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1.1

It is sometimes convenient to describe a time , say, not in the time
domain, but in the domain means of its treauencu snerrrurn.

the Fourier of the function , which is defined

a bar on of a will mean that we are dealing with
a function in the domain. otherwise all integra-
tions and summations in this contribution extend from -()() to The
frequency spectrum shows us the distribution of the energy of the
signal as a function of . However one is often more interested in
the or local distribution of the energy as a function of frequency

The need for a local arises in several It
arises in for where a is described not
a time function nor the Fourier transform of that but its
musical score: when a composer writes score, he the
frequencies of the tones that should be at certain moment. It
arises in optics: geometrical is treated in terms of rays, and
the signal is described the directions (d. of the rays

tones) that should be at a certain time moment
It arises also in where the and the momentum of a

are
A local spectrum can be constructed in different ways. One

favorite candidate is the distribution 139. 45.
889. . introduced in 1932 in mechanics to describe

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)



2 Mert.in J. Bestieens 1. 3

set of shifted and modulated Gaussian elementary
A from Gabor's paper be useful. Gabor writes in
the summary:

Hitherto communication was based on two alterna-
tive methods of One is the of the

as a function of the other is Fourier analvsis
But our .. insist on a in terms
of both time and are in two
dimensions, with time and as co-ordinates. Such two-
dimensional can be called 'information diagrams'
as areas in them are to the number of independent
data which can convey.... There are certain 'elementary

which occupy the smallest area in the inforrna-
are harmonic oscillations modulated by a

Each can be considered as
UCllU1H, or one of information'.

expanded in terms of these by a process which
nnnh,·";,, and Fourier as extreme cases.

Although Gabor restricted himself to an eiementaru
his holds for rather arbitrarily "",:tVClU

signals [50, \Ve will show that there exists a strong relationship
between Gabor's and the sampling of the slidinz-windcw

and that Gabor's can be used to reconstruct
from its sampled slidinz-window

In section 2 we will introduce the slidinc-window and show
some of its Sampling of the spectrum is studied
in section 3. and the reconstruction of the from the values
by means of the Zak transform is shown there. Some of window
functions are considered in section 4. In section 5 we introduce Gabor's
signal and we show an easier way to reconstruc~ the . from
its spectrum. Some Will be considered
in section 6. of Gabor's coefficients linear
svstems and some ideas about the number of of freedom of a signal
will be the of section 7. In section 8 we will describe an
means for generating Gabor's expansion coefficients and we will show a
link to folded spectrum techniques.

We will restrict ourselves to one-dimensional time signals: the extension
to two or more however is rather Most of the
results can be to continuous-time as well as discrete-time .cni',HV".~.

\Ve will concentrate on continuous-time but we will state the results
for the discrete-time case, necessary. as well. To distinguish continuous­
time from discrete-time we will denote the former with curved
brackets and the latter with square brackets: thus is a continuous-time
and a discrete-time \Ve will use the variables in a consistent

+1
2

x

The distribu­
class of bilinear time­

LC'.t<>CC'U to each other linear
tlllle-ireQiUeJ1CY representations - like

complex energy
to this

bilinear ti1111e-·fn~qtlerlcy functions is known as the
of this class is described the gel1eral

The choice of the kernel
particular hlnc:ticln of the Cohen the \Ali~n.nr

arises when we choose w, t'
the ambiguity function.

1

2"
=

tion function is a representative

transformations.
\Voodward's ambiguity

where an asterisk denotes complex conjugation.
ur.t',

distribution function,
whereas w. t',
In this contribution we will not consider the
or any other member out of this class of bilinear tirne..frequencv
representations.

candidate for a local of a is
slzdirUj-window snerrrnrn .- or windowed Fourier - a gener-

the short-term Fourier which is well-known in
It is defined as the cross-ambiquitn junction

and the references cited of the and a window
and is constructed in the way. YVe multiply the

a version of the window function, which is
more or less concentrated around a certain time moment t; say, and

Ieterrnine the transform of the with variable w.
ay. Thus we create a function of time t and ur. simultaneously;
,hich be as the local spectrum of the

A local like the spectrum describes
he w, It is thus a function
f two , from a of one variable. There-
we, it must certain or. to it another way: not any
ruction of two variables is a spectrum. The restrictions
mt a local spectrum must to Heisenberg's

in which states the of a too
of both and momentum of a particle. In

lis we will show that the is completely
etermined its on the lattice.
hich is the as 1946. .
A third candidate for a local freqwenc;y<.:'')P('t.nl1nl
vnsion, In 1946. the expansion

