Table 6.1 show that, in this case at least. the
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iterative method without | iterative method with
magnitude constraint magnitude constraint

data sets | mse | # of iterations mse | # of iterations

S1 271 1 106 242 | 96

S2 141 1 130 114 | 90

S3 340 | 89 345 | 81

84 491 | 96 367 | 85

55 5711 129 473 1 64

TABLE 6.11: Comparison of iterative method with and without magnitude con-
straint.

imposition of the amplitude constraint set
Co ={g(z): -1 <g(x) <1} (6.5.1)

does not improve the results. This is because the average sampling mtci is
high enough to contain magnitude information. However when the sampl}ng
rate is reduced it is conjectured that prior-known amplitude information
would become important. To test this conjecture, we reduced the number
of samples to 40 points over the range {—2,2|, which is 17% lt.ess th‘an
previously used, and compared the results of iterative reconstruction with
and without the magnitude constraint.

From Table 6.11 it is clear that the amplitude constraint improves the
convergence rate when the samples are not sufficient.

6.5.2 RECONSTRUCTION OF IMAGES

The object we used was a 64-by-64-pixel low-pass-filtered “T.” The image
was low pass-filtered to 4.5 cycles per image dimension (which is 64). Each
set of samples consists of 81 points drawn independently from normal pop-
ulations whose means were the locations of uniformly spaced points and
whose standard deviations o were all 64/9.

Figure 6.8 illustrates an example of reconstruction by 1) one- step
method and 2) the iterative method presented in the previous section. In
Table 6.111 is shown the average performance of the two methods over eight
sets of samples. The performance is measured in signal to error ratio. We
note that the signal to error performances of the two methods are about
the same.

For 64 x 64 images with 81 sampling points. using a fast matrix inversion
algorithm from the IMSL library. the speed of the one-step method is abm.lt
the same as that of the POCS iterative method. With existing matrix
inversion algorithms. it seems that one-step reconstruction has a speed
advantage over the iterative method only for small images or when the
sampling pattern translates into a Toeplitz A matrix. This would be the
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one step POCS Iterative For spirals that “grow” faster that the linear spiral, there exists 1o in:
terpolation formula that will exactly interpolate from samples on points of
data sets | S/E (dB) | S/E (dB) | # of iterations such spirals. However approximate interpolation foz'm.ulas, that W(.)l‘k \’\./'eﬂ
51 12.56 12.37 l 200 in practice, exist and can be used efficiently in magnetic resonance 1maging
52 14.30 14.28 95 by direct Fourier methods. o
53 6.75 6.57 200 Finally we introduced the basic ideas of the method of projections 01:1t0
S4 7.10 7.05 200 convex sets and derived iterative and one-shot procedures for interpolating
S5 12.60 12.60 54 from samples at arbitrary locations.
56 13.47 13.74 37
S7 11.64 11.64 57 Acknowledgments
S8 15.59 15.59 37
Average | 11.79 11.73 110 The author is grateful to his students who helped in the sampling re-

search, especially I. Paul. R.Hingorani. E. Yudilevich. H. Peng. and S-J.
Yeh. Thanks are due to the National Science Foundation for funding much
of this research.

TABLE 6.111: Experimental results on reconstruction of the 64 x 64 image square,
limited to 4.5 cycles/image dimension.

case for example when a uniform sampler goes dead over an interval and
then resumes normal operation.

A final remark is in order. At the time the research in Section 6.4 was
done the authors became aware of the work of Sauer and Allebach [794] who
also attempted to derive an interpolation formula by POCS for non-uniform
samples. They proposed an iterative algorithm based on two constraint sets,
one involving prior knowledge of the band-limitedness of the function and
the second bhased on the sampled data. However since isolated samples in
Ly spaces have zero norm, they exert no influence on the solution. To deal
with their problem, the authors “smear” or average the samples over a finite
support; this yields a finite norm. However this smearing has the potential
for making trouble in several ways: 1) the smearing itself can reduce the
resolution of the reconstruction and 2) when applied to a discrete iimage,
the mapping is not a projection.

In a recent paper [979], there is a comparison between the method de-
scribed here and the Sauer-Allebach method. Experimental results for both
methods are given and the reader is referred to [979] for more details.

6.6 Conclusions

In this chapter we discussed polar, spiral, and general nonuniform sampling
grids and the reconstruction / interpolation of functions from their samples
on such grids. In medical imaging, where situations arise that make it
necessary to interpolate from polar to uniformly spaced Cartesian points,
we introduced two formulas for doing this exactly: Equation (6.2.16) from
interpolating from samples on a uniform-in-radius, uniform-in-angle polar
grid; and Egs. (6.3.12-6.3.14) for interpolating from samples on a linear
spiral,
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FIGURE 6.4: Flowchart describing the direct Fourier reconstruction method in i
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s b(;‘zgi,siz:g t]}; i «’E\ i~ FIGURE 6.6: (a) Original function and sampling data set S1; (b) Reconstruction
a(x) by one-step method from S1; (¢) Reconstruction by iterative method from S1;
and (d) Reconstruction by iterative method with magnitude constraint from S1.
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FIGURE 6.5: Analog realization of the projection onto C;.
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FIGURE 6.8: (a) Original image to be reconstructed; (b) Reconstruction by
one-step method, S/E = 12.56 dB; (¢) Reconstruction by POCS iterative method,
S/E = 12.37 dB.

FIGURE 6.7: (a) Original function and sampling data set 52; (b) Reconstruction
by one-step method from S2; (c) Reconstruction by iterative method from S2;
and (d) Reconstruction by iterative method with magnitude constraint from S2.
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Appendix A

A.1 Derivation of Projections onto
Convex Sets C;

Let
Ci = {g(x)e Ly :g(xi) = fxi).
Glw) = Flgx)} =0 weQ}. (A1)
The conditions that define C; can be rewritten in the {requency domain as
[ G du/em? = f(x) (4.2)
Q
and
Glw)=0. wé¢gl (A.3)

Let P be the projection onto C;. For any h in Ly, g = Ph is the element
in C; which minimizes

J=|If - gll*. (A4)

[| - 1| being the Lg-norm. Using the method of Lagrange multipliers we let
Jo be the auxiliary function to be minimized:

Ja = |lg = BII* + Ag(x:) = f(x3)]- (A.5)
Then
\ d ok, d
Jo = L!G(w) - H(wﬂ?(.zﬂ_"‘;g +A M G(w)el*s (2;59 - f<’<i>}
d.
- [[(Gr~HR? + (61 - K155

“+A {/Q{GR cos(wz;) — Gy sin(wx;)] Gm)P f(xi}} )
(A.6)

The imaginary term in FEq. (A.6) has been set to zero since we assume
that all h, g etc. are real. Using the variational priuciple, the quantity J,
is minimized when, for all w & Q,
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and

2(Gy — Hy) + Asin(wx;) = 0. (A.8)
Therefore

G = Gg +jGI
= Hg+jH;— %[c@s(wxi) — 7sin{wx;)] =0 (A.9)

for w € 1, and is zero for w ¢ {2 The function g can then be obtained
from the inverse Fourier transform of G, i.e.,

A ; dw
- H WX ,wam-““-—
09 = [ |Hr- 3] o
= /‘m H(w) — ie“ij} W(w)eij—f{i (A.10)
~o0 2 I (2m)P" '
where W (w) is a window function, i.e.,
o0 wgEn
Wi{w) = {l. w e (A.11)

We denote the inverse Fourier transform of W (w) by K(x) and define
it as the kernel of the band-limiting system. Then the function g can be
written as

A
glx) = h(x)* K(x) - —Q—k(x - Xi). (A.12)
The constant A is obtained from the condition ¢{x;) = f(x;). which requires

that '

.2)1 - «--}7%65[9()(1-) ~ (x) * k(x)]x,]. (A.13)

Using Eq. {(A.13) in Eq. (A.12) gives the final result for the projection as
Ph = g
= h(x)x K{x)+

lg(xs) = (h* k) (xg)]E(x — x4).
(A.14)

1
K(0)

The kernel K (x) can be expressed explicitly for various particular band-
limiting systems as follows. By definition,

o0
K(x) = / IV (w)ed@X @%ﬁv (A.15)

-0
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For the one-dimensional case (D = 1) and w = [~27B, 27 B],

2nB
o dw
K(z) = / giwa 0
~2w B (271')
sin 2n Bx
= 23% = 2B sinc(2Bz). (A.16)
and K(0) = 2B. For D = 2 and (2 a centered square region, w = {(u.v) :
u,v € [~27B,2rBl},

2nB  27B
K(z,y) = &7 (=) doydy
—27B J 278
= (2B)? sinc(2Bw) sinc(2By), (A17)

and K(0,0) = (2B)? . For D = 2 and 2 a circular region of radius 275,

1 2n B 27 . _—
K(z,y) = = i /O i (zpeosB+ypsin )pdpd()
1 2w BB
= — pJo(Vx? + y?p)dp
2n Jo
B

—“ﬁ\/_*‘.’:‘FJ1<Q7TBV $2+y2). (AIS)

Here J,(-) denotes the nth-order Bessel function of the first kind. In this
case K(0,0) = nB2.
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Appendix B

B.1 Derivation of the Projection onto the Set
CO = ﬂiCi

The set Cyp of all band-limited functions which match the N sampled values
of the function f at x;.xg,...,%xy is

Co = {g(x)eLl gx)=f(xs), i=1,2,...,N
and

I

G(w) Flg(x)} = 0. w ¢ Q}.

Let the projection of an arbitrary function A onto Cgy be denoted by
g = Ph. Then g minimizes

J = llg = hl* = IG - H|]? (B.1)
and G = F{g} satisfies the constraints
Glw)=0 wég Q. (B.2)
and
; dw
Jw X = ; 7 = A j’\f_ .
[ Grerx s — i), i=12... (B3)

As usual let J, be the auxiliary function

_f o dw
N .
+ Z A [ G(w)e-ij"(—é(%)—[}— — flx) . (B.4)

The quantity J, is minimized when, for all w & 0,

N
2Gr - Hr)+ Y _ Aicos(wx;) =0 (B.5)
i=1
and
N
2Gy — Hy) =Y Aisin(wz;) =0, (B.6)

i=1
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Again the assumption of real functions has been used so that imaginary
terms are set to zero.
From algebraic manipulation of Egs. (B.5), (B.6) and (B.2), G is found

to be
Ny
H(w) - Z %e“ij’, weN
Glw)=Ggr+jG; = i=1 ° (B.7)
0. w & Q.
Therefore
dew N
P Vel WX - ) c.
g(x) /H(w)e Gn }D Z/\J((xuxl)
= Dx)* I x)~~Z)\A (x = %x4). (B.8)
i=1
The constants Ay, Ag,.... Ay are determined by the N sampled values
. 1 .
9(xi) = (hxK)(xi) - 3 }_; A (x = x;)
= f(xi). t=1,2,..., N. (B.9)

The system of equations of Eq. (B.9) can be written in matrix form as
1
q~§A}\:f‘ (B.10)

where

f o= [flx)fxa) - Fxm)T.
q = [gx1)gxe) - q(xn)]".
A= {/\1/\2 T,
A = [aij]NxNzaij :K{xihxj)‘ 23312 ...... N,
q(z) = (hxk)(z).
If the matrix A is not singular, then
1
5)\zmﬁr]‘(f—g) (B.11)
and, finally,
9=Ph=q(x)-Sx)TA=qx)+Sx)TA( - q), (B.12)
where
S(x) = [K(x — x1)[{(x — x2) - K(x — xp)]T. (B.13)
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Error Analysis in Application
of Generalizations of the
Sampling Theorem

Abdul J. Jerri

Dedicated to the memory of my professor
William M. Stone
of Oregon State University

The sampling theorem was extended to include transforms other
than those of Fourier less than o decade after its popularization
by Shannon. The first extension used the Bessel transform and
had roots in an explicit suggestion by J. M. Whittaker in 1935,
A decade later the guestion of physical interpretation of such an
extension was addressed in relation to lime-variant systems. Re-
search in this field in the past two decades has centered around
finding error bounds for truncation and aliasing errors that are
incurred in the practical applications of such generalizations of
the sampling theorem. This chapter is devoted to the general in-
tegral transform lype of band-limited functions, along with some
desirable extensions, and more importantly the analysis of the
Sfamiliar “aliasing” and “truncation” errors of its applications.

Foreword: Welcomed General Sources for the
Sampling Theorems

This chapter covers in detail a very important. and natural. extension of
the well-known Shannon sampling theorem [818]. Specifically, signals are
evaluated by integral transforms other than the Fourier transform. One
familiar example is the use of the Hankel (or Bessel) transform in optics,
where the kernel of the transform is a Bessel function instead of the usual
{complex) exponential kernel of the Fourier transform. Papoulis [704] shows
application of such transforms in optical systems. An overview of sampling
theory applied to optics can be found in Gori's chapter in this volume.
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Clearly. such analysis necessitates the development of new tools to fa-
cilitate practical applications. Of particular significance are formulas that
deal with bounds on the essential errors of the sampling expansions. namely,
aliasing and truncation errors. This is the major topic of this chapter.

The Shannon sampling theorem, its applications and various extensions,
have been the subject of intensive research in the field of communications
and almost all fields of engineering and science in the past thirty or so years.
As witness to this are the hundreds of research papers that are available
on the subject. Over one thousand references are listed in the bibliography
of this volume.

7.1 Introduction—Sampling Theorems

7.1.1 THE SHANNON SAMPLING THEOREM—A BRIEF
INTRODUCTION AND HISTORY

The statement of the sampling theorem, when introduced by Shannon,
was that “If a function f(t) contains no frequencies higher than W cycles
per seconds (cps), it is completely determined by giving its ordinates at a
series of points spaced (E)_IW) seconds apart.” Shannon’s simple proof starts
by representing such signal f(t) as Fourier transform of the spectrum Fw),
which is band-limited to (—27TV, 2717)
1 0 ) 1 W )
flit)y= ——/ F(w)e ™ty = ——-/ F(w)e " dw. (7.1.1)
2m -0 2m —2rW
Then he moved to establish the sampling series for f(t).

[so]

B n \sinm(2Wt — n)
ft) —n;mf (5-”->m (7.1.2)

after writing the Fourier series for the spectrum F(w) on the interval
(=271, 2y in (7.1.1),

o0
Flw) = Z Cpedwn/2W (7.1.3)
[
allowing the term-by-term integration of this series inside the integral
of (7.1.1) and recognizing that the Fourier coeflicients ¢n in (7.1.3) are
proportional to the samples of the signal as

o = 7! (a7 )

The term by term integration is justified when the spectrum Flw) is as-
sumed to be square-integrable on (—27TV, 2 W),
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Since this sampling theorem is treated in detail in many places, we will
be satisfied with the above simple derivation, which can still be found here
as a special case of the generalized sampling theorem that we shall present
soon in Subsection 7.1.2.

The Sampling Theorems

Consider the Fourier transform of the signal f(#)
e .
f(t) = / F(w)e™tdw. (7.1.4)
—00

Signals are transmitted on a finite band of frequency, for example, w €
{—a,a). This means that F(w) vanishes outside this band. Such signals are
called band-limited to the bandwidth a. and we shall denote them by f,(¢):

falt) = / F(w)e™dw. (7.1.5)
This can also be written as
fa(t) :/ Po(w) F(w)etdw (7.1.6)
where
1. jwi<a
Pa(w) = { 0. |wi>a (7.1.7)

is the gate function which is the system function representation for- the
ideal low-pass filter. If we consider f(t) as the voltage across one umt. of
resistance, then [0 | f(t) |2 dt should represent the total energy, which
for all practical purposes is finite and we call the signal a finite energy
signal. If we consult the Parseval equality for the Fourier transforms, we
can easily see that

51;/_0; |F(w) |* dw = /m |F(t) |2 dt. (7.1.8)

=00

Hence, for a finite energy signal, the right-hand side of (7.1.8) O'1cs finite anc21
we conclude that F'(w) is square-integrable on (—oc. oc), ie., [~ | Flw) |
dw < oc. As indicated earlier, this condition is important for facilitating
the analysis of the series representation of band-limited signalsi, espegially
in regard to allowing the term-by-term integration of the Fourier series of
F(w) on {(—a.a). It should be easy to see from (7.1.8) that a band-l.umted
signal has finite energy when F'(w) is square-integrable on (—a. a): i.e.,
1 a

/:: | fa(t) |2 dt = 3 9 | F(w) |2 dw < <. (7.1.9)
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The Shannon Sampling Theorem

As was shown 111'(7i1.1)-(7,1,3), the Shannon sampling theorem interpola-
tion for a banddxmllted signal fo(t) in“terms of its samples fa(2E) states
that for the band-limited signal (7.1.5) with square-integrable a_F(w) on
(—a,a) we have

_ e nw sin(at — nw)
fa(t) ngwfa ( p )m~. (7.1.10)

As we indicated earlier, one of the simplest proofs starts with writing the
Fourier series expansion for F(w) of (7.1.5) in terms of the orthogonal set
of functions {e~(n/a)w} o the interval (—a, a); ie..

o0

Flw)= 3" cpe™ %, (7.1.11)

N=—-oC

The Fourier coefficients ¢,, are obtained as

1 @ . inx, 1 nmT
n=s5) Fuw)e Sy = 5= Ja ('27> (7.1.12)

After consulting (7.1.5) we recognize the above integral as fa(B5)
samples of the signal f,(t) in (7.1.5). The Fourier series (7‘1.113

becomes
Flu)= oo 3 fo (20) ettt
Qan:mm a a e e 7, (7113)

To obtain f,(t) asin (7.1.5) . we multiply (7.1.13) by €™ and then integrate
both sides from —a to a: V

a . 1 a . 00 )
fa<t) :] F w (g"wid/ [ twit E /‘ nmw —inm,, p
a ( > ¢ 27{‘ —q ‘ ﬂ,:voofa ( a ) € ¢ d'UJ. £7'1'}4)

; the
then,

The assumption that F(w) is square-integrable on (=a.a) is sufficient for
exchanging the integration with the infinite summation to obtain

1 & nim e .
ol = 5 3 A (5) [ e

—aQ

fwhich simplifies immediately to (7.1.10), after performing the above simple
integration.

Vv’fe should stress here that the importance of the Shannon sampling ex-
pans.lon lies not only in interpolating signals, but also in specifying the
required spacing 7/a in terms of the bandwidth . Such a spacing require-
ment plays an important role in developing the discrete Fourier transform.
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whose efficient algorithm is the useful fast Fourier transformn (FFT). In
this regard, as we cover the present chapter generalization to other inte-
gral transforms-type sampling theorem, the latter sampling plays a parallel
role in specifying the spacing for the discrete version of such transforms
[682, 454, 442, 456].

Next we give a very brief presentation of the main errors incurred in
the practical application of the sampling series (7.1.10). This paves the
way for drawing the parallel analysis of deriving bounds for such errors
associated with the (Kramer-Weiss) extension. or generalization, of the
Shannon sampling theorem (7.1.10. 7.1.5).

Two main errors may be involved in the practical application of the
sampling expansion of signals. namely, those of ey, the truncation error
and the aliasing error, €4. The truncation error is due to use of only a
finite number (2N + 1) of samples instead of the infinite number required
by the series (7.1.10),

ol /o sin(at — n) |
en(t) = ifa(t) - > fa K?)ﬁﬁ#! (7.1.15)
| n=—N |
The aliasing error, on the other hand. is due to the uncertainty of know-
ing exactly the bandwidth « of the received signal f(#) of (7.1.4) which
is assumed (incorrectly) to be band-limited signal f,(t) for the sampling
expansion (7.1.10) to apply to f(1),

€4 = lf(t) - Z f(%?)gmw?t ) .
| .

(7.1.16)

Bt (at — n)
The task here is to find estimates for the upper bounds for each of these
errors. Numerous results for the upper bound of the truncation error have
been reported since the early fifties. These results are covered in our tutorial
review [440]. Weiss [944] and then Brown [117], have established that

] o9}
ea < 4/ | Fw) | dw. (7.1.17)
T w|>a
Recently, Splettstosser [853] presented a very useful review of the aliasing
error for the Shannon sampling theorem.
We can also speak of time limited signals.

-
& 1 e

Fplw) = - Ft)er di. (7.1.18)
27r. T

where f(f) is given in (7.1.4). According to the uncertainty principle, a
signal cannot be band-limited as in (7.1.5) and time limited as in (7.1.18) at
the same time. In case we are forced into such a situation, we must admit an
error and we usually optimize to find the shape of the signal that minimnizes
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such an error. An obvious situation may occur when we have a time limited
signal (7.1.18) but still want to use the sampling expansion (7.1.10). even
fchough we cannot assume a band-limiged function to a. i.e.. an uncertainty
in knowing the required bandwidth « for (7.1.10). In practice we assume a
bandwidth a and admit the aliasing error (as in (7.1.16)). which requires
derivation of an upper bound like that of (7.1.17); hence. the results will
be reported within the accuracy of such a bound.

Next we will present the extension of the Shannon saimpling theorem to
include more transforms with general kernel K (x,t) besides the exponential
Fourier €*** kernel of (7.1.4) and (7.1.5).

7.1.2 THE GENERALIZED TRANSFORM SAMPLING
THEOREM

In the last section we presented the Shannon sampling expansion (7.1.10)

for the finite limit Fourier transform (7.1.5) as a representation of band-

limited signals. Here we will present a generalization of the sampling the-

orem for functions represented by general integral transforms with kernel

K (z,t), for example, as a solution of the Sturm-Liouville problem.
Consider f;(t) as the following x-transform of F (z):

fit) = /1 p(@)K (2.4) F(z)dx (7.1.19)

where F(x) is square-integrable on the interval 7 and {K(z,t,)} is a com-
plete orthogonal set on the interval 1 with respect to a wl'eight function
p(x). Signals f;(t), as represented by the finite limit integral transform
(7.1.19), are sometimes termed transform limited [437. 444] as opposed to
band-limited in the case of the truncated inverse Fourier transform with its
special exponential kernel K (w, t) = et The generalized sampling theo-
rem [943, 503] gives the following sampling expansion for fr(t) of (7.1.19):

i) = lim 3" fr(tn)Sn(t) (7.1.20)
[n[SN

where
) K{z. ) K(z. t,)d
Sa(t) = S(t, t,) = J1p@)E e K (a. tn)de (7.1.21)
Jrp(@)|K (. t,)2dx

i.s the interpolation (sampling) function. Here K(x,t,) is the complex con-
jugate of K'(z,1).
. The simplest proof parallels that for the Shannon sampling theorem
in (7.1.11), (7.1.13). We write the orthogonal expansion for F(z) in (7.1.19)
in terms of K(xz.t,); i.e.,

F(z) =) caK(a.tn). (7.1.22)
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— f] p(i‘)F(:E,i)]((l‘tn)d’L - fl(tn) (7 1 23)
[ P@K (e t)Pde T, @K (. tr)Pde -
after using (7.1.19) to give the value of the integral as f;(¢,). We then
multiply both sides of (7.1.22) by p(z)K(z,t) and formally integrate term

by term to obtain

/ﬂ(l’)K(:)ﬁ.t)F(m)d:x =

I

Ty

f1(t)

i f1(tn) [, p(2) K (z, ) K (x, t,)dx
[; p(@)| K (x.t,)|?dx

n=1
= > Ji{ta)Sn(t)
n=1

after using (7.1.19) for fr(¢) and (7.1.21) for the sampling function S,(¢).
We indicate that the same proof can be followed when K(z.¢) of (7.1.19)
is expanded in terms of the same orthogonal functions K {(z,t,). However,
the shortest proof is to use Parseval’s equality for the integral in (7.1.19)
with the Fourier coefficients ¢, of (7.1.23) and 5,(t) of (7.1.21) for F(z)
and K(z,t), respectively. It is clear that the Shannon sampling expan-
sion (7.1.10) for f,(¢) in (7.1.5) is a special case of (7.1.20) corresponding
to K(z.t) = e***. More on the theoretical aspects of integrating the results
of such general integral transforms is found in Higgins [393. p. 69], and
in more detail in our monograph [453]. The emphasis here is on our own
contributions over the past two decades. especially in regard to application
and error analvsis.

As we have mentioned. the conditions on the kernel K (z,t) in (7.1.19) for
this theorem are exhibited by the solutions of the Sturm-Liouville problem,
which we will illustrate next for the case of K{z,t) = Jo(xt), the Bessel
function of the first kind of order 0. Further study and illustration of the
generalized sampling theorem was done by Campbell [189], which included
the case of the Legendre function kernel P;(x). Other illustrations including
the associated Legendre function P[™(x), the Gegenbauer function C} (),
the Chebyshev functions T3(x) and Uy(a), and the prolate spheroidal func-
tion P (x, 8) [827] were done in detail in [434]. We also suggested using the
aforementioned results in scattering problems in physics [439]. llustrations
were also done for orthogonal expansions on the infinite interval instead
of the usual finite interval. This included the L$(x)-Laguerre transform
on (0,0c) as found in [439], and the H,;(x)-Hermite (or parabolic cylin-
der functions) transform in [445]. Campbell [189] was the first to raise the
question concerning the possibility of a relation, or equivalence, between
the Shannon sampling theorem and its present generalization. This was
later studied in some depth and was formulated as a few basic theorems
that gave clear conditions for the equivalence between the two sampling
theorems (440. 435, p. 1569].
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As indicated in the tutorial review article [440, p. 1568], this extension
was first suggested by Whittaker [948]. The above statement is very closely
associated with that of Kramer [503] in his 1959 paper. However, this same
expansion, its proof and the association of the kernel with the solution of
second-order self-adjoint Sturm-Liouville problem, was considered earlier
in 1957 by Weiss [943]. Weiss presented this result and, unfortunately, was
satisfied with sending only a short abstract of his detailed presentation
of this result. Later, this author, through his personal correspondence, re-
ceived a copy of the original manuscript for Weiss’ detailed presentation
[943]. It may be only fair now to say that this extension had been originated
by Whittaker, or even Lagrange, and was finally settled by both Kramer
[503] and Weiss [943]; thus we may call it the Kramer-Weiss sampling the-
orem. Higgins [393, p. 69] alsc noted that their usual association of the
general kernel in (7.1.19) with the Sturm-Liouville problem orthonormal
solutions is not necessary, He points to Kak (468], who derived the Walsh
sampling theorem as a special case of the above theorem, without restoring
to a solution of a differential equation. We add that there are more exam-
ples of this sort including the very clear and dependable method of using
complex contour integration for this general sampling expansion (7.1.20),
as well as for its extension that involves the samples of the function and
its derivatives [458, 440, p. 1573]. The generalized sampling theorem with
more and different conditions on the transformed function F (z)in (7.1.19)
was addressed in [450].

The Bessel-Type Sampling Series

Here we will illustrate the above extension of the sampling theorem for the
case of the kernel being a Bessel function of the first kind of order zero.
Jo(xt). This will be our primary example for illustrating the necessary
tools and the error bounds that we shall present in this chapter. Also,
it is the most commonly used integral transform. other than the Fourier
transform. with applications for instance in optics [704]. In this case, the
transform (7.1.19) becomes the following finite limit Jo-Hankel (or Bessel)
transform. where the interval 7 is taken as (0, b).

b
Folt) = / zJo(at) F(z)dx. (7.1.24)
0

The sampling function S, (¢) of (7.1.21) is

. & i0.m
S(t.ty) = 8§ (t l‘lﬁl) - Jo wJo(at)Jo(z 282 )d
| b 1R 2 a3 (zLenydy
270 nJo(bt)
:2 .
bZ(Jﬁé" ~t2)J1{(jo.n)

(7.1.25)

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

7. Error Analysis 227

where ¢, = @51 and {jon} are the zeros of the Bessel function Jy; ie.,
Joljom) = 0, n = 1,2,... . Some familiar properties of the Besse}. fune-
tions are used to evaluate the integrals of {7.1.25). The final sampling se-
ries (7.1.20) for the finite limit Jo-Hankel transform becomes

= Jon 230,nJ0(bt)
t) = Jon - : (7.1.26)
5l gﬁ(b>9@%~wamm
Jolon) = 0. n=12... (7.1.27)

We note here that the weight function p(z) = z is introduced explicitly
in (7.1.24) instead of implicitly. ‘ ‘

The truncation error for this generalized Bessel sampling series, as a
special case of (7.1.20), can be defined in the same way as in (7.1.15):

N . .
Jon 2jo.nJo(bt)
W = 0 ;fb ( b >172(%§ ~ £2)J1(Jo,n)

In comparison to the numerous results for improving the upper bound
for the truncation error (7.1.15) of the Shanunon sampling expansion (or
cardinal series), we find that until 1977 [440, p. 1568], there is one simple
result for the generalized sampling expansion (7.1.20), attributed to Yao
[974]. This was followed many years later by our practical bound {459] for
the above truncation error of the Bessel sampling series where complex
contour integration was the main derivation tool. This will be the subject
of discussion in Subsection 7.2.2 , where we establish a lower bound for the
Bessel function that is essential for the derivation, yet was not previously
available in the literature. '

Again, the idea of the aliasing error in applying the generalized sam-
pling theorem (7.1.19)-(7.1.20) is that we are usually not sure about the
exact finite interval I. i.e., f(f) may not be “band-limited” (or “transform
limited”) to (0.b) as fp(¢), but we still apply the above Bessel sampling
series (7.1.26) to its samples f(#%%). Such an application to f(t) and not
fo(t) results in the “aliasing error” €4 of the sampling expansion,

ea = | f(t) =3 Ftn)S(ttn)] . (7.1.29)

which in the case of the Jy-Hankel transform becomes

€4 = f(t)~2f(3%’1> 2Jondo(bl) : (7.1.30)
n=l N

)
2(52 ~ 12)J1 (fon)

i Jo.n
We stress again the presence (or forced use) of the sampl'es { f(=52)) of
the “non-band-limited” f(¢) instead of the required band-limited samples
fb(i%;—"—), which is the essence of the aliasing error.
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The first practical aliasing error bound for the generalized sampling ex-
pansion was achieved in 1988 as a result of our long-standing attempts
[454]. This was illustrated for f(t), the Jo-Hankel (Bessel) transform of
monotonically decreasing spectrum F(w) > 0, as

ealt) < %/boowF(w)dw-f—Jgéz@{)-}F(b), (7.1.31)

We note that the first (integral) term of the bound (7.1.31) is of the same
form as that of the aliasing error bound of Weiss [943] and Brown [118, 117],
given by (7.1.17). The method for the derivation of such an aliasing error
bound (7.1.31) will be the subject of Subsection 7.2.1. This will be presented
after preparing the “relatively new tools” necessary for such derivation.
This will be discussed in Subsections 7.1.4 and 7.1.5.

It is now time to comment on the long delay in having the aliasing er-
ror bound of (7.1.31). As will become evident in Subsections 7.1.4, 7.1.5
and 7.2.1, use of kernels other than complex exponential {or trigonometric)
kernels results in loss of many important properties and tools. This in-
cludes additivity of the exponents in multiplying Fourier exponential ker-
nels, and the closely related periodicity of such Fourier kernels for the
Fourier series expansion. Looking at the method of deriving the aliasing er-
ror bound (7.1.17) for the Shannon sampling series one feels helpless with
a Bessel function kernel. where the two above essential properties of the
derivation of (7.1.17) are non-existent. The solution is development of par-
allel tools, e.g., a “generalized” Poisson sum formula [454] for the Bessel
transform without the usual reliance on the periodicity of the trigonometric
Fourier series. This formula was derived, as we shall see in Subsection 7.1.5,
with the use of cur own concept of “generalized translation” [437, 444]
that is compatible with the Hankel transform. This means that such gen-
eral translation must stand as a parallel to the usual translation seen in
the convolution product of the Fourier transforms. Earlier attempts did not
use these tools. and the results were abandoned as they involved tedious
derivation and long-winded reliance on properties of Bessel functions [940].

In the following Subsection we will discuss our first attempt [437] at
giving a system interpretation for the present extension of the sampling
theorems (7.1.19)-(7.1.20).

7.1.3 SYSTEM INTERPRETATION OF THE
SAMPLING THEOREMS

In this section we will discuss the first interpretation for the generalized
sampling series (7.1.20) that we suggested in 1969 [437]. It parallels that
given for the Shannon sampling series (7.1.10), but it is for a time varying
system impulse response. This is indicated by the ¢t and 7 = ¢,, dependence
in the sampling function S(¢.¢,,) of (7.1.21) versus the time invarying (time
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shift dependent only) sampling function,

sin(at — n)

il

S{t.tn) {at — nw)

of (7.1.10). Such analysis would necessitate the introduction [437, 444] of
the “generalized translation” (of ¢ by 7): 17 instead of ¢ — 7, to be com-
patible with the ¢, 7 relations of the sampling function S(t,t,,) which we
had adopted: writing it. then, as S(t6¢,). The summary of the analysis of
this section for a system interpretation of the Bessel-type sampling series
of (7.1.26), for example, is that the signal fy(¢) in (7.1.24), (7.1.26) can be
considered as “the output of band (or transform)-limited and (time invary-
ing) low-pass filter with a time varying impulse response.” Such response is
expressed as the (main) integral in the numerator of the sampling function
S(t.t,) in (7.1.25). Again, it is this same concept of the general translation
that is needed for the development of Bessel-type Poisson sum formula,
which became our main tool for deriving the first aliasing error bound for
general sampling expansion [454]. We mention that whereas we introduced
such a generalized translation concept in 1969, Churchill [221] had a similar
concept in mind for general integral transforms other than the Fourier one,
which appeared in the 1972 edition of his operational calculus book [221].

System Interpretation—-Time Varying System and the
Generalized Translation

Consider the following transform

fit)y = /p('w)K(w. ) F(w)dw = w{F} (7.1.32)
with the Fourier-type inverse

F(w) = /p(t)[((w.i)f(t)dt =r"Hf}. (7.1.33)

Here K(w.t) stands for the complex conjugate of K(w.t). Also. unless
otherwise indicated, the limits of integration are not finite and will be
specified for the particular integral transform.

a) Generalized translation

As we had indicated above for the generalized sampling expansion (7.1.20),
when we deal with transforms of non-exponential kernels, we do not expect
the usual translation “or shift” property that we are so accustomed to in
dealing with the Laplace and Fourier transforms. This shift property was
very important in defining the convolution products that are essential for
developing the convolution theorems for the Laplace and Fourier trans-
forms. Thus, in considering a convolution product for transforms (7.1.32)-
(7.1.33), which are, in general, without exponential kernels, it is necessary
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to introduce a compatible transformation called a “generalized translation”
[437, 444]. The 7-generalized translation f(t87) of f(¢) is defined for such
transforms (7.1.32)-(7.1.33) by

ftor) = /p{w)F(w)K(w, K (w, t)dw. (7.1.34)

This definition is not surprising since the translation for the Fourier trans-
form is also the result of multiplying the transformed function by an expo-
nential function which is of the same type as the transform kernel,

We have already indicated that the form S(t.t,) of the sampling func-
tion (7.1.20) in the Bessel-sampling series (7.1.26) represents a generalized
translation which can be written now as S(t6t,). To illustrate this idea,
we can show that the Jy-Hankel transform of the gate function palw) is
S(t) = 3{%@1, To find the 7-generalized translation S(t,7) = S(t67) =
E—@%fgﬁiﬁ of this function 5(¢), we compute the Jy-Hankel transform of

Jo(wr)pa(w),
Ji(a(t8 a
g"l@—(—“ﬂ}' = / wlo(wt)Jp(wr)dw = S(t8r)
167 0

atJy(at)Jo(ar) — arJy(at)J(at)
12 12

(7.1.35)

as can be found with the aid of the Bessel functions properties [940]

b) Generalized convolution product and theorem

Let f(t) and g(t) be the integral transforms of F(w) and G(w) as in (7.1.32),
respectively, we define the convolution product (f  g)(t) of f and g by

(fxg)(t) = /p('f)g(‘r)f{t@r)dr = //)(w}F(w}G(w:}K(w.t)dw. (7.1.36)

It is clear that this convolution product is commutative, i.e., frg=gxf.
and it can be shown to be associative too; i.e., f* (g% h) = (f g) * h.

It should be easy now to formally state a convolution theorem for the
general s-transforms (7.1.32)-(7.1.33),

&{f *g}t) = F(w)G(w). (7.1.37)
¢) System analysis—Time varying impulse response
The system function H(w.t) is defined as

1
H(w.t) = F{——(f»—vﬂ/p(ﬂi’z{i. ) (w. T)dr. (7.1.38)
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where h(t, 7) is the time varying impulse response.

hit,7) = /p(w)H(w,t}K(u&,t) (w, 7)dw. (7.1.39)

These definitions are in agreement with those given in D’Angelo [243]. In
this formal treatment we assume the validity of interchanging the order of
integration which requires the absolute integrability of either one of the
integrals.

If we consider f(¢) in (7.1.32) as the output of the time varying impulse
response h{t,7), and g(t) as the output, it is known [991, 243] that by
summing the responses h(t;, ;) f(r;)A7 (for all j) for the inputs f(r;), i =
1,2,.... we can. for a linear system, sum over 7; to have the output. after
considering the limit of the sum. as

o(t) = [olrhe. 7)1 (7.1.40)

If we substitute for f(7) of (7.1.32) in (7.1.40). interchange the integrals,
use (7.1.38) for H{w,t) and assume the uniqueness of G(w), the inverse of
g(t), we obtain:

Glw) = Fw)H(w. t)
or Flw)
H(w.t) = =—=.

This is a time invarying, but it still corresponds to time varying impulse
response A(t, 7). In other words, it appears that such treatment shifts the
time variance of the system function to the impulse response representation.

(7.1.41)

d) System interpretation of the sampling theorem

The generalized sampling theorem uses a finite limit integral transform,
given by (7.1.19) with the sampling series

f1(t) = f1(tn)S(ttn).

where ) stands for the required infinite sum. The sampling function
S(t,t,) = S,(t) is given as in (7.1.21).

As is well-known, the physical interpretation [757] for the special case
of K(w,t) = €™, ie.. the Shannon sampling expansion, is that fr(t) is
the output of an ideal low-pass filter with impulse response S(t.t,) =
sin[r(t — n)]/n(t — n) for I as [—m, 7] and with the input taken to be the
pulse train {f(t,)} = {f(n)}.

Here we will attempt a physical interpretation for the generalized sam-
pling series (7.1.20). In (7.1.38) consider the system function Hqy(w.t) = 1.
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with its corresponding impulse response hq(t, 7),
K(w.t) = /p(r)hl(t,T)K{w,T)dT. (7.1.42)

Thus, h;(t, 7) can be recognized as a generalization of the Dirac delta func-
tion 6(t—7) and as the response to K (w.t) instead of e™*, This is in agree-
ment with the definition of the delta function given in Zemanian [1002] for
the case of the Hankel transform where K (w,t) = J,(wt). In keeping with
the usual notation we denote h(t,7) by 6(t,7) as the limit of the integral

/ plx)K(z, )K(z,7)dr = S(t,'r)/p(ac) | K(z,7) |? dz (7.1.43)
I I

as I becomes infinite. We note here that this S(t,7) of (7.1.43) has a similar

form as that of its special case, the sampling function S(t,t,) of (7.1.21).
Next we consider the band (or transform)-limited function fy(t) of (7.1.19)

as the output of a system with impulse response hy(t, 7) and with input

f(t), Le.,
fi(t) = /I/)(T)hg(t,T)f(T)dT. (7.1.44)

Here, f;(t) of (7.1.19) is the transform of pr{w)F(w). If we let the system
function be Hy(w) and use (7.1.41), we obtain

Hy(w.t) = Zi’%%@ = py(w).

Thus, we have a system function Hy(w, t) as the time invariant gate func-
tion which corresponds to a time varying impulse response,

ha(t.7) /p;(w)p(w)K(w. t)dr.

I

S(t.T)/Ip(a:) [ K(x.7) |2 dr. (7.1.45)

Hence, the physical interpretation for the sampling expansion (7.1.20)
can be given as fr(t) being the output of a low-pass filter in the sense of
these general transforms. Moreover, it is associated with the time varying
impulse response hy(t,7) of (7.1.45) that is directly related to the form
S(t, 7) of the sampling function in (7.1.21) and with the pulse train samples
{f1(ta)} as its input.

The complete details of this analysis are found in [444, 940] and in a
self-contained textbook format in [456, Sect. 3.6]. The main definitions are
consistent with those given by Churchill [221] in operational mathematics
and in the electrical engineering references on the subject. e.g.. D’Angelo
[243], Zadeh [991] and Zemanian [1002].
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7.1.4 SELF-TRUNCATING SAMPLING SERIES FOR BETTER
TRUNCATION ERROR BOUND

In this section we will show that the self-truncating version of t}w Shan-
non sampling series, as suggested by Helms and Thomas {38§], is dug to
an indirect use of the hill functions (B-splines), well known in numerical
analysis. This is done in the hope of having a tighter bound on the trun-
cation error. To clarify the analysis, we developed an extension [4{14] to
the discretization of the Fourier convolution product [845]. This was in th'e
sense of extending the known result to three functions, then extending this
result for the general transforms of the present sampling theorem.

The Role of the Hill Functions (B-Splines) for a Self-Truncating
Sampling Series

Consider the Fourier transform

F(w) = %J/Zf(t)e“'wfdt (7.1.46)

of the function

flt) = /°° F(w)e™tduw.

-0
The hill function (B-spline) of order R+ 1. @grs1 (a(R+ 1), w?, is well-
known in numerical analysis and is defined as the Rth fold (Fourier trans-
form) convelution product.

(p1(a. —)x - vy (a, =) (w)
(p1(a. =) * pr(aR, —))(w)

- / oi{a, 2yprlaR, w— x)dx

-0

pr+i(a(R+1).w)

(7.1.47)

of the gate function (the hill function of order one) p,(w),

L |wl<a
p1(a, w) = po(w) = 0, Jwl>a’

As a consequence of this convolution product, prii{e(R + 1),w) van-
ishes for | w |> a(R + 1) and is the Fourier transform of anl(t) =
[2sin(at)/t]F*!, since the Fourier transform of ¢y (a, w) is 1 (t) = 2sin(at)/t.
Unless otherwise indicated, ¢pyq(w) will be written for ¢y (a(R+1), w).
The exact explicit form of ¢gr.1(w) is given in Ditkin and Prudnikov [262],
with some of its properties and computations done by Segethova [809] and

de Boor [249, 250}, see also [441].
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The following demonstrates how the hill function of higher order wpq (w)
is used in signal analysis to make its sampling series a self-truncating one.