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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8 Mertin .J. Bastiaans 1. 9

an interesting relationship between a function and its Fourier transtorm,

T = +
m

which
Fourier th,>nrvl

k

a zeneranzed form of Poisson's sum formula known in
Vile remark that the function is in the

frequency variable w with fl. and in the time variable
i; with quasi-perrou 1':

(1.3.7)

(1ep( i:

(1.3.5) has the form

1
=

fl

w + kfl) =

+

+
The inverse retationship ofFIGURE 1.1: The Gabor lattice.

(1.3.9)

(1.3.10)

""~rI1'rli,: -- -1'1 Jlep(t,,,,,,

.5( t,

and similar exists for the definition . it will be clear
that the variable t in relation can be restricted to an interval of

with m taking on all integer values. Parseval's energy theorem
now leads to the relationship

Relation (1 a means to a one-dimensional time
function by a two-dimensional time-frequency function on a rectangle with

area flT = 21T. The two-dimensional function associated to the
one-dimensional function to definition (1.3.5), is known as
the Zak transform because Zak was the first who systematically studied this
transformation in connection with solid state [992,993, 994J. Some
of its were known before Zak's however. The same
transform is called the \Veil-Brezin map and it is claimed that the transform
was already known to Gauss [798]. It was also used Gerfand (see, for

[756J. Chapter . Zak seems. however to have been the first
to recognize it as the versatile tool it is. The Zak transform has many
interesting properties and also applications to
for which we refer to 429].

With the of the functions .§(t, and a similar function
Zak transform, again) associated with the window function

) can be transformed into

The transition from (1.3.1) to (1.3.10) goes as follows. We first write down
the definition (1 of the function

(1.3.2)

(1.3.3)

(1

(1

(1.3.6)

reads

+ kfl)e j k fl t

a Fourier series with Fourier ex-

w)ej(mwT-kflt) dtdw.

we define the two-dimensional function

wWdtdw = ISmkl2,

m k

m

is penodic

ep(t:

1
smk =­

21T

asvmmetrv between these two definitions could be removed. if de­
multiplying the right-hand sides of these definitions by lTe~jwt/2.

"\lLl"·"""!".e of the two definitions (1 and (1.3.6) implies

Furthermore, from the

m k

We first define the function
pansion coefficients Smk:

note that the s(t, in t and w, with periods T and It
The inverse relationship has the form

where the integrations extend over one T and one period respec­
tively. We remark that Parseval's energy theorem leads to the relationship

the equivalent definition in terms of the frequency spectrum

m k

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)



10 Mertin J. Bastiaans 1. Gabor's 11

(1.3.11)

with w) =

means of the inversion for-

ify* is allowed, the func-
of relation (1.3.10):

=0

we derive the associated function

follows from

" from the window function
via definition

III under the assumption that division
tion can be found with the

holds. Relation (1.3.1 which is similar to relation (1.3.
0, can be transformed into the relation

A reconstruction method.
when we have studied Gabor's

Problems may arise in the case that has zeros. In that case ho-
mogeneous solutions , say, may occur, for which the relation

t-

Dirac functions

values Smk from relation (1.3.1):

=

and substitute the

\Ve rearrange

and replace the sum of exponentials

\Ve rearrange factors (t = O. (1.3.

= T

x

and evaluate the integral

-t- which is similar to relation (1.3.1) with Smk = 0, and which shows that
the of a solution vanishes at
the Gabor lattice . \Ve conclude that the existence of homogeneous
solutions makes the reconstruction of the from its sampled sliding-
window if then

+

=T + (t + kT--
1.3.1

(1[n -
n

due to the of in the frequency variable iJ
the array of coefficients Smk is in k with period

8 mk =

We can extend the of spectrum to
the discrete-time case. as well. Let N be a and let e be
defined e = In the discrete-time case the Gabor lattice can then
be described iJ = Let the values of the sliding-window
spectrum at these be denoted Smk: we thus have the
relation relation

Of course,
with
N.

we find

+ [k-

k

recognize the definitions for the functions
. hence

x

T

After a

In we have now solved the problem of rPIy'j'l"t"l1rtiillCf the
ts sampled spectrum:

m k=<N>

ru,a',Ve,VU'i:l to the continuous-time case. reconstruction of the discrete-
from the values Smk the function

its Fourier series coefficients Smk definition (

vIa

from

values 8 mk we (jptprnlillP the function• from the

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)