As we have indicated in Subsection 7.1.3, the system interpretation of
the Shannon sampling series in (7.1.10) is that the signal f,(t) has passed
through an ideal low-pass filter whose system function is the gate function
wi(a,w). In practice we can only have a finite number, 2N + 1. of the
samples in (7.1.10); hence, there is a need for an upper bound of the (trun-
cation) error €x, as in (7.1.15), resulting from the truncation of (7.1.10). To
obtain a better upper bound on the truncation error that decreases faster
with &, Helms and Thomas [385] presented the following self-truncating
sampling expansion for f{t) band«iimited to ra. without mentioning the hill
function:

nm

() = i f (?2“7(’\ [sin%&(z’ - mm)}m sin{at ~ n) (7.1.48)

«/TBE=m=) | Tat—nm)

Y e O

where ¢ = 1 — 7. 0 < r < 1. For their optimal truncation error bound, m
was chosen to equal approximately the optimum value N¢n/e. To further
clarify the systems interpretation of Helms and Thomas’ self-truncating
sampling series in (7.1.48). we derived the following simple extension [444]
of the discretization of the Fourier convolution product [845].

Let f, g and h be Lebesgue integrable and continuous on the real line
with f band-limited to ra, g to ga: 7 +¢ =1 and h to a; ie., F(w) = 0,]
w|>ra;G(w) =0, w|> ga: and H(w) = 0,] w |> a. Then

/m F(r)g(r = tYh(t — 1)dr
w Z f(m> (33 ~{>i (z‘~~?§£> (7.1.49)

The proof, which will help to 1llust1a‘{£ (7.1.48), is a straightforward one
when we note that (F x (Ge¥t’ )JH (w) is the inverse Fourier transform of
the integral in (7.1.49), which is band-limited to «a,

iﬂ_/ f(r)g(r = t)h(t — 1)dr
:/ (F *(Ge““t (w)H (w)e™ dw. (7.1.49a)

since the Fourier transform of the convolution product (F * (Ge™?'))(w) is
band-limited to ra+ga = a. If we now write the Fourier series expanszon of
(F % (Ge™™"))(w) and H(w)e™* in terms of {elinm/a)w} on (—a.a), then
use Parseval’s equality, we obtain (7.1.49). With the choice of H{w) =
¢1(a, w), (7.1.49) becomes the Shannon sampling expansion of f(t)g(t —t')

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

7. Error Analysis 235

as band-limited to a,

Fh)glt — 1) = Z f(”"”) (”“ ~f’) sinfat =nm) 04 50)

(at — nm)

To obtain a self-truncating sampling expansion for f(¢), we may choose
g to improve the convergence of the series. Helms and Thomas’ choice

corresponds to

g(t) = [ngn(a?/m)t]m = F}—m(Eq—th (7.1.51)
(ag/m)t 2aq m

which when used in (7.1.50) with ¢ = ¢/ gives (7.1.48). If we compare (7.1.49)
with (7.1.48}, we conclude that the self-truncating series (7.1.48), compared
to the usual sampling series (7.1.10), is the result of having the transforn
of the signal f({) being convolved with G(w), a hill function of order m,
before passing through the gate function H{w) = o {rae. w). Hence the role
of the higher order hill function, disguised in terms of its Fourier trans-
form 1, (t) = [2sin(agt/m)/t]™ in (7.1.48), is established. improving the
estimate of the truncation error bound of this signal representation.

A special case of (7.1.49), for two band-limited functions f and g, will
be used in Subsection 7.3.4 in our development of retaining the important
interpolation property to the Splettstosser’s generalized (optimal) sampling
sum of approximating theory [845].

In the next section we will develop the analysis for “new hill” functions
associated with other known integral transforms, other than the Fourier, in
an attempt to derive a self-truncating version of the generalized sampling
ezpansion of such transforms (7.1.19)-(7.1.21). These new functions or tools
will again facilitate the physical interpretation of the general self-truncating
sampling series. It is hoped that they will aid in future research toward
developing a tighter truncation error bound than the first one we derived
in 1982 for the case of the Bessel-type sampling series [459].

The General Transform Hill Functions

After introducing the concept of generalized translation in (7.1.34) and
its associated convolution theorem in (7.1.37) for general transforms, we
can now define “general transform hill functions” to serve toward a self-
truncating generalized sampling series.

In the sense of the general x-transform in (7.1.32)-(7.1.33), we define the
hill function ¥ g1y (w) paralleling that of oz 1 {w) in (7.1.47), to be the Rth
fold convolution product (7.1.36) of the (gate function) ¥y (w) = pr(w).

brai(w) = (rx-Fxvn)(w) = / @) (2)0r(wbz)de

= /p(t)gfg_(t)}}”llf(ur,i)di (7.1.52)
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where £,(t) = £:(1,t) is the r-transform of 11 (w) which is band-limited to

Note here that the general translation for constructing the new hill func-
tion (7.1.52) is not easy to perform. We have, however, developed a method
of computing the regular hill functions ¢ r41(w) (B-splines) [441] which can
be easily extended to expless the UR,H(w) defined on the interval [ as a

R+,
Yrr(w) =) {&(t’!‘i)}((_ tjjg; o) (7.1.53)

which is clearly self-truncating. Here,
IECOI = [ otw) | Kw.t) 2 du.
I

Also, the hill function (B-spline) wgrii(a(R +1).w) is an even function in
w, a polynomial of degree R, defined on each of the (R+1)/2 and (R+2)/2
subintervals of [0, a(R+1)] for R odd and R even, respectively, with contin-
uous derivatives up to R—1 (Ditkin and Prudnikov [262]: Segethova [809)).
Note that even though the discontinuities of ¢;(a. w) are being smoothed
through the Fourier convolution product that produced gy (w), it is still
the simple translation of this convolution that propagates these disconti-
nuities. With the generalized translation involved in generating vy (w),
one can expect a smoother hill function, as we illustrated in [442, 444 for
the Hankel (Bessel) transform (7.1.54)-(7.1.55).

It is reasonable to expect that the bandwidth J, associated with vz, (w),
is larger than I of ¢ (w). This should be investigated for each transform.
In the meantime, we write J(I, R) to indicate such dependence where
J = (R + I for the Fourier transform. Our illustrations for this and
the preceding concepts will involve the Hankel (Bessel) transform, where
our investigations indicate that J = (R + 1)/.

Consider the Jy-Hankel (Bessel) transform Hy(w),

Hg(u’) = tho(f,).]g(tw)dt (7154)
0

and its inverse hg(t)

oo

[
hg(t):/ wHo(w)Jo(wt)dw (7.1.55)
0

where Jy is the Bessel function of the first kind of order zero. The above
transforms are symmetric; hence, there is no confusion in referring to either
one as the transform. £ (t) = (aJ;(at))/t is the Jo-Hankel transform of (the
gate function) ¥ (w). The T-generalized translation of (a.Jy(at))/t is given
by (7.1.35).

Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)

7. Error Analysis 237

In (7.1.49) we developed the discretization of the Fourier convolution
product for three functions to give a clearer physical interpretation of the
self-truncating (Shannon) sampling series of Helms and Thomas [385]. Here
we shall present the discretization of a similar convolution product (7.1.34)
associated with the general transform, (7.1.32)-(7.1.33) which will be illus-
trated for the Jp-Hankel transforms (7.1.54)-(7.1.55). This will provide us
with the simplest proof of the generalized sampling theorem and, more im-
portantly, the development of “generalized” self-truncating sampling series
as we shall present in (7.1.60).

The convolution product, (7.1.34) for the generalized s-transforms in
(7.1.32)-(7.1.33) can be discretized in a manner similar to that for the
{(Fourier) convolution product of (7.1.49). This is so, because when f(t)
and g(t) are band-limited to (0, a), i.e,, F(w) = G{w) = 0.w > a, then

Il

o altn)9a fetn
/ p(1) F(7)g(t07)dr Zf g )
0

- / p(w)F(w)G(w)K (w. t)dw.  (7.1.56)
4]

The proof is straightforward. taking into consideration the complete or-
thogonal set {K(w,t,)} on I = (0.a), and parallels that of (7.1.49). The
case of Jp(wt). the Bessel function of the first kind of order zero, and
G(w) = iy (w) = py(w) gives the Bessel sampling expansion for f,(¢).

a On) L‘gt on g“le(JGn)

2
Zf t 2150 n]o((tt)
¢ 071 ten - {E)Jl(j()n)

fa(t)

il

(7.1.57)

il

where aty, = Jo,n is the nth zero of Jy(z). This is a special case of the
generalized sampling theorem (7.1.20) that we seek to self-truncate.
A Self-Truncating Generalized Sampling Series

In parallel to (7.1.49) and (7.1.49a), we present the following generalization
of (7.1.56) to three functions f(t), g(¢) and h(t) which are band-limited to
ri, gl and I, respectively, such that f(t)g(f) is band-limited to I,

/f g(rOt"Yh(t07)dr

i

/(F* (GK (w,t")(w)H(w)K (w, t)dw

o f(t)g(t B0t S,
=2 umntz ' (7.1.98)
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This is a band-limited function to I, where the condition f(t)g{t) band-
limited to I is necessary for the convolution product (F » (GK(w,t'))(w)
in (7.1.58) to have the same support { as that of H{w), in order to express
both of them in terms of the orthogonal functions {K(w,t,)} on I. For
the particular transform the relation between r and ¢, resulting in f(¢)g(¢)
being band-limited to I, should be investigated. For the Fourier transform
r+ ¢ = 1, our preliminary investigation indicates the same is true for the
Jo-Hankel transform.

In the case of H{w) = v;(w) we have the generalized sampling expansion,
parallel to (7.1.50), for f(t)g(¢t8t') as band-limited to I,

Ft)gtory = 3 L) “’f;?get")a (7.1.59)

With the choice of a fast decaying ¢(t8t') for a particular ¢/ = tg, e.g.,
[&1(ga, m; tBtg)]™, we obtain a self-truncating sampling series for f(t) as
band-limited to rJ. We stress again that the dependence of this choice on
m should be investigated. for the particular transform at hand, in order
to ensure that f({) is band-limited to r/. Also, we can still choose an
optimal value for m during the evaluation of the truncation error hound,
where typically complex integration is employed. For the case of Jy-Hankel
transform with g = 0 and 7 = (0,a), we use & () = &Z:tﬁﬁ to obtain the
following self-truncating Bessel sampling series for f(t), as band-limited to
ra:

Qthfo(at) 1 (t']l<g%%£) "
=2 flton) altd , — t2) ]1(j@,n)'[t0,n.fl(%)] 7160

where we have used

gaJy(22)]™ t
WL{L@_} gg. + 1, (7.1.61)

9(t) =[] = [

mi

noting that a for &; is replaced by 2. We may stress again that other
choices of the self-truncating factor g(¢6t,), along with the optimal value
of m, should be investigated. However, the choice here clearly demonstrates
the role of the high-order general hill function ¥, (w) in the disguised form
of its transform [£;(¢)]™

In Subsection 7.2.2 we will present the derivation of the first practical
truncation error bound of the Bessel sampling series (7.1.57). There we will
also refer to the role of 55“(! .t), the x-transform of the generalized hill
function wp4q(w), of (7.1.52) in improving the truncation error bound via
the above self-truncating sampling series (7.1.60).
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7.1.5 A NeEw InPULSE TraAIN—THE EXTENDED POISSON
SuM ForMULA

We will use the impulse train approach. as in Papoulis [707], to derive the
extended Poisson sum formula [454] for the present general integral trans-
forms and the associated sampling series. Such an approach will enable us
to avoid our usual dependence on the periodicity of the Fourier {trigono-
metric) series that is often used in signal analysis. The extended Poisson
sum formula will be our tool for approaching and deriving the aliasing er-
ror bound of the general sampling series (7.1.20) that we shall present in
Section 7.2.1. To arrive at such a necessary formula, we need to establish
an impulse train compatible with the general transform like the Hankel
transform (7.1.54)-(7.1.55).

It is instructive to first introduce the Poisson sum formula with its simple
derivation and show its importance in reducing the infinite Fourier integral
to a finite limit one [707, 393, 456]. This is followed by deriving the gen-
eral Poisson-type sum formula which is illustrated for the Hankel (Bessel)
transform.

Let y(¢) be the Fourier transform of Y (w),

y(t) :/ Y {w)e™ dw. (7.1.62)
1 [ -
Yi{w) = 57;]!‘/ y(t)e idt. (7.1.63)

Consider §{t), the superposition of all the translations of y(t), by nT,

el

gty = > ylt+nT) (7.1.64)

n=-—00

which is, of course, periodic with period T. Now we write the Fourier series
expansion of §(1).

[}

g(t)= Y y(t+nT)= Z cxe F (7.1.65)
N - 00 ,te_-n—oo
T‘/Q ~iZmhk T/2 o ~i27ki
ck:/ gltye T dt = / Z y(t +nTyje 7  dt. (7.1.66)
-T/2 J=T/2 0 T

If we exchange the integration and summation, make the simple change
of variables = = t + nT, and use the periodicity of e~*27%%/T  the integral
in (7.1.66) becomes an infinite integral,

"0 —i2wkt 22:1\/'
ck:/ y<f>e~%-‘°~dt:y(~%>. (7.1.67)

—00 \
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Hence, (7.1.65) and (7.1.67) give the usual Poisson sum formula for the
Fourier transform,

o] ob

1 TR i2mnt
Z y(t +nT) = T Z Y (%) e HF (7.1.68)

n==—00 n=-—00

Higgins [393] remarked that this simple form was given (without proof)
by Gauss “in a note written sometime between 1799 and 1813.7 With this
method we can see clearly how the samples Y(?—ff’i) as an “infinite integral”
of y(t) in (7.1.67) can be expressed as the “finite integral” of §i(t) in (7.1.66).

2wk o , —i2mkt T/2 ~i2nke
Y (T> - / y(t)e =T gt :/ glt)e T dt. (7.1.69)
J—oc S -T72

This is very important when we attempt to approximate the infinite in-
tegral, which is now a finite integral, by the discrete Fourier transform
and its fast algorithm. the fast Fourier transform. According to the above
method, obtaining (7.1.67) from (7.1.66) depends entirely on the direct ap-
plication of the periodicity. and hence, the translated replicas from all the
equal intervals (with length T) of the real line (—oc. o¢) to the basic finite
interval (~77/2.7/2). If we are to move to other orthogonal expansions,
which in general are not periodic, like that of Fourier-Besse] series exparn-
sion, we have to dispense with the periodicity and should be content with
some “generalized” form of repetition. In anticipation of such difficulty, we
present another well-known approach [707] for obtaining (7.1.68) that more
closely follows the direction of our general development. Here we use the
impulse train as defined by the divergent Fourier series,

> b(t+nl) = 7 P (7.1.70)

7= =00 TR =00

and convolve it with y(t) to obtain §(¢) and the Poisson sum formula (7.1.68).

[e+)
glt) = Z y(t +nT)
Ty === OO0
SO 1 o0
= ylt)* Z o(t +nT) "y(t)*f Z e T
TLER = OO L= = 00
1 oo

= e idnmn
T / y(t)e T t=2) gy
-00

[T

1 kel i2nnt o —idnnz
= Z e T / ylzje™ T dx
T P o - OO0

1 > 27 i2rn
DR s

i

I
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Such an approach will be very useful in establishing the generalization
of (7.1.68) for other integral transforms like the Hankel (Bessel) transform
[454]. As we see next, this necessitates the introduction of a “generalized”
form of translation for the specific transform that we introduced in (7.1.34).
There, we used it for the system interpretation of the generalized sampling
series in Subsection 7.1.3. This concept was also used in Subsection 7.1.4
in our attempt to obtain a self-truncating version (7.1.59) of the sampling
series (7.1.20), and in particular the Bessel one in (7.1.60).

Impulse Trains for General Transforms

For simplicity, we will limit our discussions here to Fourier type symmetric
transforms (7.1.32), (7.1.33) that we have already used in the previous sec-
tions, along with their generalized translation (7.1.34), and their associated
convolution theorem in (7.1.37), (7.1.36). The illustrations will be for the
Fourier-Bessel series.

Consider the s-transform in (7.1.32) and also the equations that follow
[(7.1.33)-(7.1.36)].

QOur main example is a Hankel (Bessel) transform in conjunction with
Fourier-Bessel series. This will exemplify the contrast of the “non-periodic”
nature of the Fourier-Bessel series expansion with that of the “periodic”
Fourier (trigonometric) series.

Consider again the Jg-Hankel (Bessel) transform Hg(w), in (7.1.54) and
its inverse in (7.1.55). The above transforms are symmetric: hence, there
is no confusion in referring to either one as the transform. Recall that
£1(t) = (aJy(at))/t is the Jy-Hankel transform of (the gate function)

1. O<w<a
W) =9 0. jul > a

Consider, then, the r-translation of (aJy(at))/t in (7.1.35). The same can
be done for Jp,(z) [444], but we stay with Jo(z) to simplify the first il-
lustration. The zero subscript in Hg(w) and hg(t) was used to specify the
Jo-Hankel transforms, but in the sequel it shall be dropped for simplicity.
The complete details of the following analysis are found in [454].

Now we introduce the “generalized delta function” 6(w8z) for the trans-
form (7.1.32)-(7.1.33)

/p(t)]((z‘. w)K (¢ z)dt = 6(wlz). (7.1.71)

Because of the weight function p(¢) used in the definition of the above
general transforims, to use this delta function to locate the impulses in the
impulse train ( similar to what is done with §(w — z) of the special case of
Fourier transforms) it should be written as 6(w8z) = §(w — z)/p(w): ie.,

/p(w)F(w)é{u'Gx}dw = /p(w)F('w)

6w — )

plw) = F(z). (7.1.72)
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Next we introduce the impulse train in a manner shmilar to that of the
Fourier trigonometric series, but with the sense of this general translation,
and, of course, without the usual periodicity of the Fourier series.
Consider the orthogonal set {K (w.t,)} on the interval /. We define the
generalized impulse train, via the following divergent series at {¢,,}, as

— b ? . _{{,(:U.{' tn)
X(w) = ;dmé(uecm) => TRENIE (7.1.73)

where
1K t)l2 = ]/)(w) | K(w.t) | dw (7.1.74)

and where the locations {¢,, } for the impulses are to be determined for the
particular transform of interest. As we shall illustrate for the case of the
Fourier-Bessel series, and in contrast to the case of the usual trigonometric
series, dy, in (7.1.73) may change sign and in general | d,,, | is not uniform.

In this case of the Jy-Hankel transform we have the following formal
divergent Fourier-Bessel series expansion on (0.5), whose natural (non-
periodic) extension defines an impulse train. X (ur):

o0 w]o n
Jol(
X(w) =) dmb(wd2mb) = éQZ G O<w<e
m=0 n
JQ{joyn) = {, n=0,1.2... . (7.1.75)

The location of the impulses {w, = ¢, = 2mb} was verified numeri-
cally and can also be supported by using an asymptotic expansion (Wat-
son {940)) with | d,, | decreasing. It is also shown that dy = 1.| dy |=
1.dy.dy, ds, ds. ..., etc., are negative, whereas ds.dy.dr.dg. ..., etc., are
positive, as illustrated in Fig. 7.1.

As we had remarked earlier for (7.1.72), this impulse train (7.1.75) can
now be written in terms of the usual {(Fourier type) delta functions as

X(w) = Zd 5(uv92mb)-a’0._ Zd ww2mb}
=0
2 ¢~ Jo(*5)
T P TRl 1.
52;;1 J¢(jo.n) (7.1.76)

Considering the integral of the Fourier coefficients in the right hand side
of (7.1.76), we find that

b . b .
'Jo,n H(w n
/ wX(w)J@ (m'u];, ) dw = d()/ ’w————(u> J() (———-qu’—“> dw = dg =1
o] 0 w b

This necessitates assigning dp = 1,

o0 1~._2 b oo J Wio,n
2; (n = bzz ]§<30n}). (7.1.77)

n=1

X{w) =
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FIGURE 7.1: The impulse train of the Jy-Bessel series, its spacing at 2mb, and
the decreasing amplitude | dm |,m = 0,1,2,...,52. [From Jerri [454], Courtesy
of Appl. Analysis J. 26, 199-221,1988].

If we formally take the Hankel transform of both sides of (7.1.77). we have

0 Sw) - ¢ w=2mb
z(t) = / u——-——]g(n! dm/ Jo(wt)dw
0 w 7;1 0 v

ng wJo(wt)Jo(wjo,n/b)dw
] (.7071)

z(t) = 1+ Z dmJo(2mbt) = 2 i %; (7.1.78)

m=1 n=1

i.e., the result is another impulse train in ¢-space. where the impulses are
located at {t, = jon/b}. We may remark again that for the purpose of
locating these impulses we write 6(t8jg,»/b) = 6(t — jon/b)/t . If we accept
the numerical or asymptotic result that dy, dy, ds. dg, . . .. etc., are negative,
while ds, d4, d7. dg,... are positive, we may use (7.1.78) at t = 0. where
the right-hand side vanishes, to have a basic relation between these d,,.

—lldi|+lda|+]ds|+]|ds |+ -] +da+dr+dg+---=0. (7.1.79)

It was verified numerically, with good accuracy, that this equality (7.1.79)
is satisfled when all these terms | d,, | are normalized in terms of | dy |= 1.
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Figure 7.1 illustrates the locations {2mb} and the variation of d,, for m =1
to 52, where we used 40 terms in the series of the right-hand side of (7.1.77).
In the same figure we note the relative constancy of the normalized impulses
| dm/dy |, m # 0 as m becomes large. This means that we can write the
impulse train (7.1.77) in the w-space as

X(w) = 6izu) (w — 2b) Z (w— me)
= Z o™ } (7.1.80)
= = Jf 1.

For future reference we will use X (w) for the impulse train of the left-hand
side of Eq. (7.1.80), whereas X, (w) will stand for the above Bessel series.

We note here that the impulses of X (w) repeat at {2mb} with equal
spacing of 2b, whereas the impulses of z(¢) in (7.1.78) repeat at { jo.»/b }
which are not equally spaced. except asymptotically where jo pt1—Jon ~ 7
for large n. This would also mean that in contrast to the symmetric and
equal spacing of the Fourier series in both w and ¢, we have here two differ-
ent spacings for the samples. Hence, we should expect two versions of the
extension of the Poisson sum formula (7.1.68) for the Hankel transforms.
We will concentrate in the following section on the first version with equal
spacing in w for starting with the impulse train X (w) in (7.1.80). We will
give only a very brief presentation of the second version in the #-space at
the end of the section.

The Extended Poisson Sum Formula for the
Fourier-Bessel Series

In parallel to the development of using (7.1.70) to derive the usual Poisson
sum formula (7.1.68), we will introduce H(w), the superposition of all the
“generalized translations” (7.1.34) of H(w) in (7.1.54). This can be obtained
by convolving H(w) (in the sense of the convolution product (7.1.36)) with
the impulse train X (w) in (7.1.80) to have H(w) = (H * X)(w).

_ T o (1) — 2
H(w) = H{w)=* {M + deﬁm’} . ldil =1
w 1 w J

0 . o o0 P
H(w) 3] xH(me)de+de/ ch(w@a:)Mdi'

o x 1 0 X
B S0
Aw) = H(w)+ )  doH(wd2mb). ldy |=1. (7.1.81)

m=1

Before we convolve H{w) with the Bessel series X (w) of the right-hand
side of (7.1.80) we should mention that the sought (H * X, )(w) is again a
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Jo-Bessel series.

%]0 n

w b

(H*Xg)(w) =

QO

_ zifooo:c (’wﬁﬂf)J()(f'j%ﬂ)dI

fOn

b2 n=1 J? (JO 17)
B 3 oo fj()n)l]o(m]ﬂn)
i Jtlom)

This series obviously vanishes at the end point w = b, whereas in general
there is no good reason for the above H (w) in (7.1.81) to vanish at w = b. To
be certain about this point, we have verified it numerically for a number of
Hankel transforms pairs [454], as we shall see in the upcoming sections. For
this reason, we will seek the same type of Bessel series on (0. b) for the new
function H(w) = H(w) — H(b) = (H * X)(w) — (H * X)(b) which vanishes
at w = b. This requires convolving H(w) with both sides of (7.1.80), then
evaluating the resulting expression at w and b to have

Hw) = H(w)-H(b) = (HxX)(w) - (H* X)(b)
= (H=x*Xg)(w)— (H * X,)(b)
= Hlw)» %Z?QZD:)&W!,
> H(wz)J Iz
B P e
5 152

If we combine this result with the expression for H{w) in (7.1.81), we obtain
the desired Bessel type Poisson sum formule in w-space as the first version.

H(w) = H(w)=H(b) = dm|H(wd2mb) — H(b62mb)],

m=0

Hw) = H(w)-H(®b) + de[H(wQZmb) — H{bB2mb)].
me=1

i 27;“ )Jo(252)

As a relatively new result (7.1.83) was verified numerically with a number

of Jp-Hankel transforms pairs directly in (7.1.83). We present it in the
discussion following Eq. (7.1.88). and indirectly via verifying the new upper

m!m

Hw) = H(w)- (7.1.83)

JO n/
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bound for the aliasing error of the Bessel sampling series in Subsection 7.2.1,
whose derivation we based primarily on (7.1.83).

We emphasize here that even though we wrote 6(wéz) = ﬁl‘%ﬁ) for the
purpose of locating the impulses (or sample values), it is essential in the
above derivation of (7.1.82)-(7.1.83) that we use H(w@z) with its gener-
alized translation for the process of convolving. This is necessary to bring
about the main feature of a Poisson type sum formula, which is to in-
volve the samples h(?%2) of the (infinite limit) integral transform of H (w)
in (7.1.83). This h(£32) will be in the position of the required finite integral
of the Fourier-Bessel coefficients of H(w) — H(b). the modified (or aliased )
H{w) on (0.5). The H(w) in (7.1.83) can be considered as an “aliased”
version of H(w) because of the use of the (infinite) integral of h(#2) for
the Fourier coefficients of the “Fourier-Bessel series” for H(w) on (0.b).
This means that if the series on the right-hand side of (7.1.83) is to be used
to approximate the original (infinite) transform H(w) on (0,b), there will
be an aliasing error £4 in the general Fourier series expansion,

a = [H(w)— H(w) |
= [ H(b) = > dm|H(wO2mb) — H(b62mb)]|. (7.1.84)
m=1

We note again that the whole reason behind this aliasing error is our use

of the samples /z(j“b'“) of the {infinite) Hankel transform,

) = /V wH (w)Jo{wt)dw,
o

as the Fourier-Bessel series coefficients for H(w) on (0,b). This is instead
of hy(2%=), the samples of “the correct” finite (or band-limited) integral,

b
hb(t):/ wi (w)Jo{wt)dw. (7.1.85)
0

So in the case of H(w) in (7.1.55) vanishing identically for w > b, the
aliasing error £4 in (7.1.84) must vanish. This means that the sum of the
generalized translations of H{w).

oo
H(?;ﬁ?mb}:/ th(t)Jo(wt)Jo(2mbt)dt, (7.1.86)
0

in (7.1.84) must vanish. This is easily satisfied if we are to interpret the
translated argument w82mb of H(w82mb) to be outside the interval (0, b).
We can easily see from (7.1.86) that, indeed, w82mb = 2mb6w and that
wB2mb = 2mb at w = 0. Also. with w82mb > b, and for a class of mono-
tonically decreasing H(w), we can compare | H(w82mb) | to | H(w) | on
(0,0),

| H{w82mb) | <

H{w) |, w € (0,b).
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Another way of showing that H(w82mb) vanishes for hy(t) of (7.1.85) is
to consult for another simple interpretation of the delta function. First we
write the integral representation for A(f) inside the integral of (7.1.86), then
exchange the two integrals to have

H(w@2mb) = /Ooz‘ {/me(x).]o(mt)dw} Jo(wt)Jg(2mbt)dt
0 Lo

]

/ zH{x) {/ Jg(:vt)J@('z_ut).}’g(met)dt} dax
Jo /o
(7.1.87)

where the inside integral defines §(x —w&2mb)/x as is required for I (w82mb)
on the left-hand side. On the other hand, if h(¢) is band-limited to (0,b)

as in (7.1.85), we expect all the translations H(w82mb) to vanish. which

can be seen after we modify h(t) in the above integrals to hy(t), where

H(z)=0for z > bin (7.1.87),

oC b
H{(w82mb) ——-/ t %ﬁ/ xH(;r)Jo(a:t)da::I Jo(wt)Jo(2mbt)dt.
0 0
and interchange the two integrals,
b [
H(w82mb) = / xH(z) {/ Jo(azt)JO(wt)JQ(met)dt} dxz.  (7.1.88)
Jo Jo

§(x _szme) and

So, if we invoke the interpretation of the inner integral as
that w@2mb > b for w € (0, ), the above double integral vanishes.

These simple results and interpretations of the generalized translations
will offer some support for our ultimate goal of deriving an aliasing error
bound for the Bessel-type sampling series that we shall present in Subsec-
tion 7.2.1.

The extended Poisson type sum formula (7.1.83) was checked numerically
with a number of Jy-Hankel transform pairs including h(t) = %e"a‘ with its
Hankel transform H(w) = V/T%“ﬁ&“’ which decays very slowly, and has the
added advantage of having its generalized translation H{w@x) in a closed
form in terms of K. the complete elliptic function of the first kind (Erdelyi
et al. [282, p. 14, Eq. (17)}).

H(wbz) = %K(?(Iw)%k_l)k“l; E=+(z+w)?+a2  (7.1.89)

A Second Version of the Extended Poisson Sum Formula

As we remarked earlier. we can expect two kinds of Poisson sum formulas,
one version like (7.1.83) for the Fourier-Bessel series in the w-space, and a
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second version in the transform t-space, which is what we shall illustrate
briefly here.

For this purpose, and in parallel to the above treatment for obtain-
ing (7.1.83), we will convolve A(t) with the impulse train 2(¢) of (7.1.78) to
have h(t).

h(t)

il

&, 6(tg ) }

\ _ 25X
h(t) x z(t) = h(t) * [ 2 J2(jon)

n=1

= deizo( mbt),

B st hmmn) et fes )
h(t) = 7 Z»«-—-«——— de/{) Th(t81)Jo(2mbr)dr,

J2<7On me0

_ t@j" God
h(t) = bzz 7z .?O'n/ > du H(2mb)Jo(2mbt). (7.1.90)

m=0

We note here that the superposition h(t), of all the generalized translations
by jon/b of h(t), on the left-hand side of (7.1.90) lacks the original (non-
translated) term A(t). Also. more importantly, the right-hand side does
not lend itself to a typical Fourier-Bessel series interpretation, which is
the essence of any Poisson type sum formula. Thus, we will leave (7.1.90)
for now and concentrate our efforts and applications for the first version
in (7.1.83). As was pointed out to us very recently by L.L. Campbell. the
series (7.1.90) is a Schlomilch series. but it should be noted that it has a
different form of coefficients (Watson [940, p. 618]).

In concluding this section we restate that we have illustrated here the
development of an extended Poisson type sum formula (7.1.83) for the Jy-
Hankel (Bessel) transform. This is a first step away from the well-known
Poisson sum formula which is restricted to Fourier (trigonometric) series.
The extension of (7.1.83) to other Hankel transforms and the more general
transforms should be clear after the above rather formal illustration [454].

It is emphasized again that the motivation for following this avenue of
extending the Poisson sum formula to general orthogonal expansions and
transforms was the belief that it may lead to a reasonable approach for
deriving an upper bound for the aliasing error incurred in applying the
generalized sampling theorem, which it did. This will be the main subject of
Subsection 7.2.1. Of course, it is also one of the main topics of this chapter:
establishing error bounds for the “generalized sampling series” (7.1.20).
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7.2 FError Bounds of the Present Extension of the
Sampling Theorem

In Subsections 7.1.2-7.1.5 we presented the generalized sampling theo-
rem (7.1.20) and discussed new tools that enable us to give this series
its first physical interpretation in terms of a system with time varying im-
pulse response. These tools are also instrumental in deriving bounds for
the two basic errors, namely, aliasing and truncation errors.

7.2.1 THE ALIASING ErRROR BOUND

This section is devoted to a clear illustration of deriving the aliasing er-
ror for the generalized sampling expansion (7.1.20). This is done with the
aid of the “extended type Poisson sum formula” for the general trans-
forms (7.1.32)-(7.1.33) that we covered in detail for the case of the Han-
kel transform (7.1.83). The Bessel function kernel represents a sudden
departure from the familiar exponential and/or periodic kernels of the
usual Fourier and Laplace transforms. As such, it represents a challenge
that demands new tools of analysis. which we tried to define and derive
[437, 444, 454, 440] in Subsections 7.1.5 and 7.1.3. These tools include
the generalized transiation (7.1.34), (7.1.35), its associated convolution the-
orem (7.1.36), a general type hill function (7.1.52) for tighter truncation
error bound, the general trensform impulse train (7.1.73), (7.1.75) and its
associated eztended (Bessel type) Poisson sum formula (7.1.83). The latter
sum formula (7.1.83) was vital to our development of the first aliasing error
bound, for the general type Bessel sampling series, in (7.1.26).

Aliasing Error Bound for the J;-Bessel Sampling Expansion

Aliasing error in application of this sampling theorem is due largely to
uncertainty about the exact finite interval I, ie., f(f) may not be “band-
limited” to (0,b) as f,(t) in (7.1.24), but we still apply the above sampling
series (7.1.26) to its samples f(jO “) Such an application to f(¢) and not
fo(t) results in the “aliasing error”, €4, of the sampling expansion,

ea= | f(O) =) f(ta)S(t.tn) |- (7.2.1)

which in the case of the Jy-Hankel transform becomes

e = Jon 2j0,nJo(bt) i .
a= |f(t)- };( ) (qu} = (7.2.2)

Note that we used £4 in (7.1.84) for the aliasing error of the general orthog-
onal series expansion. We stress again the presence of the samples {f{( 9%;’1 )}
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of the “non-band-limited” f(t),

Ft) = /;O wlp(W)F(w) dw. (7.2.3)

in (7.2.1) instead of the required band-limited fy( joé") which is the essence

of the aliasing error in (7.2.2). It is also the presence of the samples f ("0 2 )
that makes the link with the extended Poisson sum formula (7.1.83), where
we involve the samples of the “non-band-limited” f(t) of {7.2.3). In order to
produce the sampling series in (7.2.2) from the right-hand side of (7.1.83),
we replace h(t) by f(t) and H(w) by F(w) in (7.1.83), then multiply both
sides by wJp(wt) and integrate from 0 to b to have

i

b ~ < Q‘g'ﬂ w] wt ] JU" jw‘
f wF(w)Jo(wt) dw %Z Vg @olwt) Towh?) o
4] n=1

72(jo.n)

.Jo ny 2jo,nJo(bt)
b 52 ]O" ~12)J1(jon)

(7.2.4)

Il
i M8

If we use this result in (7.2.2) and invoke the expression for F'(w) from the
left-hand side of (7.1.83), we have

i

€4

1/00(,4}.]0( )1 (w) dw
0

b oo
—/ wdp(wt) { Z d [F(wB2mb) — F(662mb)]} dw 1
0 m=0

/ wdp(wt) F(w) dw
0

I

bJy t(bt) Fb)

b
mj{; wlplwt) F{w)dw +
»Zd / bng(wt)[F(wGme)—F(b92mb)]dwl

= I/ wlo(wt)F(w)dw + @—t@ﬂb)

_de/ wlo(wt)[F(w82mb)— F(b02mb)] dw |.

Just as we noted that the aliasing error £4 for the Fourier-Bessel series
in (7.1.84) vanishes when H(w) vanishes identically for w > b, we also note
that the aliasing error €4 in (7.2.2) must vanish when the sampled function
fo(t) is band-limited as in (7.1.24),
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b
Tsl(t) =jl£ wF(w)Jo(wt) dw

i.e., fp(t) is the Hankel transform of F{w) where F(w) = 0 for w > b. This
is easﬂy seen in (7.2.5), Since the first (integral) term clearly vanishes, the
second term vanishes when F(b) = 0. The third (sum) term also vanishes
since we have already shown for the vanishing of £4 the aliasing error of
the Fourier—Bessel series in (7.1.84) that the translations F(w82mb) vanish
when Flw)=0forw>b, m> 1.

To establish our first example of an upper bound for the aliasing er-
ror (7.2.5) of the Bessel type sampling series, we will consider a limited,
though reasonable, class of functions F(w) > 0 which is monotonically
decreasing. This would allow us the following inequality:

F{w82mb) < F(w) on (0,) (7.2.6)

since we have already interpreted in Subsection 7.1.5 that w82mb > b on
(0,b). This result will help in providing control on the upper bound for the
third (sum) in (7.2.5).

[=e} s
€a < / w | Jo(wt) | F(w) dw + 1b']lt(bt);F(b)
b
b e b
+ J/ wz ’dm/ wlg(wt)[F(w82mb) — F(bHme)]%dw
0 0 1
(7.2.7)

With dy =1, | dp [< 1 or m > 1, | Jo(wt) |£ 1, and the result in (7.2.6)

we have
w | dinJo(Wt)[F(wO2mb) — F(bO2mb)] | < (w+ 2mb)F(w + 2mb) (7.2.8)

since for our special class of functions that allowed (7.2.6), F(w@2mb) and
F{w -+ 2mb) are comparable on (0,5). If we use (7.2.8) for the third (sum)
term of (7.2.7) we have

b co
/ w Y | dmJo(wt)[F(wh2mb) — F(b82mb)] | duw
0

b oo
< f z (w+ 2mb)F(w + 2mb) dw
0

m=1
+3b 5b 7b
< / zF(x) cix+/ xF(x) dx-%—/ aF(z) do+ -
26 4b 6b
1 0
< = / zF(z) dx (7.2.9)
b
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after using the fact that the sum of the left out areas (under zF(x) on the
intervals (b, 2b), (3b,4b), (5b,6b), ..., etc.), is larger than those considered
by the above integrals. ;

With the result (7.2.9) used in (7.2.7), the upper bound for the alias-
ing error of the sampling expansion of f(¢), the Hankel transform of the
monotonically decreasing F(w) > 0 , becomes

3 [ bJ, (bt)
€4 < 72-/ wF(w) dw +! l; )]F(b) (7.2.10)
b i
after using again | Jo(wt) |< 1 inside the first integral of (7.2.7).
We note that the first (integral) term of the bound (7.2.10) is of the
same form as that of the aliasing error bound of Weiss [944] and Brown
118, 117].

1 O
€ea< — / |F(w)|dw, (7.2.11)
T Jw|>b
Brown [117] (see also Higgins [393]) and Papoulis [707] gave a simple
example to show that the multiple constant 1/7 in his upper bound (7.2.11)
was optimal in the sense that the maximum error for that example was the
same as the bound in (7.2.11). Here we give a parallel example for the
Bessel sampling expansion case to show that the bound in (7.2.10), though
not the optimal one, is very close.
Consider the following function:

; 2a w
foa(t) = Jolat) Ju(at) :,/{) = cos™! (E) Jolwt) dw,

t arm
which is band-limited to 2a and should be sampled as

fea (j0"> 2aJo( 42 )1y (422
2a jO,n

(7.2.12)

to be correctly used in the Bessel sampling series (7.1.26). However, if we
incorrectly sample this function at jg ,/a due to our estimated assumption
of it being band-limited to a instead of 2a, all the samples will vanish; i.e.,

Joljon) (7
Fou (]On) . O(]O,n‘} 1(Jon) _ 0
2a Jo,n
since Jy(jon) = 0. and the resulting sampling series in (7.2.2) vanishes,
which results in maximum aliasing error.
Jo(at) h(az)J
1

The maximum of this error is 0.5a¢ occurring at ¢t = 0. For this same exam-
ple, our new aliasing error bound in (7.2.10) gives

ta = lul) =0 = |
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oo
Ji
3 / wF(w LGOI
2 t
31 [% (W aJy(at)| 1 11
= Sar w cos (55) dw j a—cos (§>
_3a|m V3 1| Ji(at) 1| Ji(at)
- {ﬁ+f8°"]+§§ 7 = O.457a+-37 i

This has a maximum value of 0.623a occurring at t = 0, which is not very
much higher than 0.5a, the actual maximum of the error involved.

In addition to the above example, we have tried the following first three
functions of the class of monotonically decreasing F(w) > 0

F(w) I
1. e™*/w (t2+a2)"1/2
2. e (12 +1)-3/2
3. e’ (1/2)e~t"/4
1 -1y, )
4 F(w):{ i <08 (w/2a). jjgz To(at)Jy (at) /¢

Their respective aliasing error bound from (7.2.10) is

1. ea < %e"“b -+ ge““b

2. e4< %e“b(b +1)+ %ﬁe”b

3. €4 < ge"%’i + —;e“b?

4 €4 < g—g{sin(%’) — 26 cos(20)] + 5%9.

b
where 8 = cos™! (w> .
2a

These upper bounds were then compared with the actual aliasing error
bound of the sampling series in (7.2.2) for three different values of trun-
cating the integral at w = b where we used a 21-term partial sum for the
sampling series in (7.2.2). These comparisons are illustrated in Table 7.1
In summary, this is the first attempt to extend the Poisson sum formula
to other transforms besides the Fourier transform for the main purpose of
developing an upper bound on the aliasing error of the associated general
orthogonal expansions and the generalized sampling expansion. To this end,
we have illustrated these concepts along with their requisite tools, e.g., the
impulse train for the kernel JQ(JO" ) . Our work continues as we try to
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Actual e4 | The upper bound
b F(w) of (7.2.2) of €4 as
in (7.2.10)
1 e ¥ /w ’ 515 736
1 - 914 1.290
1| e 312 460
_) 2 (w/2) w<2 . .
1 Flw) = { F vy 500 623
2 e Jw 221 338
2 ev 616 880
2 | e 0147 0504
_ os w/2) w<?2 .
15 | Flw)= N 242 453
5 e Y /w 01672 02695
5 e 0729 145
—w?
5 -~ — =t
1 —1
= _ ) zcosT (w/2) w<2
1.7 | Flw) = { g > 2 .096 .320

1 within the accuracy of the computations.

TABLE 7.I: Illustration of the actual (sampling) aliasing error bound in (7.2.2)
and its present upper bound of (7.2.10). (From Jerri [454], 1988: courtesy of J.
Appl. Analysis).

develop those for other type Bessel series expansions and more general
orthogonal expansions.