12 Marti» J. Bestiesns 1.
13

(1

As a first we consider a re(;tang:uJ~'lJ window function whose width

T (see Fig. 1.2):

r._._~ WINDOW FUNCTION

1)for ~ T < t S
={~w(t) = rect

where summation over one N. Note that the
~"'=<.."

function is periodic in the time index n and the frequency variable
{), with periods N and The inverse has the
form relation (1

1 1
Smk = N e

n=<N>

defined
we need the Zak transform of the

definition (1
. which is

1

The Zak transform is now in the frequencv variable with
and in the time index n with N relation

21-1-2

(1.3.+
m

(1

(1

(1

(1.4.2)

which can readily be

=1.

= Trect n)'

FIGURE 1.2: A rectangular window function, cf. Eq.

and its associated two-dimensional function UJ(t,
definition (1.3.6), takes the form

= sine (i) = ~in(~~) .
T 1TT

(1.4.3)

WINDOW FUNCTION

This function and the window function of the first example
are dual to each other, the Fourier transform of one function has the
same form as the other function. The Fourier transform of the sine window

function reads

Our second example is the band-limited function

This can be generalized to an arbitrary window function
that is limited to the interval - ~T < t < in the fundamental

",t",.."", the associated function ,,-,') reads

The associated two-dimensional function ib(t, follows readily via def-
inition (1.3.5): in the fundamental it reads

19)

",[n]
14) and

and so do

and we shall de­
confining our­

<ws

[71-
n

SmO =

Weshall consider some of window functions
.errnine their associated two-dimensional functions w(t,
selves to the fundamental interval (- < t S

for other combinations of t and w. we can use the
)l'operty (1.3.7).

+ ,9 +
The inverse reads

1
+ e (1.3.

where now the time index n can be restricted to an interval of N.
with m on all values.

The case N = 1 consequently, e = 21T deserves
in that case there is maximum between the window sequence
and its direct ± NJ. The formulas can then be simplified.
Without losing any we can take k == 0 in relation (1.3.
and n == 0 in relations .3. for instance. Relation (1.3.13) then
reduces to a simple correlation

note that, moreover, the values SmO become real when the
and the window sequence are real. relation

15) then constitute a normal Fourier transformation pair
relations (1.3.16) and (1.3.

1

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)



14 Mertiu J. Bestiesns 1. Gabor's 15

Since has a zero for (t = co = ~ in this case. a ho-
mogeneous solution may occur in reconstruction process,

the fundamental interval to a constant

-3

1

2 1
-2 (1

and with the of the inversion formula (1
FIGURE 1.3: A sine window runction, d.

=T (1.4.11)
m

in the fundamental interval.
This can be E>~'H."'HW'" to an arbitrary function that

is band-limited to the interval -~n < :S ~ in the fundamental interval
the associated function reads

This homogeneous solution is depicted in 1.5.

1. 1

(1

As our final continuous-time example we consider the Gaussian window
function 1

homogeneous solution corresponding to a Gaussian window func-

(1

the factor
to

in this definition has been included to normalize I
.2

(104.< 1)
for 11 = 0
for n = ±1 (0 <

\Ve consider two of discrete-time window sequences
and determine their associated two-dimensional functions for dif-
ferent values of the distance N. Our first discrete-time is
the window sequence

-1-2

A Gaussian function has several its Fourier transform is
GlnlEiSillll, and the product of the effective width in the time do­

main and the one in the domain takes the theoretical minimum
value The associated two-dimensional function follows
via definition (1 : in the fundamental interval it takes the form

(1.4.

(1
(1 +

= (1 + acos

{

note that for a = O. we are with a tnree-nomt Hamnung window.
For N = 1 the maximum-overlap case. we find

For N = 2 we find

(1=

FIGURE 1.4: A Gaussian window tunction, cf,

where 03 for Note that in this case
,/9= +T1r(I'= .. , -1.0,

overlap, the function has zeros for
... ), and hence a homogeneous solution

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)



16 Mertin J. Bestuuuis 1. Gabor's 17

-16 -12 -8 -4 8 12 i6

FIGURE 1.6: A symmetrical, three-point window sequence, cf. FIGURE 1.8: A one-sided exponential window sequence, d.

arises. Its associated function 1

In Gabor into a discrete
set of Gaussian 426J. Gabor
restricted himself to an that had a Gaussian shape, his

expansion holds for rather shaped elementary signals [48,
With the help of Gabor's signal we can express the signal

as a of shifted and modulated versions of an
. say. YIE:IGJil1g

(1.4.