The importance of the present analysis of the aliasing error, associated
with the Fourier-Bessel series expansions, stems from the need for the nu-
merical computation of Hankel transforms or Fourier-Bessel series, where
both the aliasing and truncation errors may be incurred. One recent appli-
cation, which deals with such aliasing as a major error, is that of using the
Hankel transform for the acoustic problem of computing wavefield due to
a monochromatic point source in a stratified medium [660] (see also refer-
ences [15,16,19] and [21] given in [660]). In this reference, it was pointed out
clearly that the error involved is analogous to that of the discrete Fourier
transform.

7.2.2 THE TRUNCATION ERROR BOUND

Numerous improved upper bounds for the truncation error of the Shannon
sampling expansion are available in the literature [440, Sect. VI]. However,
until 1982 there was only one truncation error bound associated with the
generalized sampling expansion. which is attributed to Yao [{974]. As we
shall see in (7.2.18), this bound did not show the usual simple dependence
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on the truncation limit N, Thus, a more computationally feasible bound
was needed and is the subject of this section [459].

The reason behind the delay in obtaining such a result was the absence of
a lower bound for the general {non-trigonometric) kernel of the given trans-
form. This was necessary for estimating an upper bound of the complex
contour integral that is used for expressing, and finally deriving, the trun-
cation error bound. For our present illustration of the J,,-Bessel sampling
series,

fle) = i ftmn) 2t T () ; (7.2.13)
— "a(tZ, = 1) Jmga(atmn)’ '
Imlatma) = 0, n=12...: tpn= 2";’"
where
fi)y= /;a aJm(et)Fz) de. (7.2.14)

We needed a lower bound for J,,(z), which, unfortunately, did not then
exist in the literature. Thus we had to derive it, or at least make a good
practical estimate of it as our starting point [459]. It became abundantly
clear that to derive truncation error bounds for other general sampling
series, we needed to keep a lower bound for the transform’s kernel in mind.
This was, of course, if the complex contour integration method was used,
which, seemed the most feasible for a practical form of the truncation error
bound in that it parallels those available for the Shannon sampling series.

The truncation error bound er (sometimes written £y) for the general-
ized sampling series in {7.1.20), is defined as

er= | fO)—fn) | = | > f(ta) (7.2.15)

nj>N

This is defined in parallel to that of the Shannon sampling series (7.1.10)

| et
er= | f(t) - = > f (“f’) sin(at — nm) (7.2.16)
|

iSN @ (at — nm) %
The special case of (7.2.15) for the Bessel series is given in (7.1.28) where
e was written as ey (t).
One of the earliest. but elementary, truncation error bound for the Shan-
non sampling expansion (7.2.16) was derived by Helms and Thomas [385],

M = max|f(t)] forallt; —oo <t < . (7.2.17)
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For this, they employved complex contour integration and used a smaller
finite bandwidth ra; 0 < r < 1, instead of the required o in (7.2.16). Nu-
merous improved truncation and other relevant error bounds for (7.2.16)
can be found in [440, Sect. VI]. Prior to 1982, the only known attempt
for a truncation error bound of the generalized sampling expansion is due
to Yao [974] (for more details see [440, p. 1586]). His method and nota-
tion, which uses the concept of “reproducing kernel Hilbert space.” can be
simplified if we realize that the sampling functions {S(¢,¢,)} in (7.2.15)
and (7.1.20) constitute an orthogonal set for transforms with Fourier type
symmetric inverse (7.1.19), (7.1.32)-(7.1.33). This is the case for the Han-
kel transform (7.1.54)-(7.1.55) illustrated here. Yao's result for the case
of K(z,t) = Jn,(at) and with ¢ = 1 for the (band-limited) J,,-Hankel
transform in (7.2.14) becomes

ler(t) | < g/ tf2(t) dt - ZL S2ms) J

L 21 Gms)

1 im m( t) |

e

2

=]

(7.2.18)

In comparison with existing bounds for the Shannon sampling expansion,
e.g., (7.2.17), which are given as more simple and direct functions of the
truncation limit NV, this bound is complicated. Thus, a more computation-
ally friendly bound is needed and is the subject of the next section.

Truncation Error Bound for the J,,—Bessel Sampling Expansion

Here we present a more computationally feasible bound for the J,,—Bessel
sampling expansion. This can be improved and the method extended to
other sampling expansions [459].

Jm N) I

23/2 ¢ ﬂ%]
t <
) s T ]
1 1
X | — + = (7.2.19)
Jmy +t1 iy =t

where the sampling series (7.2.13) is truncated at IV, with the bandwidth
a replaced by ra, 0 <r < 1, and

’ ¢

I Ums) =0, s=1.2.....

rly| _ 2
[ fla)| <K F(—;mi] : (7.2.20)
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K:/ w2 F%(z) dz. (7.2.21)
0

The method employs complex contour integration, which parallels that for
deriving the error bound (7.2.17) for the Shannon sampling expansion. The
present result (7.2.19), howevel requires the dex ivation of the lower bound
for J, (]m » -+ 1y) at any jm n the zeros of J(x),

K . X 1_ o ey
[ JmUm,s + 1Y) | Z Imlim,s ) Im(y) = 'Ejﬂl(jm,s);ﬁ (7.2.22)
where I,,,(y) is the modified Bessel function of order m. This allows us to
consider a truncation error for any N which is not necessarily large, the
condition for the then existing asymptotic lower bounds [940, p. 584]

elyl

Vizl
where z is on the line joining Ay —ioc to Ax +ioc, provided that N exceeds
a value dependent on v. The choice of j;,w is to maximize J,,( j;njs) and
hence improve the bound (7.2.19). In deriving the truncation error (7.2.19)
for the Bessel sampling expansion (7.2.13). we consider a rectangular con-
tour C = C1 + Cy + Cq + C4, where Oy and C3 are the vemcai right and
left sides that extend from _}m N1~ 100 tO ]m N1 Hioc and - ]m N1

] Ju(z) ‘ Z

Cz (7.2.23)

to jm N41+i0c, respectively. Cy and Cy are the horizontal lines. For f(2)
in (7.2.14), we consider the contour integral

flz) dz
c (2= 1)Jm(2)
which vanishes along Cy and C4 as y — Foo, since it can be shown [458],
using the Schwartz inequality, that for f(z) in (7.2.14) (with ¢ replaced by
z), with bandwidth ra instead of a.

(7.2.24)

erlyl — 1
lyl |

and that | J,,(z) | is bounded as in (7.2.22). Now it is easy to see that the

truncation error (7.2.15) can be expressed in terms of the integrals along

Cl and C3 as

ler(t)| = [ f(t)—5Sn(t)]
1 ' .
= 5 @) /c1,03 o t) ][ (7.2.26)

which, after evaluating the residues at z = ¢, 2 = {,,, , and using bounds (7.2.20)

and (7.2.22), yields the desired truncation error bound (7.2.19).
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For this, they employed complex contour integration and used a smaller
finite bandwidth ra; 0 < r < 1, instead of the required a in (7.2.16). Nu-
merous improved truncamou and other relevant error hounds for (7.2.16)
can be found in [440, Sect. VI|. Prior to 1982, the only known attempt
for a truncation error bound of the generalized sampling expansion is due
to Yao [974] (for more details see [440, p. 1586]). His method and nota-
tion, which uses the concept of “reproducing kernel Hilbert space.” can be
simplified if we realize that the sampling functions {S(¢,¢,)} in (7.2.15)
and (7.1.20) constitute an orthogonal set for transforms with Fourier type
symmetric inverse (7.1.19), (7.1.32)-(7.1.33). This is the case for the Han-
kel transform (7.1.54)-(7.1.55) illustrated here. Yao’s result for the case
of K(z,t) = Jn{xt) and with ¢ = 1 for the (band-limited) .J,,-Hankel
transform in (7.2.14) becomes

1

22 Jmu JE

m+1 Jm i)
1 jmz‘]2 U)
X {:2-" { 17%1“} +J, m-H; t)} QZ

mz

ler(®) | < ;{ /; LRt di

L i=1

(7.2.18)

In comparison with existing bounds for the Shannon sampling expansion,
e.g., (7.2.17), which are given as more simple and direct functions of the
truncation limit IV, this bound is complicated. Thus, a more computation-
ally friendly bound is needed and is the subject of the next section.

Truncation Error Bound for the J,,—Bessel Sampling Expansion

Here we present a more computationally feasible bound for the J,,—Bessel
sampling expansion. This can be improved and the method extended to
other sampling expansions [459].

23/2]{ X 1 é Jm(t> '
ler® ] = —= {‘“ = 27"} T (Fn, )
- :
KUJmN*”H | Jpaw = t] e

where the sampling series (7.2.13) is truncated at N, with the bandwidth
a replaced by ra, 0 <r < 1, and

JoGe =0, s=1.2....

(7.2.20)
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K ::/ w2 F?(z) da. (7.2.21)
0

The method employs complex contour integration, which parallels that for
deriving the error bound (7.2.17) for the Shannon sampling expansion. The
present result (7.2.19), however requires the de1 ivation of the lower bound
for Jm(jm » +iy) at any gm ..+ the zeros of J_(z),

_, e¥

I ’ N 1
j ) | > ' > - (12
| Jm(Gm,s + 1Y) | 2 Im(Gm,s) Im(y) = me(]m,s>m (7.2.22)

where I, (y) is the modified Bessel function of order m. This allows us to
consider a truncation error for any N which is not necessarily large, the
condition for the then existing asymptotic lower bounds [940, p. 584]

)| 2 Cr e (7.2.23)
where z is on the line joining Ay —ioc to Ay +ioc, provided that N exceeds
a value dependent on v. The choice of j,, . is to maximize Jn(j,, ;) and
hence improve the bound (7.2.19). In deriving the truncation error (7.2.19)
for the Bessel sampling expansion (7.2.13), we consider a rectangular con-
tour C =C1 +Cy+ Cy + C4 where Cy emd Cy are the vemcal right and
left ﬂdes that extend from jm N1 100 t0 jm N1 TEo0 and jm N1~ 100

to jm N1 +i0c, respectively. Cy and Cy are the horizontal lines. For f(¢)
in (7.2. 14), we consider the contour integral

_fz) dz 1
7.2.24)
U[ EET e (7.2.24)

which vanishes along Cy and Cy as y — Foc, since it can be shown [458],
using the Schwartz inequality, that for f(z) in (7.2.14) (with ¢ replaced by
z), with bandwidth ra instead of a.

adb-

rlyl 17
¢ {e | 0<r<l. (7.2.25)

[ f(2)| €K |7

279 |
and that | J,,(z) | is bounded as in (7.2.22). Now it is easy to see that the
truncation error (7.2.15) can be expressed in terms of the integrals along
C; and Cy as

ler(t)| = [f(t) - Sn(t) ]

1 ' z) dz
= In(®) ] / _SE dz |0
2 c1,0a (2= 1)Jm(2)|

which, after evaluating the residues at z = t, 2 = ty, ,, and using bounds (7.2.
and (7.2.22), yields the desired truncation error bound (7.2.19).




Robert J. Marks Il, Editor,

258 Abdul J. Jerri

Truncation Error for Other Sampling Expansions

The method of the last section can be extended to other sampling series,
provided, of course, that a lower bound for the kernel K (z,t) is available.
Another possibility is to derive the truncation error bound when the sam-
ples f(t,) and their derivatives f'(¢,) are involved [458]. It is expected
that such error bound may have the usual N=! dependence. It should be
stressed that the work here represents only a starting point in finding prac-
tical truncation error bounds and efforts should be continued to derive more
efficient and tighter bounds. as has been done for the Shannon sampling
expansion [440. Sect. VI]. Efforts should be also aimed toward i improving
the convergence of the generalized sampling series (7.1. 20) and introducing
a tighter truncation error bound. This may, for example, consist of con-
volving the sampling function with higher degree weight of related form. In
the frequency domain. this is equivalent to multiplying the gate function

&
o

1 ”
f9a($):{0 ;,Ex;(!

by a high order general hill function ¥4 (w) [444], see also (7.1.52) asso-

-a 0 a t

FIGURE 7.2: The gate function

ciated with the general kernel K (z,t), instead of the known hill functions
(B-spline) associated with the Fourier transform. Some references to re-
lated work may be found in the bibliography.

7.3  Applications

In this section we will present two examples of our early applications of
the generalized sampling theorem. The first is in optics (Sect. 7.3.1) and
the second is for facilitating the solution of a boundary-value problem in
heat and mass transfer (Soct 7.3.3). The third topic is related more to the
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error analysis and concerns the Gibbs™ phenomenon for general orthogonal
expansion associated with the present sampling series (Sect. 7.3.2). The
section is concluded with varied applications. or illustrations, of the gen-
eralized sampling theorem that reflect our own experience in utilizing the
tools that we presented in Subsections 7.1.3-7.1.5. The emphasis here is
mainly on our own work.

7.3.1 OpPTICS—INTEGRAL EQUATIONS REPRESENTATION
FOR CIRCULAR APERTURE

We will briefly illustrate the importance of the new concepts and tools,
developed here, for the analysis of optical systems of circular aperture.
Recall the “generalized convolution theorem” in (7.1.37) where

(fxg)(t) = /P(T>Q(T)f(f97)d7 = /ﬁ(uv’)F(w)G(w}K(w‘f)dw

with its associated concept of the generalized translation f(t87) in (7.1.34).
As we reported in [440. p. 1589]. Barakat [29] presented a direct application
of the Shannon sampling theorem to optical diffraction (see also Gabor
[315]). He used the Shannon sampling theorem for the point spread function
for a slit aperture,

2
HOE %/ F(w)e™tdw (7.3.1)
-2

where F(w) is the transfer function and where the factor 1/2 enters in
order that f(0) be unity,

nm sin(2t — nm)
zf( ) T (7.3.2)

He then extended his analysis to a square aperture where the Shannon
sampling theorem in two dimensions [440, p. 1571] was used.

For a circular aperture with rotationally symmetric point spread function,
he used the Jy-Bessel sampling series for

flit)y= /02 wG(w)Jo(tw)dw, (7.3.3)

]Un }
_42 Jonf(55*)Jo(2¢) (7.3.4)
(380 — W )J1(Gom)”

Barakat then stated that the sampled (band-limited) function f(¢) in (7.3.1)
satisfies the homogeneous Fredholm integral equation [451],

flt) = ?;/OO Mf(f)dr. (7.3.5)

TS T
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For his proof, he multiplied both sides of (7.3.2) by i’i—t"%_—(—;:ﬂ and integrated
over (—oo,00), using the following Hardy’s integral.

“ sinm(y—z)sinply—2), w -
/:—oo (y—zx) (y — 2) dy = (z—z) O<p< (7.3.6)

inside the series of (7.3.2) to obtain the Fredholm integral equation in (7.3.5).

We remark here that (7.3.5) would follow easily from (7.3.1) via the
use of the (Fourier) convolution theorem. Here f(t) in (7.3.1) is band-
limited with a bandwidth of 2. Then (7.3.5) is saying no more than that
it had passed through an ideal low-pass filter of the same bandwidth, as
seen from its impulse response s—’:‘r—ft—g}%ﬂ So, the signal should come out
unaltered as an output f(¢) on the left side of (7.3.5). This removes the
necessity of Hardy’s integral. Moreover, this integral is itself a consequence
of the (Fourier) convolution theorem as applied to band-limited functions.
As we have in (7.3.6), an input band-limited signal (with bandwidth p < m)
passing through an ideal low-pass filter with a larger or equal bandwidth
m > u, 5o it should come out unharmed as the output on the right side
of (7.3.6).

These preliminaries bring us to our main point: that in the absence of the
new tools (7.1.34)-(7.1.37), developed here, Barakat suggested as possible,
with obviously correct intuition. but admitted at the same time that he
was unable to derive a similar Fredholm integral equation [29] for the f(¢)
of the Bessel sampling expansion in (7.3.4).

This is now easily accessible via the new generalized convolution the-
orem (7.1.36) with a homogeneous Fredholm integral equation for f(t)

in (7.3.4),
[T 2J1(2(t67))
f(t)—/O I f(r)de. (7.3.7)

The proof is simple and is in line with that given above for f(¢) in (7.3.2).
Here f(t) of (7.3.3) has a bandwidth of 2. As such., we see the system
interpretation from (7.1.40) for such f(t) as passing through an ideal low-

pass filter. This is scen in the first integral of (7.1.36), with S(¢) = —Q—J—‘Z(EQ
as the Jy-Hankel transform of the gate function
1, 0 <w<a
pa(w) = { 0w a (7.3.8)

for @ = 2. Indeed with the same attitude and simple method we were able
to derive the following “generalization of the Hardy’s integral” [447] to have
it associated with the above Jp-Hankel transform:

o0 9 " uybz 6
/ yjl(a(yB:L))Jl(b(y&))dy: Jl(b(~01)). 0<b<a (739
0 yBx yBz 202
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where 1&3%{532) stands for the “generalized” Jy-Hankel type translation

of iﬁ%‘—?—ﬁ% as given in (7.1.35). The proof of this extension (7.3.9) to the
Hardy’s integral needs no more than a simple application of the new gen-
eralized convolution theorem (7.1.36). We should first have in mind the
generalized translation of the impulse response aJl(g—(tjg—Tﬂ) along with the
systems interpretation for time varying systems that we had presented in
Subsection 7.1.3. The generalized Hardy’s integral can be seen to parallel
that of {7.3.6). In the integral on the left side of (7.3.9) we have a system
with an ideal low-pass filter of bandwidth a. Such a system is probed by a
band-limited (or transform linited) signal of narrower band width b < a.
Thus it should come out unaltered as the output to give us the right-hand
side of (7.3.9). Other modes of proof are available (see [447]).

We add that the generalized convolution theorem (7.1.36), (7.1.37) and
the generalized sampling theorem (7.1.19)-(7.1.21) should be instrumental
in developing general Hardy-type integrals that are associated with general
transforms characterized by the kernel K (x,t) of (7.1.19) and not ouly our
illustration of the Bessel function kernel Jg{(xt). Also. it should be possi-
ble to develop homogenecus Fredholm integral equation representation for
such general x-transform representation (7.1.19) of the generalized sam-
pling theorem (7.1.19)-(7.1.20).

7.3.2 ToE GiBrs’ PHENOMENA OF THE (GENERAL
ORTHOGONAL EXPANSION—A POSSIBLE REMEDY

In this section we attempt to show how the new tools developed in the pre-
vious Subsections 7.1.3-7.1.5 (and used in Subsections 7.2.1-7.2.2), for the
systems interpretation and the error analysis of the generalized sampling
theorem can now be used to help in finding a remedy for the Gibbs’ phe-
nomenon of the general orthogonal expansion. Such an orthogonal expan-
sion. as we have seen. is the backbone to deriving the generalized sampling
expansion (7.1.20)-(7.1.21). This error is well studied for the trigonometric
Fourier series. Here we will try to shed some light, even if it is in terms of
inquiries, on this error for the general (non-periodic) orthogonal expansion
such as the Fourier-Bessel series expansion. A brief analysis of this Gibbs’
phenomenon, for general orthogonal series expansion. is found in Gottlieb
and Orszag [366].

In our analvsis of the Shannon sampling theorem and its present gener-
alization we had to depend heavily on the Fourier trigonometric (periodic)
series and the general orthogonal expansion, vespectively. The latter gen-
eral expansion, unfortunately, is not necessarily periodic, a property that
all regular users of the typical Fourier analysis would miss very much.

As we have already mentioned in this chapter, the lack of the periodicity
property presented the greatest difficulty in our (and others) attempts to
give a physical interpretation of the generalized sampling theorem. This
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difficulty became even more evident when deriving explicit error bounds of
such generalized sampling expansion, as was discussed in Subsections 7.2.1
and 7.2.2. Of course, such an attempt had to be preceded by developing the
new tools of Subsections 7.1.3-7.1.5, i.e., the “generalized translation” and
its “associated convolution theorem,” the “new impulse train” (see Fig. 7.1)
and the new “extended Poisson sum formula.” These tools were the pre-
liminaries in compensating for the absence of the periodicity that charac-
terized the trigonometric Fourier series and the “related” shift property of
the (exponential) Fourier transform representation of the Shannon sam-
pling theorem.

The analysis of the errors, e.g.. truncation and aliasing. of the Shannon
sampling theorem, was not far from the analysis of the truncation and
aliasing errors of the Fourier series often used for deriving the sampling ex-
pansion. Both of these errors are related to the Gibbs’ phenomenon, which
represents the error resulting from the “smooth” trigonometric functions
attempt in approximating a “not so smooth” functions with jump discon-
tinuities at the end points, or in the interior, of interval of the expansion.
The Gibbs’ phenomenon does not seem to be well-known in the case of ap-
proximating such discontinuous functions by a general Fourier orthogonal
expansion in terms of the smooth, but not necessarily periodic functions
[380, 366]. A clear example is the Fourier-Bessel series expansion.

After having developed new tools compatible with such an orthogonal
expansion in Sections 7.1 and 7.2, it is time to bring attention to their
possible use for the analysis of the Gibbs’ phenomenon in such a general
orthogonal series expansion. Our attempt here is to draw a parallel analysis
to what is known for the Fourier trigonometric series and integrals and to
point out the place of the new tools in such analysis. We also suggest an
improvement to the existing remedy for the Gibbs’ phenomenon of the
trigonometric Fourier analysis. This is in line with using a self-truncation
factor with the help of high order hill functions of (7.1.47), such as we
employed in the last section for a tighter bound on the truncation error
of the Shannon sampling expansion. After a possible remedy is suggested
for the Gibbs’ phenomenon of the general orthogonal expansions, we also
suggest for it the use of high order general hill functions (7.1.52) to affect
a parallel improvement to that of the trigonometric series. The detailed
analytic treatment of these concepts for Fourier series and integrals are
found in Appendix A.

The simplest example for illustrating the Gibbs’ phenomenon in Fourier
analysis is that of the signum function in Fig. 7.3,

. _t 1, t>0
%M”mjﬂ-{-J.t<0 (7.3.10)

with its clear jump discontinuity at ¢ = 0, and its well-known “stubborn”
Gibbs’ phenomenon close to ¢+ = 0. Indeed it can be shown analytically
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[380, 456] that the error amounts to about 9% of the size of the jump dis-
continuity., More importantly, this error is independent of the size of the
truncation of the Fourier integral. (For a detailed analysis, see the discus-
sion after Eq. (A.9) and Eq. (A.24) in Appendix A for the Fourier integral
and series, respectively). We note that the analysis for the signum function
can be applied to other familiar functions with jump discontinuities such
as the gate function of Fig. 7.4, which can he expressed in terms of the
signum function as p,(t) = %[sgn(t +a) — sgn(t — a)].

The next important example is that of the Fourier series representation
of a square wave of unit amplitude on (—m, 7).

(7.3.11)

f(t)-::{ 1. O0<t<w

ml; - <t <0,

and its very clear discontinuities at t = 0, { = F7 as shown in Fig. 7.5,
Here we draw a parallel in our illustration to the Gibbs’ phenomenon in case
the above two functions of (7.3.10) and (7.3.11) are represented by more
general forms, i.e., the Hankel integral transform and the Fourier-Bessel
series, respectively.

Due to lack of space we shall be very brief. concentrating our efforts on
illustrating the Gibbs’ phenomenon for the Fourier-Bessel series approxi-
mation of the square wave on (0,1) with its (interior) jump discontinuity
at z = 3 (see Figs. 7.9-7.11)

_ 1 0<t<]
ﬂ”_{o,§<t<L (7.3.12)

This is to be compared with the familiar Gibbs’ phenomenon of the Fourier
(trigonometric) series of the same square wave function of (7.3.11) on the
interval (—m, 7) with its (interior) jump discontinuity at x = 0. A remedy
for the latter Gibbs’ phenomenon will also be illustrated and a parallel one
suggested for the former one of the Fourier-Bessel series.

To save space and make for a clearer comparison, we have included in our
following illustrations the square wave function, the Nth partial sum Sy(t)
of its Fourier series, and Sy(t) after applying the o,-averaging remedy for
reducing the Gibbs’ phenomenon.

The basic details of the analytical background treatment for the Gibbs’
phenomenon. of the Fourier (trigonometric) integral as well as series repre-
sentation of functions, are relegated to Appendix A. For a more complete
treatment (with ample illustrations) of the Gibbs’ phenomenon, we refer the
reader to our book [456. Chap. 4, Sect. 4.1.6]: see also references [380, 363].

There is also an illustrated suggestion for improving the existing pre-
scribed remedy [380] by using high order hill functions [456]. The related
windowing effect is also discussed in the same book [456, Sect. 4.1.6 EJ.

Consider Sy (). the Nth partial sum of the (trigonometric) Fourler series



Robert J. Marks Il, Editor,

264 Abdul J. Jerri

sgn{t)i
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FIGURE 7.3: The signum function sgn(t). (Most of the figures and their analysis
here are from Jerri [458], Integral and Discrete Transforms with Applications and
Error Analysis, 1992, courtesy of Marcel Dekker Inc.).

FIGURE 7.4: The gate function p,(t).
expansion of the square wave in (7.3.11). on the interval (—. ),

N
4 1
St:—§——~*' -~ 1)t 7.3.
n{t) 7’“,121(2"1_1)511}(2” 1t (7.3.13)

Figure 7.6 shows the inset of the Gibhs' phenomenon near the jump dis-
continuity at ¢ = 0 (and also at —w, 7). Figures 7.7 and 7.8 show that
raising the number of terms N from 5 to 10, then to 40 did not make any
difference, in so far as the overshoot near ¢ = 0 persists and is still a good
percentage of the size of the jump there.

In parallel to this we noticed that Sy(z), the Nth partial sum of the
Jo-Bessel-Fourier series expansion on (0.1) of the square wave in (7.3.12),
shows the same type of Gibbs’ phenomenon near the jump discontinuity
at z = . This is illustrated for Spp(z) in Fig. 7.9. and where doubling
N to 40 in Fig. 7.10, and even to a 100 in Fig. 7.11 only improved the
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FIGURE 7.5: The square wave function (period 2r).

series approximation of the function, but did not affect the same type of
the overshoots and undershoots near the jump discontinuity at ¢ = %
Figure 7.10, then, shows clearly a similar size first overshoot to that of
Fig. 7.8 of the trigonometric Fourier series, which is about 10% of the
jump size at t = -% For a jump discontinuity at an end point, see [366].

It is this Gibbs’ phenomenon of Fig. 7.10, as a possible representative for
other orthogonal expansions, that we used as an example in order to direct
the attention to its possible remedy. Again, with the tools developed here,
the known analytical treatment for the case of Fourier series (in Appendix
A) and the analysis in [380], it should not be difficult to justify analytically
this parallel result of ~ 10% overshoot for the Fourier-Bessel series near
the jump discontinuity at ¢ = % in Fig. 7.11. In both Figs. 7.9 and 7.10 we
notice an undershoot at z = 0, which may resemble a Gibbs’ phenomenon.
It is not the case however, since the (Jp)-Bessel-Fourier series used here
represents an even function. Indeed Fig. 7.11 indicates that such an un-
dershoot decreased for Sipg(z) whereas the overshoot at the discontinuity
@ = § persisted.

Of course, the Fourier-Bessel series is not periodic: therefore, there has
not been any interest in looking beyond the interval of the series expansion
like (0,1} in the above case of the square wave in (7.3.12). However recalling
the relatively new generalized impulse train (7.1.75) of Fig. 7.1, we do have a
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FIGURE 7.6: The square wave, its Fourier series approximation and Gibbs’ phe-
nomena and the o1 (averaging) remedy, N = 5. (From Jerri [456]).

purpose and interest in looking beyond this basic interval of the orthogonal
expansion, even when we are expecting no more than just a “noisy-like
repetition” of some kind. Figure 7.12 illustrates how the Fourier-Bessel
series extends the representation of the square wave in (7.3.12) to the larger
interval (0,4), which is beyond (0, 1), the basic interval of the orthogonal
expansion, and where the above mentioned “some type of repetition” on
(1,4) is clearly indicated. We also looked at the expansion on an even
larger interval of (0,20), where the “repetition” could be associated with
the character of the repetition of the impulse train in (7.1.75) of Fig. 7.1.

A Possible Remedy for the Gibbs’ Phenomena—o-Averaging

The usual known remedy for the Gibbs' phenomenon of the Fourier anal-
ysis like that of Fig. 7.3, is to replace the function with its abrupt jump
discontinuity by “ancther” one which is continuous in a small neighborhood
of that discontinuity. Indeed the function is replaced by a straight line in
that neighborhood as shown in Fig. 7.13 for the signum function.

Such a process is seen as an averaging of the function, which is called the
o1-averaging and is attributed to Lancos (see [380]). Details of the basic
analysis of this process are found in Appendix A. In Fig. 7.7 we have the
S1g(z) Fourier series approximation of the square wave function in (7.3.11),
with its jump discontinuity and its Gibbs’ phenomenon as well as the Syg(2)
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FIGURE 7.7: The Gibbs' phenomena (of the square wave) with N = 10. Also
its o1 (averaging) remedy.

of the oq-averaging of the square wave. We see clearly the reduction of the
Gibbs’ phenomenon for the latter (averaged) case as well as a much better
approximation where the function is continuous.

More important to us in the analysis of the Gibbs’ phenomenon for the
Fourier-Bessel series is that such ¢j-averaging is equivalent to convolving
the square wave function with the gate function, a process that we can
easily perform for the Fourier-Bessel series with the newly developed tools
of Subsections 7.1.4-7.1.5 which are very compatible with such purpose.
Also, equivalently. this o1 process means multiplying the Fourier coefficients

4 1 . sin{2n~1)2% . RPN :
e = 25 of (7.3.13) by W”“L“(%—l}ﬁvv (as Fourier coefficients of the

Fourier series expansion of Np,an(t) on (=m. 7).

In the hope of improving on such Sy, -averaging process we have at-
tempted to repeat it as S’N,df, SNJ?, ooy Snor (or 01, 02, 03, -y Om?
o = o7') averagings. Figure 7.8 illustrates the Sy approximation without
averaging, the Si0,,, and S0, Where we note that the gg-averaging is a
better approximation with about completely removed Gibbs' phenomenon
at t = 0. However, it has one drawback: it required almost double the rise
time than that of the oy-averaging. Higher order averagings of o3 and os.
even with Sgg. are illustrated in Fig. 7.14. It is observed that there seems
to be an optimal order of such high averagings, where we see in Fig. 7.14
that the Sgg o, is the best. Sgo o, though extremely smooth, does suffer
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FIGURE 7.8: The Gibbs’s phenomenon with N = 40. Also its remedies of one
{(¢1) and two (¢2) averagings.

from a longer rise time compared to the two former ones.

We again note that the o]* = o,-averaging is equivalent to convolving
the function m times with Np./on(t), which in turn will introduce the
self-truncating factor,

B {sin(?n -~ 1)5%}"1
T @2n-10)

to the Fourler coefficient of Sy (t) in (7.3.13). Here. again. comes the role
of the hill function of order m, as the Fourier transform of o,,, where it is
making a self-truncating Fourier series in a manner similar to making the
self-truncating Shannon sampling series. So, for our treatment of the Gibbs’
phenomenon of the Fourier-Bessel series, we can employ the generalized hill
Sunction in (7.1.52) to reduce the Gibbs’ phenomenon, or to make the Jg-
Bessel orthogonal expansion (7.3.19) a self-truncating one. We hope, of
course, that this can be applied to other general orthogonal expansions.

In all our practical computations we had to approximate the infinite
Fourier series of Gg(f),

o0
—2mi 1 1
Gs(f)= Y cxe 2 T1, ~5 << 57 (7.3.14)
k=—cc
T/2 )
o = T/ Gs(f)e™*TIqf (7.3.15)
—~T/2

by an N term partial sum. Here, w = 27 f.
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FIGURE 7.9: The square wave function and the “Gibbs’ phenomenon” of its
(Jo-Bessel)-Fourier series approximation Sy (z), N = 20. (See also [366].)
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FIGURE 7.10: The square wave function and the clear “Gibbs’ phenomenon” of
its (Jo-Bessel)-Fourier series approximation Sy(z), N = 40. (See also [456].)

In the same manner we limit the infinite Fourier integrals of G(f),

G(f) =/m g(t)e 2 tat (7.3.16)
and -
g(t) = / G(f)e*rItaf (7.3.17)

to finite time limits —b to b and finite frequency limits —a to a respectively.
This means that we had to assume an “almost” time limited function for
G(f) and an “almost” band-limited function for g(t).
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FIGURE 7.11: The square wave function and “definite” “Gibbs’ phenomenon”
of its (Jo-Bessel)-Fourier series approximation Sy (z), N = 100.

In all cases of truncation. we actually employed the gate function,

pa(t):{ éj m f Z (7.3.18)

with its abrupt discontinuities at ¢ = 1. Such a particular case of trun-
cation is viewed as the result of applying a window of the gate function
type pa(f) to G(f), whose effect on the transform g(t) appears as wiggles
around Fb, the ends of its support (or period). This effect is well-known
as the “windowing effect,” and its “apparent” remedy is to increase the
bandwidth a. However, in many situations « may be fixed, thus something
has to be done about the gate function and its “troublesome” sharp discon-
tinuities. This means that we have to choose a window that dies out slowly
around its truncation edges Fa. Indeed the analysis (or art) of construct-
ing such windows, is very intensive [380], [456, 941] for the (trigonometric)
Fourier analysis. However. to our knowledge, there is very little, if any,
analysis for the more general transforms or orthogonal series expansion.

It is easily shown [380, 456] (see Appendix A) that the wiggles of the
windowing effect are strongly related to the Fourier transform of the given
window. With the tools we have already developed in the Subsections 7.1.3-
7.1.5, a “similar” statement for the Hankel transform or Fourier-Bessel
series representation is in order.

In the case of the Fourier series (7.3.14), typical truncation to N terms
amounts to multiplying the infinite sequence of its Fourier coefficients ¢, by
the gate function py7(kT). The resulting discontinuity of ¢ has its effect
on the transform Gg(f) appearing as wiggles. or ripples, around *1/7,
the ends of the period. These ripples can be explained in terms of the
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FIGURE 7.12: The (Jo-Bessel}-Fourier series approximation Sy (z) of the square
wave function on (0, 1), and “its some type of repetition” on (0, 4). See also Fig.
7.1.

Fourier transform of the truncated Fourier Coefﬁcie;ltg CAI;%’{NT(’CTL which is
the convolution product Gg(f) * W where —Sﬂ‘—ff—l is the (Fourier)

transform of the gate function pyr(t).

Consider the analysis of the truncated Fourier-Bessel series of a function
Hg(z),

= Jo(zjon)
0 T
Ho(z) =2% ¢~ (7.3.19)
S( ) Z " Jiz(](),n)
n=1
defined on (0.4), which is, of course, not periodic. The question here is
whether we expect ripples around z = b when we truncate the above

Fourier-Bessel series (7.3.19) to N terms (see [366]). There is no doubt
that such truncation is the result of multiplying the coefficients ¢, by a
gate function py(x), i.e., we use c,pn(t) instead of ¢, in (7.3.19). In par-
allel to the above Fourier analysis, this should correspond to “convolving”
the Hg(x) of (7.3.19) with the Jg-Hankel transform S(z) = EJ_%LV_ZZ of the
gate function pp(t). Of course, this convolution product is the generalized
one as defined in (7.1.36), with its generalized translation (7.1.34) replacing
the usual translation of the Fourier transform. It is clear that S{z) is an
oscillating function since Jy(Nz) is, and that it is decaying with zeros at
Ty = Q}V—" So, intuitively, and in parallel to the above Fourier analysis with
the oscillating ﬂ"{f‘%&ﬂ we also expect wiggles around x = b. However, the
reality is a little different, since the Hankel convolution product does not
involve a “mere” translation of 2 in S{x) but a “generalized translation”
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FIGURE 7.13: A possible remedy for the Gibbs’ phenomenon—approximation of
sgn(t) by a continuous function sgn,, ().

S(x8r) like in (7.1.35).

NJ(N{(z67))
zlr
NaJy(Ne)Jo(N7)y — Nty (N7)Jo(Nx)

2 2

i

S{xfr) =

(7.3.20)

The tentative computations and illustrations [442, 437, 454] show that for
relatively large 7, the generalized translation seems to have a smoothing
effect. As to the Fourler-Bessel series representation Hg(x) beyond the
interval (0, b), the form may be described as some kind of noisy repetition
(Fig. 7.12) with extended intervals related to locations of the pulses in the
impulse train of Fig. 7.1.

It is hoped that these brief notes offer a clear presentation of the Gibbs’
phenomenon, and its possible remedies, of the Fourier series and the general
orthogonal expansion of functions with jump discontinuities as illustrated
in Figs. 7.5, 7.7, 7.14 and 7.9.

As we mentioned at the beginning of this section, we shall have most
of the detailed analytical treatment of the typical Fourier {trigonometric)
analysis for Appendix A.

7.3.3 BOUNDARY-VALUE PROBLEMS

One of cur earliest applications of generalized sampling expansions (7.1.20).
outside of communications or optics. was to facilitate the solution of a
boundary-value problem in a plug flow [457]. Such a problem is concerned
with determining the effect of axial conduction on the temperature field of a
fluid (in a laminar flow) in a tube. For such a problem, for the temperature
T(r,z): 0 < r < 1,0 < z < oc, the finite Hankel transform (or Bessel-
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FIGURE 7.14: Higher order o,-averagings for reducing the Gibbs’ phenomenon.
The rise time for o3 is reduced by increasing N, N = 20, 40, 80.

Fourier series) is used for the radial variation fields 71(r. z) for z < 0 and
To(r, z) for z > 0. For complete details of the analysis and the improvement

in the numerical solution see [457]. Among a number of the necessary aux-
iliary conditions. the following two are lmportant compatibility conditions
(at the point of entrance z = 0 to the environment of z > 0):

Ty (r.0) = To(r,0) (7.3.21)
and or ar

1 0T,

=1(r.0) = S2(r,0) (7.3.22)

for matching the temperature and its gradient at the entrance point z = 0.
As expected, such conditions involve Bessel series on both sides of each
equation, but here the (different) Fourier-Bessel coefficients are the un-
knowns. For example, condition (7.3.21) becomes

o 2D(/\1 n)']()()\l n?") bt QC(/\Q n)]g(/\() nT‘)
: o1y : i (7.3.23)
2 i) 2 o
Jo(Aom) = 0. n=1.2.....
Ji(An) = 0. n=12....

where D(A1,n) and C(Ag,) are the Fourler-Bessel coefficients of the Bessel
series solution as related to 77 and T3, respectively. Before our recognition
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of the possible use of the generalized Bessel-type sampling theorem, the
infinite number of coefficients {D(A; )} and {C(Xe,»)} had to be matched
[4]. However. since we know that such coefficients are indeed the samples of
a finite limit Hankel transform (or as the Fourier coefficients of the Fourier-
Bessel series) we can, with a simple operation, change each of the infinite
series in (7.3.23) to only one term C(A) and D(A) as the interpolations of
C(Aon) and D(Ay ), respectively. With the forms in (7.3.23) and keeping
in mind the generalized sampling theorem, we can multiply both sides
of (7.3.23) by rJg{Ar) and integrate term by term from 0 to 1 to have

=, R A0 Y Rt ,
> DOumSa A = 2 4 5™ 0008100 h0). (7320

n=] =1

Now we recognize the above two series as Bessel sampling series expansions

for C{X) and D(A):

C(N) = ClAon)S1(X Aon) (7.3.25)

n=1}

and -
D(A) =" D(A1,n)S2(A Arn). (7.3.26)

n=]1

Equation (7.3.24) becomes a much simpler relation between only two func-
tions C(A) and D{}),

D) —C(\) = 22 (7.3.27)

This replaces the infinite matching of the coefficients {C(Ao,n)} and {D(A1,4)}

in (7.3.23) before employing the sampling theorem. The same thing was
done for the series resulting from the second compatibility condition (7.3.22)
of matching the temperature gradient at the entrance point z = 0. This
analysis using the generalized sampling theorem resulted in simpler and
more accurate numerical computations for this plug flow boundary value
problem, or a conjugate boundary-value problem of Graetez type [4]. For
numerical results. see Figs. 1-3 in [457].

7.3.4 OTHER APPLICATIONS AND SUGGESTED
EXTENSIONS

In this section we will outline some of our present and suggested future re-
search in relation to sampling theorems. This research includes the retaining
of the interpolation property [448] of the generalized (optimal) sampling
sum of approximation theory [845] as we shall discuss in more detail in this
section. There is also our continued attempt for completing the picture,
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i.e., sampling a function and its derivatives, for most of the remaining,
well-known general integral transforms that are associated with the gen-
eralized sampling theorem [437]. This includes the Legendre, associated
Legendre, the Gegenbauer, Laguerre, Hermite and the Jacobi transforms
[434, 437, 440].

Apart from the applications for the communications engineer, we found
applications of the Shannon and the generalized sampling for civil, me-
chanical and chemical engineers. The first relates to the determination of
the spacing between the railroad cross-ties [446, 510}, where the Shannon
sampling theorem was used and the result agreed with the long-standing
railroad data, We are considering presently this problem of support in the
case of thin cylindrical shells with circular supports, where the Hankel
transform is used. It should be clear from our analysis (in Sections 7.1.2
and 7.1.3) how the Bessel sampling series (7.1.26) will play a similar role
in determining the spacing of the circular supports. When the circular sup-
ports, for spherical domes or shells, are considered, a Legendre sampling
series, or other generalized sampling series with closely related radial ker-
nels, may be used for the spacing of such arcs or supports.

The Shannon sampling theorem and its generalization in this chapter
played a role in the development of our research interest, namely, the de-
velopment of a modified iterative method for solving non-linear problems
[455, 449, 460] (see also more relevant references in the recent tutorial
article on the subject [455]). The familiarity with the properties of band-
limited functions as well as with the Shannon sampling theorem was helpful
in developing this method for solving non-linear problems with rectangular
geometry. When the same non-linear problem was considered for a cylin-
drical shape, the role of the transform-limited functions, presented in Sub-
sections 7.1.2-7.1.3, became very evident. This is, of course, apart from the
necessity of Bessel sampling series. Details of the brief history of this devel-
opment, especially as it relates to the band (or transform)-limited functions
and their corresponding sampling series, is presented in second part of this
section.

Interpolation for the Generalized Sampling Sum of
Approximation Theory

In his treatment of the error bound for the aliasing error of not necessarily
band-limited functions, Splettstsser [845] replaced the si (or sinz/x) func-
tion, of Shannon sampling expansion [818, 440] by well-known functions in
approximation theory.