(1.4.

1.7)

o

o{
The homogeneous solution thus takes the form

(1.5.1)

(1(t-

m k

where the time shift T and the shift f2
f2T = 217. Unlike the inversion formula (1 , which the
as a continuum of window Gabor's expansion (1.5.1) repre-
sents the signal as a discrete set of elementary that are shifted over
discrete distances m'T and that are modulated with discrete
isi.

In general, the discrete set of shifted and modulated elementary
need not be orthonormal, which that Gabor's ex-

oansion coefficients amk cannot be determined in the usual way. In this
:;el;LHJH. however, we show how we can find a function , say, that is
bi-orihonormal to the set of elementary in the sense

(1.4.17)
> 0)for n :5: o

for n > O.

solution corresponding to a symmetrical,
(1.4.16) ,

{

ean

= [)

-8

FIGURE 1.7: A
tnree-pomt window sequence, d.

Our second discrete-time example is the one-sided exponential window
sequence 1

In the basic interval ­
takes the form

- 1) :5: n :5: 0, the associated function

where is the Kronecker delta = 1. Dm = 0 for m f 0): the choice
of the 10 for this function - as if it was a window function is
intentional, as will become clear soon! With the help of this bi-orthonormal
function the coefficients follow via

(1..5.3)

expansion and the sliding-window

that the right-hand side of relation

(t-

The relationship between Gabor's
",n.""t""", becomes apparent

the

(1.4.

this interval can be foundthe values of

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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(1=1.

into relation (1

expansion coefficients could be deter­
there

means of
derive a function that is bi-

in the sense of relation
that division is we define

rnrougn the relation

e the expansion coefficients amk follow from the function
with the of the inversion formula (1

Substitution of relation (1

sampled slidinz-window spectrum with win-can he 11lj'prrwPtf,,1

dow function
To show the the Gabor with the ele-

coefficients amk on the one hand
relation , and the spectrum with the window func-
tion and the values amk on the other hand relation
we as follows. We first derive way to find the Gabor expansion
coefficients amk the lines similar to the ones used section 3. As we
did for the array of values 5mb we define from the array of Gabor
coefficients amk the function to definition Fur-
therrnore, we introduce the function associated to the elementary

according to definition (1 and also use the function
\Ve can then transform relation 1) into

(1 (1

n

from Gabor's (1.5.1),

When we notice the resemblance between relation and relation
(1.3. ,it is not difficult to see that relation (1 can be transformed
into relation (1 , in the same way as relation (1 can be transformed
into relation (1.3. the function then follows from the function

means of the inversion formula relation (1 can be
transformed into the relation (1 '~Te conclude that
the coefficients can be determined means of re-
lation when the and the function are known. Note
that the coefficients amk can be considered as the values
of the spectrum of the with window function

follows. \Ye first write down

+nT-

The transition from
the definition

and substitute +

may occur

=0

Gabor's coefficients may be non-unicue
has zeros. In that case solutions
for which now the relation

+[n-

\Ve rearrange factors

and recognize
Uon

for the function
: hence

and the defini- holds. Relation (1 , which is similar to relation (
can be transformed into the relation

with = 0,

= = O.

shows
expansion may

leads to another
could be re­

we now conclude

m k

which is similar to relation (1.5.1) = O. Relation (1
that certain arrays of non-zero coefficients in Gabor's

a zero result. \Ve thus conclude that Gabor's
be if the array of coefficients amk

the array amk + Zmk the same
The resemblance between relations and (1.3.1)

imnm-tsnt. conclusion. In section 3 it was shown how the
constructed from the sampled sncnnz-wmdow spectrum:

we derive theand the
and ?itt,

e from the
associated functions

" under the assumption that division ;;)) is attowed. the function
can be found means of relation (

In fact we have now solved the of finding Gabor's expansion co-
erncients, even in the case that the set of shifted and modulated elementary

is not orthogonal:

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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(1.5.

(1.5.

with

(1.5.

relation

interchanging 9

the slidinz-window Ql'P('t.!"ll1Y1

and that its nn,n,p]'f"

Gabor's expansion takes the form

(-t.

which in the shdinz-window spectrum of the function
window function

For discrete-time ;:"!",ll<l.'''.