He then illustrated his work with a number of such known functions. He
showed better convergence, and hence a tighter aliasing error bound than
the existing ones. He remarked, however, that such better expansions lack
the interpolation property, which is very important for the series analysis
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of signals. Consider the function

flt) = T/%’;/_O; F(w)e™dw (7.3.28)

which is Lebesgue integrable (f € L{R)), continuous (f € C(R)) and hasa

Lebesgue integrable Fourler transform F'(w), F(w) € L(R) on the real line
R,

F(w) = “J;-;[w f(tye ™tdt. (7.3.29)

Let G{w) be the Fourier transform of ¢(¢) with the same conditions above: -

the convolution product (f * g)(t) of f(f) and g(¢) is

Jﬁ/» Flu)g(t — u)du
= %2_/00 et F(w)G(w)dw, (7.3.30)
TJ -0

il

(f*g)(t)

with F{w)G(w) as its Fourier transform. Splettstosser employed an im-
portant known tool in approximation theory concerning the discretization
of the above convolution product. It states that if, in addition to f, g€
L(R)NC(R), they are also band-limited to 7\, i.e., F(w) = G(w) = 0 for
all |w| >« W, W > 0, then

712*-;/: Flu)gl(t — wydu = \/2%@, ki:wf (%) g (t - %) . (7.3.31)

This result was stated in Subsection 7.1.4, as a special case of our extension
of (7.1.49) to the product of three functions, to help with the derivation of

the seli-truncating sampling series in (7.1.48). Moreover, with the help of

the new tool of the generalized convolution theorem in (7.1.36), we were
able to extend these results, associated with only the Fourier transforms,
to the result (7.1.56) of the general transforms (7.1.32)-{7.1.33) associated
with the generalized sampling theorem (7.1.20)-(7.1.21). We shall rely on

such new tools in extending our following results. of retaining the interpo-
lation property to the Fourier transform development of Splettstosser, to:

the general integral transforms of (7.1.32)-(7.1.33).
For not necessarily band-limited functions, Splettstosser established that
for f € C(RYNL(R) and F € L(R), then for each t € R,

sinz

ft) = u;i-l»noo Z ! (%) si{w{(Wt — k)}, siz= (7.3.32)
k=—o0

in terms of the classical si-sampling function, which, as usual, interpolates
the function f(¢) at the sampling points {—‘f/,}
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In order to obtain a better convergent sampling sum than that of (7.3.32).
he introduced known kernels of approximation theory x(t) € L{R), which

are normalized. i.e.,
1 -]
P — z(u)du = 1. (7.3.33
= st (7.3.33)

He then established the following more general sampling sum, where X (w)
is the Fourier transform of z(t). Let z € L(R) N C(R) have the prop-
erty (7.3.33) with |z(¢)| < const.|t|™7 for some v > 1 and X(w) = 0 for all
lw] > £, 8 > 0. Moreover, let X(w) be absolutely continuous on ({2, ).
Then for any f € C(R)N L(R)

m

Ft) = Jim \/% kg‘m f (%—) 2|5Vt =k) (7.3.34)

uniformly for all ¢ € R,

As we have already stated, this approximation sum demonstrated better
convergence [845] than that of (7.3.32), especially with such kernels as the
de la Valée Poussin means,

2(u) = O(u) = % si (§u> si (-;f) (7.3.35)

whose Fourier transform is

1, jwl €1
Olw)=14 2-Jw|, 1<w<?2 (7.3.36)
0, jw] > 2.

Unfortunately, such a better approximation (7.3.34) with (7.3.35) lacks the
important property for approximating signal functions f(¢), namely, the
interpolation at the sampling points { —éf,—}

Splettstosser raised the question as to whether such approximations be
modified in such a way that they interpolate, and that the resulting order
of approximation is at least as good. He demonstrated this point for the
case of the kernel of Fejér,

1 ATANE
Hu) = T {51 (5” (7.3.37)
with its Fourier transform
N 1wl w1
L(w) = { 0, wl > 1 (7.3.38)
where the sampling sum (7.3.34) becomes
= k
t)= 1li — | [si(Wt - k))? 3.
0= 3 (77 ) e - by (7.3.3)
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which obviously does not interpolate at ¢ = %. He then gave a counterex-
ample with the differentiable function

1+sint, tg(_zz 377)
(t) = 2
1e) = { 0. elsewhere (7.3.40)

and offered a modified version of (7.3.39) that would interpolate. as a Fejér-
Hermite type interpolation.

flt) = 11_1_.100c kiw {f (%—l;) + (t - %é) I (%i‘*)} [Sin “g(ﬂr't - 2};)}2

(7.3.41)
We note that the infinite series in (7.3.41) is also known as the sampling ex-
pansion for the band-limited function frw () in terms of the samples of the
function and its first derivative. This is known [440, Sect. IVB], even with
higher derivatives, on the basis of the classical sampling series (7.3.31);
hence the involvement of powers of the same si-function as in (7.3.39).
We also note that for this particular example (7.3.40) the modified se-
ries (7.3.41) would have worse convergence than that of the approxima-
tion sum (7.3.39), since the sequence f’(%) = COS%& would behave like
f(%—vlg) = 1+ sin ?,5 and that the second term (¢ — 2’C)cos & in (7.3.41)
would be slower than the first term 1 + sin fA’ﬁ
In the next section we shall develop a method that uses complex contour
integration which will modify all approximation sums considered in [845]
and extends to a more general analysis of this type associated with integral
transforms, other than the usual Fourier transform [448].

Interpolation for the Sampling Sum of Approximation Theory

Cousider the approximation sum in (7.3.34),

\/EFQ Z faw <“> [Q(IH~A)] (7.3.42)

for the band-limited function frw (t), ie.. F(w) = 0.]w| > 7. Let g(u)
be the transcendental factor in @(u) of (7.3.42). Then the contour integral
along the path Cp : |z] =

£()
eyt (7349

as R — oo, would give the modified version that is needed for the approx-
imate (7.3.34) to have the interpolation property. The proof is straight-
forward as frw () and the main desired part of the modified series would
result. respectively. from the contribution of the residue at z = ¢ and the
residues at the zeros of g(z). What remains is to show that the contour
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integral vanishes as R — oo. This would put a condition on the exponen-
tial order o(e™ W) of frw(z) versus that of g(z). which determines the
sampling spacing. For example, in the case of the Fejér kernel expansion,
the transcendental part is g(z) = [sin Z1/z]> = o(e™ ), which makes
the contour integral vanish for I/ > ¥ in other words, as long as the sam-
pling spacing -,/‘—1,—, is less than “v117 As a specific example, we consider the
approximation sum associated with the de la Valée Poussin kernel (7.3.35)

F(t) = 133”3 Z f(”> ﬁ(up%)} [Z(xxfthk)} (7.3.44)

where g(z) = [sin ZEW2][si 21V2] = o( Wivl), which has double zeros at
zp = %Vl“i and simple zeros at zp = 3W k # 3j. If we perform the contour
integration (7.3.43) for the band-limited function frw (z), we obtain

o = 5 [ () (- 8] ()

kom0

X i P;fm*t . 4/;)} si B—(Wz‘, - k)}
4k 4k sin ZWt

ks34

where the second infinite sum does not involve the samples at 4k . This
approximate expansion possesses the interpolation property, where the first
series and second series in (7.3.45) give the samples f(f‘f—vli) and f(g‘%’g,—) k#7,
respectively. This should answer the open question raised in [845], besides
all its other examples and general cases.

The Extension to the Generalized Sampling Theorem

In order to extend the method to the case of the generalized sampling
theorem (7.1.20)-(7.1.21), we note that in this chapter we have already
presented all tools necessary for this analysis. This includes the generalized
convolution product (7.1.36) and its discretization (7.1.47) as the parallel
of Splettstosser’s work [845] (only for the Fourier transform of the Shannon
sampling expansion). With such tools, one can extend the above results to
approximation theory with the retainment of the important interpolation
property for a generalized sampling series like the Bessel sampling series.
The importance of this development will, of course, depend on how much
the general orthogonal expansion is used in approximation theory (aside
from the familiar trigonometric Fourier series).

The generalization of Splettstosser’s result (7.3.31) to other integral trans-
forms is obtained from our result (7.1.49) when limited to only two band-
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limited functions f(¢) and g(¢).

/ﬂ(’f) ()g(t07)dr = Z M. (7.3.46)

1K (tn)l2

We note again that here the two functions f(t) and g(¢) must be band-
limited since, for example, {(K(z,t,)} = {Jo(¥22)} are orthogonal on
(0,a), where jon is the nth zero of Jy(x). However, these results may
allow non-band-limited functions f(t¢), ¢(t) in (7.3.46), but only for the
transforms (7.1.32)-(7.1.33) whose {K(z,t,)} is orthogonal on the infi-
nite interval involved in the definition (7.1.33). An example would be
the Laguerre transform with K(z.t) = L,(z) on (0,oc), p(z) = ¢~ and
K(z.tn) = Ly(x), the Laguerre polynomials. which are orthogonal on
the same infinite interval (0.oc) [439]. Another example is that of the
parabolic cylinder (Hermite-Weber) function K(z.¢) = Dy(z) on (0.20)
with p(z) = 1,K(z.t,) = D,(X) as orthogonal polynomials on (0, 2c)
[445]. This statement is supported when (7.3.46) is derived via the orthog-
onal expansion for f(¢). in the integral of the left side of (7.3.46). then
integrating term by term.

Modified Iteration for Non-Linear Problems—The Generalized
Convolution for Cylindrical Geometry

The origin of the modified iteration method for solving non-linear prob-
lems, started with the following boundary-value problem for the non-linear
chemical concentration y(z) in a planar catalyst pellet [263, 449],

2
Yo e 0<z<a, (7.3.47)
dx?
y'(0) = 0 (7.3.48)
y'(a) = Sh(1-y(a)), (7.3.49)

where ¢ and Sh are called the Theile and Sherwood numbers, respectively.
Do and Weiland [263] used a finite Fourier cosine transform to algebrize
the linear derivative term in (7.3.47) and utilized the boundary condi-
tions (7.3.48)-(7.3.49). But for the Fourier transform of the non-linear term
y?(z) in (7.3.47). they used an approzimation which, in the language of the
Fourier transform. amounts to the following:

Y2())

7] (7.3.50)

Fl{y* ()} =

They followed this by an iterative method that added an error term and
reported very good results [263]. Such an approximation and its success
captured our attention, as we recognized that it must be a very special
solution to allow such a violation of (7.3.50) to the rule of the Fourier
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transform of y?(x), which should be the following self-convolution of Y (A,
the Fourier transform of y(z),

o0
VW =5 [ YO-wY@de YO =Fl@) (7351
° —00
Clearly, their relation (7.3.50) on the interval (0.a) is exact for y(z) =
Pa(z), the gate function; a very special case indeed. With our analysis, it
turned out that the usual direct iteration [451] of this non-linear problem
in Y'(A) is valid for ¢ < 1.35 which corresponds to a solution that is slowly
varying between 0.7 and 1.0 on the interval (0,1), which is very close to

(=)
The Modified Iterative Method—Its Origin

In the self-convolution (7.3.51) we could not exactly take Y (A — u) as Y/(\)
out of the integral. Instead we started with a first approximation Y1 (A — )
to divide V(A — ). Then we divided and multiplied inside the integral
of (7.3.51) by Y (A — u):

JYO=wya= [~ ey 00—y (e

YA
YO (A—p)

about u = 0 may well be approximated by its first term as ?%%%\-5 and our

Now if Y (X) is close to Y'(A), then a Taylor series expansion of

approzimation to the above integral becomes

Y ()
YO (A)

/ Y& — )Y {(p)dy = / Y- W)Y (p)dp, (7.3.52)
-0

where the first approximation Y (0 (X — 1) acts now as a kernel. If we use
this approximation for the Fourier transform of y?(z), and —A?Y (\)+ B())
for the Fourier transform of d?y/da? on (—o0,0c) in (7.3.47), we have

v2 Y(A)

~A2Y(\) +B(\) = o YO0

J/ YO\ = )Y (p)dp. (7.3.53)

The B(A) term here is symbolic for covering the boundary conditions, as in
most practical cases we may use the cosine, sine or finite Fourier transforms.
We considered (7.3.53) as an integral equation [451, 449] in Y()) with
kernel Y(U(\ — 1) as the first approximation to its solution.

Moreover, we took the Y'(A) outside the integral as (second approxima-
tion or output) Y3 ()), inputted for the first time by the Y (i) inside the
integral as Y (U (y),

Y@ ()

XY@+ B = X

/Y(”()\ — )YV (wydp.  (7.3.54)
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If we solve for Y{2)(}), we have

i
<5 B(A
Y@ = 3 B ) ; (7.3.55)
@ 1 [ YOO YO (u)du
T+ 5% YD(A)

An iterative process with a new form whose general form for the (m + 1)
iterate is
3B

L+ & yomog J Y™ (A= )Y ) (w)dp’

YD) = (7.3.56)

This new form proved to have much better convergence [449. 460}, to
the point that the same problem of Do’s and Weiland's problem [263] was
convergent for ¢ up to 100. Such convergence is supported by the Banach
fized point theorem [451], where it is shown that the form of the modified
iteration (7.3.56) stays contractive for  up to 100. This is to be compared
with a convergence for ¢ < 1.35 had we stayed with the following original
form, i.e., without the modification that resulted in (7.3.55), (7.3.56),

o0
— A2y (MO 4 B(A) = / YA — )Y ™ (1) dp. (7.3.57)
— 00

This method was applied with success to a variety of non-linear problems
[455, see the references therein] which included the above pellet problem
in planar as well as cvlindrical and spherical coordinates, non-linear waves,
and Poison-Boltzmann equation [455]. Also, the present modified iteration
was applied to other representations of such nonlinear problems besides
the above self-convolution type in (7.3.51) and (7.3.52). which is lunited
(basically) to quadratic non-linearity. The other representations include
Green’s function integral representation and finite difference (see [460] and
references 9, 10 in [455]). The latter representations are highly suitable for
general non-linearity. ‘

We must attribute the development of this method to the familiarity
with the simple, but powerful, properties of band-limited functions.

In the case of the above planar coordinates. the role of the Shannon
sampling theorem appeared due to the need for interpolating values of the
finite cosine transform, which we shall discuss next.

The Planar Pellet and the Use of Shannon Sampling Theorem

Here we will show where and how the Shannon sampling theorem was used
in the analysis of the planar pellet problem (7.3.47)-(7.3.49). For the actual
pellet problem, a change of variable u(z) = 1 — y(z) (with a = 1) was used
[263] to have it in the form

d?u

T —22 (1~ u)?, O<z<l, (7.3.58)
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w(0) = 0, (7.3.59)
w{1) = —Sh-u(l). (7.3.60)

The compatible transform [456] for this problem is the finite cosine trans-
Jorm

1
Ue(An) = / u(z) cos(A,x)dr = Folul, (7.3.61)
0
where ),, due to (7.3.60). are the zeros of
tan )\n:%—], n=101,2..., (7.3.62)

and with Sh — oc we can see that A, = (n+ §)7. Also
u(1) = 0.

The inverse transform to U (\,) in (7.3.61) is the Fourier-cosine series

=<}
Uc(An) cos(Apx)

which, as Sh — oc, becomes

u{z) =2 i Ue(An) cos(Anz). An = (n+ —é—)w, n=0,1,... .

ne=0
(7.3.64)
If we apply this transform on the boundary-value problem (7.3.58)-

(7.3.59), (7.3.63) with the identity

FAu"(2)} = =A2U(Mn) — u/(0) + [0/ (1) + Sh-u(1)] cos A, (7.3.65)

we have
NUo(Mn) = P Fe{(1 — w)*} (7.3.66)
and in terms of Y{A,).
sin A,
A2 { el Yc(An)] = p? FAv*} (7.3.67)

where Fo{1} = (sin A, /A,).
Now we write F.{y?} as a convolution product (Y,*Y)(\,) for this finite
cosine transform.

(Yo x Yo)(Mn) = D YoM Yok + An) + Yok = Anl)]. (7.3.68)
k=0
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If we use this in (7.3.67), we have a non-linear “summation” type equation
(as compared with integral equation), in Y, (/\ ),

Vo) = 2% S Y0k An) + Yallhe — Aab]e (7369
An "k =0

The role of the Shannon sampling expansion appears in computing the
convolution sum in (7.3.69) where we must note that the arguments A, + A,
and Ay — A, would be integer multiples of 7, where the function Y.(A,) as
in (7.3.64) is defined only for A, = (n+ %W) For this we can interpolate for
Ye(nm) in terms of Y,((rn + 3)n). and use the following Shannon sampling
expansion

Z Yo(An) f’m’\ A)), (7.3.70)

T - OO0

The nylindrical Pellet and Bessel Sampling Series

In a manner parallel to the development of the non-linear problem for the
planar pellet (7.3.58)-(7.3.60). we find the need for the tools of the gener-
alized convolution theorem (7.1.36) and the generalized (Bessel) sampling
series {7.1.26) for the cylindrical pellet. Here we consider the same type
problem of the non-linear chemical concentration u(r) for a cylindrical cat-

alyst pellet with a quadratic non-linear term (%u?:
ld | dul = 45, )
o {r-ﬁ] = u’. 0<r<l. (7.3.71)
u{0) = 0 Up = du (7.3.72)
- = Q. rE o .3.72
u(l) = 1. (7.3.73)

We will use the finite Jy-Hankel transform to algebraize the differential
operator on the left side of (7.3.71),

Udom) :/0 ru(r)Jo(jo,n7)dr = Ho{u}. (7.3.74)

where {jo,»} are the zeros of the Jy-Bessel function, ie.. Jy(jon) = O,
n = 1,2..... The inverse Hankel transform is the Fourier-Bessel series of
u{r) on (0.1),

= Ujo,n) Jo(jo,nT) (

Clearly, U(jo,n) in (7.3.75) is a transform limited function and the role of
the Bessel sampling series is evident if we are to obtain values of U(A) at A
different from jg . More important is the use of the generalized convolution
theorem (7.1.36) for us to be satisfied with a general transform result in
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parallel to that of the modified iteration (7.3.56) in the Fourier transform
space. Due to the lack of space, we can only mention that the modified
tterative method was successful in solving this problem for high values of
[460]. For more details the reader may consult the tutorial article on the
subject [455], or [460]. The basic subject of the convergence is discussed
briefly in [451] (see also Ref. 5 in [455]). We also mention here that for
efficient computations of the above finite Hankel transform (7.3.74) and its
inverse (7.3.75), we employed an “approximate” discrete Hankel transform
[442] with good accuracy. This discrete Hankel transform was developed
with the help of the Bessel sampling series. The same modified iterative
method, with parallel analysis, was used for spherical pellet [460, 455].
These pellet problems were also tried with success [455, 460] for general
non-linearity f{y) with some conditions on f(y).
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Appendix A

A.1 Analysis of Gibbs’ Phenomena

As we indicated in Subsection 7.3.2, most of the hasic analysis of the well-
known Gibbs’ phenomenon are relegated to this Appendix. In the following
we present a basic treatment of the Gibbs' phenomenon associated with
integrals approximation of discontinuous functions. This will be followed
by a parallel treatment of the Gibbs' phenomenon for the Fourier series
approximation of discontinuous periodic functions.

The simplest example of a function with jump discontinuity in the inte-
rior of its domain is the signum-function sgn(t) (Fig. A.I):

, ¢t 1, ¢t >0
sgn(t) = m = { 1t <o (A1)
The very important gate function py(t).
1 <

with its jump discontinuities at ¢ = Fa (see Fig. 7.2), can also be expressed
in terms of the signum function as

pa(t) = %{sgn(t +a) —sgn(t — a)|. (A.3)
In the following discussion we will concentrate our effort on this basic
signum function and the Gibhs’ phenomenon associated with its truncated
Fourier (integral) representation. For the Gibbs' phenomenon of the trun-
cated series we will use the square wave function of (7.3.11), (A.16) as
seen in Fig. 7.5 with its jump discontinuities at z = 0,2 = FTx. We shall
concentrate here on the analysis of the Gibbs phenomenon for both the
Fourier integral and the Fourier series representation. However, due to lack
of space, we shall in hoth cases refer to only the illustration of the latter
in Figs. 7.6-7.8 and 7.14. More details including this treatment are in [456]
(see also [380}).
Let us recall the Fourier integral representation of the gate function p,(t),
of Fig. 7.2,

* sin2mwaf
Pa(t) =/ ”‘}Tieﬁﬂtdf‘ (A1)
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sgn(t)
i

0 t
-1

FIGURE A.I: The signum function sgn(f) (Most of the figures and analysis here
are from Jerri, Integral and Discrete Transforms with Applications and Error
Analysis, 1992, courtesy of Marcel Dekker Inc.).

This gives us a means of computing for p,(t) via its Fourier transform
%ﬁ%@i However, in the actual numerical computations of this infinite
integral representation (A.4), the moment we truncate its infinite limits to
—~A. A, with a gate function p4(f). we expect a Gibbs’ phenomenon for the
resulting approximation of p,(#) near its jump discontinuities at t = Fa.
This is a windowing effect on p,(f) with a window p4(f), which results in
convolving p,(t) with &%’L@—t, the transform of p4(f) to give pg a(t),

Paalt) = palt)s S02TAL
! t

 sin 2n At — 1)
/;m —“ﬂ.—(t”_—?_?—‘—])a(‘f)dT. (A5)

i

This result represents an exposure to convolving a continucus function
ﬁ“—%ﬂ with a function p,(¢) that has jump discontinuities. It is such jump
discontinuities that will contribute an extra term ~(t) as the source of the
Gibbs’ phenomenon. Such a source of error v(¢) can be well understood
when isolated in the very basic representation of the signum function sgn(t):
once isolated, it is a simple matter to translate our understanding to the
case of pu(t).