(1.5,1)]

Note that the interpolation function is, in
of the function with window function

is to the br-ortnonorrnanty nl'fu,pl'hl (1
and w in relation (1

1.5.1

where we have used the property of the shdinz-wmdow spectrum.
and where we have introduced the interpotation [unction

or

.5.

(1
m k

reconstruction method means of Gabor's
where we must the Gabor co-

8 mk of the spectrum:

(1

efficients amk with the
hence

1

T

The bi-orthonormality the bi-orthonorrnality
relation in we can use the w-functiol1s to find
the coefficients of Gabor's expansion into relations (1.5.1)
and (1 , and use the reconstruct the from its
sampled slidinz-window Q,... ",·t"'I11Y1 with window function relations

and (1 . Zeros in either or may complicate
however. When we Parseval's energy theorem (1
and substitute relation (1 we the relationships

(1.5.
m k

it will not be difficult to express all the other relationships in this section
for discrete-time as well. The (1.5.13), for
instance, then takes the form

(1,.5.11)~~~12 dtdw.

1

21r

1

1

T

(1.5.L
m k=<N>

19) =

Qw is the spectrum of the
with window sequence

The case N = 1, with maximum overlap between the window sequence
and its direct ± ,deserves again,

and the formulas can be Without any we can
now take k == 0 in relation (l . for which then reduces to a

convolution

relationships we conclude that in the case that .fJ(t, or
the window function or the ele-

may not be summable. This consequence
of the occurrence of zeros in is even worse than the fact
that Gabor's or that the reconstruction from
the is not due to homogeneous
solutions; it may cause very bad convergence in the expansion
or reconstruction method.

When we substitute from relation ( into the definition ) of
the we obtain the relation

(1.5.
m(1.5.12)w·LSmk

m k

For some signals. which we have considered as
window functions in section 4. we shall determine the correspondinz window
functions and the functions

1111

(1(t - 1nTw
m k

enables us to express the
values. \Ve can write

Relation
terms of its

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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1 .1

For the rect elementary , d. we re><.rlill" find

and thus
1 rr(.:t)2 1

=-e T
~

(1

in the fundamental interval and hence

(1.6.1) in which we have set
can be expressed as

( + The function

(1

(1.6.10)

(1.6.11)

-3/2 (
Co + 2

m=l

Cm =
n=O

+

1

: the constant Ko = 1.85407468
inieoral for the modulus J2 for instance.

. It is now easy to determine via inversion formula (1

where

p.

t
2T

to a rectangular

t

that corresponds

sine

The function
window function reads

1.6.2 with - <t'5. and hence

12)(-
we have

(1

cf.For the sine elementary

in the fundamental interval and hence
This window functiont

= sine T (1 is depicted in
which corresponds to the Gaussian elementary

1.9. A way to represent

the interpolation function corresponding to the sine window function reads

2

1\lJ
0 )

-4 -3 -2 fi 1\ 2 :3 4

f-2

FIGURE 1.9: The window function that corresponds to a Gaussian elementary
cr.

1.4.

(1

(1).

-I~ I) rect ( 2~) .'-I~I)Jsine

the dual of the previous one. It will be clear
is band-limited to the interval lwl <

expansion represents the well-known ordinary sampnng

This example
that for a

Gabor's

In the case of the Gaussian elementary
we have in the fundamental interval

w)=

1.6.3

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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form

-3/2

In the case of a Gaussian elementarv its associated function
has a zero for (t = w = In this case a hornoge-

neous solution i(t, may thus occur in the determination of the Gabor
cOletJicie:nt:s, reading in the fundamental interval to a constant

of the inversion formula (1

(1

(1Zmk =

relation (1

+~)T

(1.6.14)
n=m

where In is the non-neaative
and where

(1
for = 0
for n = ±1 (0 < 0 2 < 1)

\Ve consider the symmetrical, three-noint elementary

1

which we considered already in section 4 as a window sequence. cf. Fig. 1.6.
For the case = 1), we find

= 1),

(1.6.

= 0.999997.Since is close to
this representation leads to the approximation

-3/2

with - ~ ::; ItI < + ~)T.
Without proof, we mention some of this function As

is also the case for the Gaussian the Fourier transform of
has the same form as itself. Moreover. the function satisfies the
differential equation

(1

(1.6.24)

(1

thus takes the form

1 + acosv

window sequence

VI ~ a2 ( r-1

a

we find

{ '1

+1. '"

1.11)

{ 1 for ui = 0"2
0 for m =1= 0,

+ 1] { form 2': 0
for m < O.