We will use the following integral:

/ Plha= I (A.6)
D 2

T

which can be computed by direct complex integration and which makes the
basis for the Fourier representation of sgn(t).
If we let = = 2x ft in the above integral, we have

2 3
5/0 Smf ftdf { i i z g = sgn(t) (A7)

as the Fourier (sine) integral representation of sgn(t). The two different
branches of sgn(t) in (A.7) are easily obtained from (A.6), where the inte-
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grand is positive or negative according tot > 0 or ¢t <0. If we approximate
the integral (A.7) by truncating to B in the upper limit of integration, we
obtain the following band-limited function (band-limited to B). which we

denote by sgng(t), as an approximation to sgn(t):

2 27 ft
senplt) = _/0 sin 27 f sin 27t

™ f
27w Bt
_ ?/ sin z g Si(27 Bt) (A.8)
w 0 T T

after letting o = 27 ft and recognizing the last truncated integral as the
known and well-tabulated sine integral Si(2wBt) (as shown in Fig. A.II for
Si(t))

Si(t)a

2.0
irem ..
e

FF § B ootz i
926771'5,,

1.0

g ! i i I
o Alio 20 30 40 50 60

tte

FIGURE A.II: The sine integral Si(¢ f sin z/z dx and the essence of Gibbs’
phenomenon near ¢ = 0. Note that sgng( ) = 2/78i(2nBt) in (A.8). See [380].

It is the study of the behavior of this Si(27 Bt), as the truncated approx-
imation of sgn(t), that would give us the first glimpse at the actual reason
behind the Gibbs’ phenomenon of the truncated Fourier approximation of
functions with jump discontinuities, especially those in the interior of their
domain. The first sine integral in (A.8) can be looked at as a representation
for the output of passing (first example of a discontinuous function) sgn(t)
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through an ideal low-pass filter with a pg{t) window,

(e ) ,:’u -
senp(t) = %Si(?wBt} . % /_ ) E%Bj%ﬂ sen(ridr  (A.9)
with input G(t) = sgn(t). Usually G(t) is assumed to be continuous which
allows limp._.oo Gp(t) = G(¢). In other words, Gp(t) can be hrought as
close as we desire to the original continuous G(t) by increasing B, the
width of the truncating gate window. In contrast, as seen in Fig. A.ll, the
sine integral representation in sgug(¢) of (A.8) cannot be brought closer to
sgn(t) by increasing B. Indeed, and as we shall illustrate shortly, it turns out
that by increasing B we will only change the time scale in Fig. A.1l, which
will bring the peaks together without changing their relative magnitude. In
fact, the size of the first maximum above 7/2 of the Gibbs’ phenomenon
in Fig. A.Il is about 9% of the jump size J = 7 at t = 0 regardless of how
large we take B to be. To derive and illustrate this phenomenon. we will
find the locations and magnitudes of the first maximum and minimum of
Si(2x Bt). If we take the first derivative of 8i{27Bt) in (A.8) and equate it
to zero, we have

d ) sin 27 Bt
d27 Bt Si(2nBt) = TonBt
which has zeros at t,, = 5% = 7. the locations of the possible maxima
and minima of sgug(t). The first maximum is at t; = 5% whose mag-
nitude can be found from substituting ¢t = t; = % in (A.8) to have
28i(r) = 2. %(1.17898) = 1.17898 where Si(x) = Z(1.17898) is found

from mathematical tables. Since the size of the jump at ¢ = 0 is 7, this
maximum would represent 0.17898 which is close to 9% of the jump size as
an overshoot from sgn(%) = 1. We must note here that with the location
of the extrema ¢, = 55 in (A.8), their magnitudes %Si(mr) for sgng(t)
are independent of B, the width of the truncation (gate) window. This
should make clear that the Gibbs’ phenomenon at a jump discontinuity
of any kind cannot be remedied by merely increasing B the width of the
truncating gate function window used for sgng(t) in (A.8).

The next extrema is a minimum at iy = 5% with a value from (A.8) as

2 [ sinx
—/ B — 2 siam) =
s} w

A e

(0.906)

e

a z

which represents (1 — 0.906)/2 = 0.047 or about 4.7% of the jump discon-
tinuity at ¢ = 0. as an undershoot from sgn(f—té) = 1 (see Fig A.Il). The
analysis of the Gibbs' phenomenon for more general functions, with jump
discontinuities in the interior of the domain, will follow the same way. Such
functions can be constructed from the signum function, or its combinations,
by adding them to a continuous function. Thus in our attempt to find a
possible remedy for the Gibbs’ phenomenon, it is sufficient to stay with the
more basic sigmun function.
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A PoSSIBLE REMEDY FOR THE GIBBS' PHENOMENON

We have already shown that there is no way that the Gibbs effect dis-
appears for the truncated Fourier representation sgng(t) of the signum
function with its jump discontinuity at zero. So the only alternative is to
replace sgn(t) by a continuous function which approaches sgn(t) as B — .
A practical justification for such change of the function is that we may look
at two different functions (signals) with the same band limit B and may
call them equivalent by insisting that their transforms on (-B. B) carry

the same energy f_l_;B |G(f)%df. The first. and obvious, choice is to replace

the part of sgn(t) on (~t1,11) = (—55. 55) around ¢t = 0 in Fig. 7.3 by a
straight line as indicated in Fig. A.IIL

sgn{t)
el

!
-1/28, i

/:O /28 t
11

FIGURE A.III: A possible remedy for the Gibbs' phenomenon-—approximating
sgn(t) by a continuous function sgn, (t).

sgn g‘( t)

The new function sgn,_ (t) can be shown as the result of convolving sgn(t)
with the gate function Bp 1 (1),

sgn,, (1) = sgn(t *Bpilg(t)
o NS
= B pi%(t~7")sgn(r)dr
— O
1 ¢+1/2B
= sgu(7)dr
255 Ji-1/28
L t> 513-
= -1, t < 55 (AlO)
2Bt, —5= <t < 55

after noting that pyop(t—7) =0for [t —r| > 1/2B (orfor 7 < ¢ - 1/28
and 7 > t+ 1/2B), and performing the last integration.

We can see from the last integral in (A.10) that sgn,, (f) is also the result
of averaging sgn(t), with constant weight 1. over intervals of width 2- 2—15 =
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4, where 5% is the location of the first overshoot (maximum) of the Gibbs’
phenomenon near the jump discontinuity at ¢ = 0. In the following we will
show how such an averaging process as sgn,, (¢) results in a reduced Gibbs’
effect. ‘

The Fourier transform of this averaged function sgn,, (1), is the following
product of ;7%17 , the transform of sgn(¢), and B im%éﬁi the transform of
Bpyj2p(t):

Bﬁin(ﬂ'/B)f

Fo(f) T f of (A.11)
sgng, (t) = /C %Bﬂg/fzﬂeﬂ”‘dt, (A.12)

where we have used F {sgn(t)} = 3—%17 j=+-1

Now if the truncation for this infinite integral representation of (the
continuous) sgn, (t) is done with a gate window pa(f), we have its band-
limited approximation:

A :
1 sin(7 .
sgn,, ,(t) = / ___Bweﬂﬂtdf

—anf T f

_ < sin 2w A(nt —7)
= /ioo P sgn,, (T)dr. (A.13)

In contrast to sgng(t) in (A.9), where the input to the truncation gate win-
dow was a discontinuous sgn(t), we have here its modification (averaged)
as a continuous input sgn, (t). This would allow sgn,, () to get as close
as we wish to sgn, (¢) of sgn(t).

It is important to find the relation between sgnp(t) of (A.8), with its
Gibbs’ phenomenon, and sgn,, , (t), the approximation to sgn,, (¢) the con-
tinuous replacement of sgn(t).

From the first integral of (A.13) we have

A sin(n/B)f sin 2 ft
<p2/§ B=% - (A.14)

since the Fourier-transformed function in the first integral in (A.13) is an
odd function. If we choose A = B, we can compare the above result with
that of sgng(t) in (A.8) :

2 (7Bt ging
sgng(t) = — dx.
0

™ Z

sgn

With A= B and 27 ft = 2 in (A.14) we have

) _ B sin(x/B) f sin2x ft
) = 2 [ S
9 [mbt sin(1/2Bt)x sinz ]

/Q (2B = &

(A.15)

s
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If we compare (A.8) with (A.15), we note that the above averaging or
smoothing process for managing the Gibbs’ phenomenon of sgn(t), as in
(A.15), introduces a decaying factor 5%%%‘%% inside the sine integral. This
factor seems to have broufrht the sine integral to a balance close to sgu(t).
For example, at ¢; = ﬁ where (A.8) has a maximum as sgng(1/2B) =

2 Si(r), we now have from (A.15)

sgn i M?_/’T Sinmgd
8oz \2B) "7 )y 2 |

where the integrand decays much fastm than the sin(z)/z of sgng(t). hence
yielding a lower value than that of 2 = Si().

The first integral (A.13) suggmts that the averaging process seems to
have made the Fourier transform of the original function tend more toward
a band-limited function (see the extra 1/f factor in the integrand). This
is in general due to the convolution by p;/op(t) in the time space, which
enlarges the domain of the resulting function (see (A.10)) and according to
the uncertainty principle causes a narrowing in the frequency space domain.
This is in the direction of helping the truncation process, which is good
as long as it does not change the main character of the original signum
function, in particular the fast rise from 0 to 1 near t = 0. In the present
case the averaging is done with the flat top p; /o5 (t) which has affected the
original function only to close the discontinuity at t = 0, where it replaced
the jump discontinuity by a line of slope 25.

What remains is to see if, in the light of the above analysis for the
Gibbs’ phenomenon, we can suggest further improvement to the above
averaging remedy. We precede such improvement by stating that the above
gi-averaging process moves the location of the extrema further away from
the discontinuity as can be shown from differentiating sgn,, _(¢) in (A.15)
(see (A.8)).

The most direct way for further improvement is to repeat the averag-
ing process, which should decrease the magnitude of the extrema. The
n times repeated aver amng of sgn(t) would amount to convolving it n
times with py o5 (f). This is equivalent to convolving sgu(t) with the hill
function ¢,(t) (B-spline) of order n, since the latter is defined as the
n — 1th self-convolution of the gate function py/55(t). We could also look
at this process as averaging with a weight which is a spline of order n
instead of (the flat top) Boi(t) = Bpiep(t) used in the above analy-
sis. The convolution of sgn(?) with Bo,(t) would amount to multiply-

s n
ing inside its integral in (A.15) by o, = [5'-?75—%—1)—3%11 as the transform
of B"¢n(t) = B™(p1/2p* (o *p1y2p)(t) -

There is no doubt that such a self-truncating factor inside the integral
would improve its convergence to give smoother results. However, the wider
domain of the higher order hill function ¢, (¢) would cause a slower rise for

1.8
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the approximate function near the jump discontinuity. This is not an ex-
tremely difficult problem since it can be remedied by increasing B which,
of course, will increase the number of computations. The latter is not much
of a price to pay when we are using the fast Fourier transform (FFT). Fig-
ure A.IIT (which is the same as Fig. 7.13 in Subsection 7.3.2) also illustrates
such remedy for the most familiar case of the Gibb’s phenomenon in the
(truncated) Fourier series approximation of the square wave function near
its jump discontinuity at z = 0, where it was discussed in Subsection 7.3.2.

In the next section, we will treat the Gibbs’ phenomenon for the Fourier
series approximation of (periodic) functions with jump discontinuities. The
analysis will follow much in parallel to that of the integrals, where the
o, factor improvements are illustrated for the (periodic) square wave of
Fig. 7.5. In essence, the numerical computations show a larger rise time
near ¢t = 0, but much smoother approximation with g9 than that of o
(Fig. 7.8). With og the rise time doubled that of o3 but the accuracy is
exceedingly better when the same number of terms was used for both cases
(see Fig. 7.14).

THE GiBBS’ PHENOMENON IN FOURIER SERIES
APPROXIMATION

Now we turn to the usual Gibbs’ phenomenon of the truncated Fourier
series for periodic function with jump discontinuities. The example we take
is that of the square wave of unit amplitude on (—m.7) as illustrated in
Fig. 7.5,

1. 0 <t <
so={ 1 J!5; (a16)
whose Fourier sine series is
fy~2 }oo: L _in(2n - 1)t (A.17)
=S - 1s n(2n . .

The Nth partial sum,

4 N

== Z sm (2n — 1)t (A.18)
=1

is illustrated for NV = 5 in Fig. 7.6. and for N = 10,40 in Figs. 7.7 and 7.8.

To find the locations of the extrema of the Gibbs phenomenon of Sy (t)
n (A.18), we will express the Sy (¢) as an integral, then follow the last sec-
tion's analysis used with the Fourier integral approximation of the signum
function in (A.8).

Inside the partial sum Sy (¢) in (A.18) we can write

sinf(2n—-1)e) _ fF o
w—/o cos[(2n — 1)z]dx (A.19)
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to have

N ¢
Sn(t) = Z/ cos(2n — 1)z]dz (A.20)

and after interchanging the integral and sum we have

t [N
Sn(t) = 3 / L\j cos(2n — 1)4 d. (A.21)
ﬂ- 0 n=1

But we can also show that the sum inside (A.21) is sin2Nz/2sinz by
simply writing

>H-!=~

N N
2sinzx Z cos(2n — )z = Z 2sinz cos(2n — 1)z

n=1 nz=1
N

= Z[Sin(?n — 14 1)z +sin(l — 2n + 1)z
n=1
N

= Z[Sin 2nx — sin(2n — 2)x]

n=1

= sin 2z 4+ sin 4z — sin 2z + sin 6z —
-+ sin 2Nz — sin(2N - 2)z
= sin 2Nz (A.22)

after using simple trigonometric identities that helped in the cancellation
of all terms except sin 2Nz. From (A.21) and (A.22), we have

2 Iz
SN(t):——/ sm2Ne . (A.23)
0

™ s

To search for the extrema of the Gibb’s phenomenon, as we did for the
truncated Fourier integrals in (A.8), we differentiate Sy (t) with respect to
t to have

dSn(t) _ 2sin 2Nt
dt 7w sint

which has its extrema at t;, = 5’% with the first maximum at ¢; = 57 as

may be seen in Fig. 7.7 with N = 10.
The magnitude of the first maximum can be evaluated from (A.23) with
1= g5 as

2 [N ginoNg

T 2
SN(W = ‘*/0 ——dz, (A.24)

T sinx

which can be computed numerically. If N is large enough, then we are
integrating in (A.24) over a small interval (0, 55;) where 2 is small enough
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to allow the approximation of sinx ~ 2, and thus the integral (A.24) can
be approximated by the following sine integral:

2 [N gin2Ng
SN( ﬂ) ~ —/ Md@ N large
0

2N s sinx
2 ™2V siny 2
paed —_— d = e S.
- /O = i(m)
2 o

= —(1.17898) = 1.17898,
)

as we had found before using Si(#). It is interesting to note that for the
Fourier integrals the maximum truncation error was 9% and was indepen-
dent of the size 27 B of the truncation window. whereas for the Fourier
series here it is a lower bound of 9% attained as N — oo. For smaller
N, we see sina < z which makes Sy (55 ) larger than 1.18, hence an even
larger overshoot of the Gibbs’ effect. The same type of analysis can be done
for the Gibb’s phenomenon near the discontinuity at ¢ = . Figure 7.7 il-
lustrates this Gibbs’ phenomenon with N = 10 as well as the following o,
averaging for reducing it.

As to the remedy for removing this Gibbs’ phenomenon, it should be of
the same nature as the one we used for the Fourier integral representation,
namely, to modify by removing the jump discontinuity. This means that we
approximate the discontinuous function by a function which is continuous in
a small neighborhood around the jump discontinuity at z = 0 by a straight
line on the interval (—5%. 5% ) as we did for the signum function sgn(t)
around ¢ = 0 in Fig. A.III. This again would mean averaging the function
over intervals of width §; or convolving the function with p, s2n(t). The
latter modification is also equivalent to multiplying the Fourier coefficients

2. L of the original function in (A.18) by 3'12-(;2—’1—1%“— (as Fourier

coefficients of the Fourier expansion of Ny, son(t) on (—71', 7)). Therefore,
the o-average of the partial sum Sy{t) becomes

N t+mw /2N
Sonlt) = 2 Sn(x)dz
T Jt—mw/2N
t+7T/2N 4 1
= w/ sin(2n — 1o
#/2N 7‘( 971 -1
4N 1 thm/2N
= - - / sin(2n — 1)zdx
T A 2n—=1Ji_ron
Tzt 4 5
4N i —cos(2n — 1)z ’ -
omw Zn—1 (Zn-1)
n=1 z:t——zw—"ﬁ
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N .

4 1 sin(2n — 1)5%

= - z [ (2n )WZN} sin(2n — 1)t. (A.25)
1277.“‘1 (27’1"1)@

As we mentioned in Subsection 7.3.2, we observe that the averaging process

introduces a SW “decaying” factor to the original coeflicients of

the series (A.18), which is exactly analogous to the development of the
Fourier integrals in (A.15). This oy-averaging of the Gibbs’ phenomenon is
illustrated near the jump discontinuity ¢ = 0 in Fig. 7.7, where a ten-term
(N = 10) series was used.

A Possible Improvement for Reducing the
Gibbs’ Phenomenon

As to further improvements in eliminating the Gibbs' phenomenon, we
suggest the same repeated averagings that were employed in the previous
case of the Fourier integral representation. The m repeated averagings are
equivalent to convolving the function m times with Np. o (¢), which in
turn will introduce the self—truncating factor

— ?
v

to the Fourier coefficients of Sy(t) in (A.18). Figure 7.8 illustrates the

Gibbs’ phenomenon and the improvements attained by applying o7 and

oy = 0% averagings with N = 40. The important initial case of m = 1 is

due to Lancos [380]. Figure 7.14 clarifies how smooth the higher averagings

(m = 2,3 and ) are compared to the gy-averaging.

We note that with the oy factor, the oscillations of the Gibhs’ phe-
nomenon decrease: moreover, with oz, in Fig. 7.14, we observe that they
have almost disappeared. The only minor drawback to o3 and its excellent
accuracy is that it has about double the rise time as that of o;. However,
this can be made up for by doubling N to have the same or better rise
time than that of o as we illustrate in Fig. 7.14 for oy with N = 20 and
oz with NV = 40. In Fig. 7.14 we also illustrate the og case with N = 80
while it still has double the rise time compared to that of o3 with N = 40,
it also has very high accuracy for approximating the original square wave
function where it is continuous.

THE GIBBS’ PHENOMENON FOR GENERAL ORTHOGONAL
ExrANsSION AND ITs POsSSIBLE REMEDY

Asg discussed in Subsection 7.3.2. the above detailed analysis of the Gibbs
phenomenon in this Appendix was done here, primarily, for the purpose
of setting the background for discussions and parallel analytical treatment
regarding the same Gibbs’ type phenomena for the general orthogonal ex-
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pansion. Such illustrations and discussions were done for the Fourier-Bessel
series, as an example, at the end of Subsection 7.3.2 (see Figs. 7.9, 7.12 and
the figures in [366]). ;

In summary, we presented the o™-averaging as a remedy to the Gibbs
phenomenon of the (trigonometric) Fourier series (or integrals). We used
the transform of the hill function ¢p,41(z) in (7.1.47) (on a very narrow
window around the jump discontinuity) as the modifying factor inside the
series representing the function with jump discontinuity.

In a very close parallel to this treatment, the vemedy for the Gibbs
phenomenon of the general orthogonal expansions (or transforms) lies in
using the transform of the generalized hill function ¥p,41(z) in (7.1.52) for
a modifying (decaying) factor inside the series (or integral) representing
the function with jump discontinuity. More recent tentative results in this
direction are promising.
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This volume is a companion to Introduction to Shannon Sampling
and Interpolation Theory by Reobert J. Marks Il. The chapters,
each by a leading researcher in the field, are concerned with the
sampling and subsequent restoration of signals and images.
M.J. Bastiaans gives an overview of Gabor's expansion and its
application to the sampling of sliding-window time-frequency
representations. A highly readable and comprehensive ovenview

of application of Shanng&_\ﬁampllng theory in optics is provided

by F. Gori: K.E. Cheung eloguently extends Papoulis’ general-
ization of the sampling theorem to higher dimensions with some
unexpected and useful results concerning minimal sampling
densities. A number of thearems useful for restoration when
samples are not uniformly spaced are cataloged by F. Marvasti.
P.L. Butzer and R.L. Stens show how the future of a signal can
be predicted using samples from its past. H. Stark presents polar
and spiral sampling theory, which is bseful in tomography. He
also illustrates use of alternating projections onto convex sets in
sampling theory. Sampling errors are analyzed by A.l. Jerti
using Kramer's generalization of the sampling theorem. The
book concludes with a comprehensive bibliography of over one
thousand references, making it an invaluable research tool as
well as an excellent information source for students planning
further research in the field.
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