As our final example we consider the one-sided exponential elementary
cf. 1

{

In the case of

and the corresponding
1.

and hence

(1.6.

(1.6.17)

(l

+
m

can be found elsewhere
that corresponds to this window

dw

dt

More of this
The interpolation function

function takes the form

we have set ( = and where (h is a theta
3] with nome q = e- 1T

• Relation (1.6. can be in
a more svmmetrical form using Weierstrass' [950, 3] (with
w' = see [3]' Sect. 18. Lemniscatic and then reads

From relation we conclude that there seems to be connection
with certain classical interpolation theorems 'With the help of
relation (1 we find the function that corresponds to the

Gaussian window function

19) {

ean

= 0
for n :s: 0
for n > O.

> 0)
(1

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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-8 8

-N I)

FIGURE 1.12: The window function corresponding to the one-sided exponential
cr.

FIGURE 1.10: The window function corresponding to a symmetrical, three-nomt
in the case of maximum cf.

'Ve use this to show once more the of
Gabor's In the case Q = 0, the function g(n, {))
has zeros for {) = (r = ... , -1,0, 1, ... ), and an array of coefficients
Zmk arises whose associated function in the basic say, is

a zero result when substituted in Gabor's

o
z = ~ Z e-jk21fn/N - '"
mk N n - ~Ok,

n=-(N-l)

(1.6.31 )

(1.6.32)

21f

N
r

21f
= N Zn

The array Zmk thus takes the form

and

J
8 -4 0 .. B

FIGURE 1.11: The window function to the
three-noint elementary signal, in the case of partial overlap, cf, Eq.

In the basic interval
takes the form

- 1) :'S n :'S O. the associated function 1.7 Degrees of Freedom a UA;:;J..lUJ.

the values of 9(n, outside this interval can be found the
quasi-periodicity relation (1.3.17). The function now takes the form

1

inside the basic interval, The corresponding window sequence
reads 1.

for - - 1) :'S n :'S 0
for 1 :'S n :'S N
elsewhere.

(1

(1.6.29)

then

Gabor's signal w, introduced in section .5 is related to the degrees
freedom of a signal: each coefficient amk represents one com-

degree of freedom. If a signal limited to the space interval
It I < ~a and to the frequency interval Iwl < ~b, the number of complex
degrees of freedom the number of Gabor coefficients in the space-
frequencv rectangle with area this number about to the
time-bandwidth product . Vle shall consider this in more detail
in this section.

\Ve first consider the propagation of Gabor's expansion coefficients through
a linear system. A linear system that trans­
forms an input signal 'Pi into an output signal :.po can be described in four
different ways, on whether we describe the input and the output
signal in the time or in the domain. We thus have four equivalent

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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An ontimum
n .
concentration becomes apparent

= rect
and

We then find eoooo =
that

m k: m' hi

In the value of eoooo for this elementarv system is

1
eoooo = -- rect

21l" 13)

Furthermore, the identities

emkm'k' =
m k rn' k '

and

gi
m

(1.7.

m k m ' k' (/ (1.7.
relation (1.7.7)

can be derived in a straightforward way, using the basic relation t) =
m k

t
rect T-

W
rect n- (1

The ratio

n n

16) The array of coefficients Cmkm' k' can now be as a four­
dimensional convolution of the arrays n~,IcO~_.~"UIc-1c1 and emkm'k" In the
case that the array emkm'k' is again concentrated around the el-
ement eoooo, the Gabor coefficients of the and the output are
related the relation

can be considered as a degree of concentration of the array emkm' k' around
the coefficient eoooo, By a variational principle to the expression
(1.7. it is not difficult to show that the degree of concentration has a
stationarv value when and are chosen to

(1.7.22)

find that the
and vanishes<

described relation
in the interval (array

outside that interval.

(1.7.18)gi

(W) Wn rect n ' (1.7.1g)

where the functions \lIn(~) are the prolate spheroidal wave functions
for instance, !830]) defined by the eigenfunction equation

and

/ =0,1. ... ). (1

1

In this section we will describe an optical arrangement which is able
generate Gabor's coefficients of a one-dimensional by op-
tical means , An feature of the is that

the one-dimensional on a raster trvrm.at: hence, the two-
dimensional nature of the utilized.

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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1.9

be
Note that the

, has the advantage
the rectangle

pro-

snace-bandwiclth product would allow us to pro-

Ul1lfoJ:tunately, the Gabor lattice with its critical Ij27T may lead
to unattractive one might a denser

with f2T < 271". This situation has not been in this
tel'; an excellent review of denser lattices can be found in

We this attention to some related topics:
the rather modern wavelet transform of a and the way of representing

as a discrete set of wavelets. There is some resemblance between
and the ones that are studied in this whereas

leads to a representation of
the wavelet transform leads to a time-scale And

the Gabor lattice is linear in both the time and the frequency
c010H:lin,at,e, the lattice that is used in the wavelet is non-
linear. An excellent review on the wavelet transform can be found,

in

expansion can elegantly

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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2.1

Illuminate an with laser and look at it through a diffraction
You will see a set of mutually displaced copies of the If

the lateral extent of the is small enough, the various copies do not
overlap, You can easily devise a method for selecting a single copy of the

For you can replace your own optical system, i.e., your
eye, a lens and let the multiple images that were impressing
your retina be produced on a screen. a hole on the screen will suffice
to isolate a You can even dispense with the laser light and
repeat the observation in a more domestic environment looking at a
distant street lamp through a of fine fabric. In this case. all of the
object the central one will appear but the basic
phenomena will be the same.

Elementary optical experiments of this kind illustrate the rep li-
effect of sampling as well as the of a luminous

signal from its sampled version, This is because in optics certain transform
operations are Nature. It is not so for other phenomena ex­
ploited for the transmission of information time-dependent electrical
signals) where the transform of a signal, even the Fourier transform, is an
abstract alternative representation of the more than the description
of something that the signal itself displays somewhere in space. We can. of
course, "see" the spectrum of a on a spectrum analyzer in much the
same way as we could see any sophisticated transform of the signal on the
monitor of a suitably programmed computer, but this is rather removed
from the evolution of the phenomenon.

With such favorable sampling was set to become a key tool in
It was in fact so and nowadays sampling procedures and sampling

theorems are almost second nature to the opticist to such a pass that
and properties connected with theory are often used

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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susse rien."

least
function.

Whittaker on the

are also described in nl',p,,'in1'<; review

triemes we shall devote some space to a short

Bastiaans in this volume.

quarante ans que je dis de la prose sans que

ti011

There is a famous Moliere's character who realizes that he has
been "in for over years without even I This
bears some resemblance to the situation of in for which
there is a sort of This dates back to the of
our when the of radiation was

some
In 1914. von

papers on the entropy of radiation,
the series coefficients with of the expanded

Notice that this occurred one year before the result
interpolatory or cardinal series

The results von Laue were later reviewed and extended
who gave them the audience of the Handbuch der [522].

of somewhat dormant in In that in
problems connected to of Freedom were of main concern to
communication scientists with electrical ""1',lIeu".

The full appreciation in optics of the concepts DOF and came
much later when the ideas of the communication and information theories
penetrated the field. A scientist whose contributions to both communica-

and were fundamental. the Nobel laureate D.
led the way. In his paper on communication 3]. beside

introducing the common tool of modern he pro-
a discrete of a signal means of Gaussian He

made this proposal on the that Fourier is at variance with
some rooted ideas of common sense. like the idea of instantaneous
frequency of an acoustical signal with quantum
mechanics, he discussed of a time-dependent
nal in a space, in and showed that the
Gaussian the minimum area permitted the uncertainty
relation. Because of the lack of orthogonality of the Gaussian packets, the
evaluation of the expansion coefficients of a is not a trivial nl'nhlpl11

Gabor suggested an solution and an exact solution was found
much later Bastiaans 2. Gabor's was carried out in

the realm of but its relevance for was set to

2

phenomena are be described the Fresnel transform.
examine some fundamental 'W"n,Pl't,P<; of this trans-
significance, In the use of meth-

seen that this can be used as a for
techniques that use Fresnel for

explicit mention. This does not mean that the subject
refinements, extensions and new forms of sampling

literature.

could under the more
processing of information. This is a vast and

expanding subject to which whole books are devoted and it could
be reviewed in the contribution. However it can he

out some of reasons that make so
processing. This will be done in the final part.

exhaustive account occurrences and
would be It may even be added that

somewhat like the Cartesian which from time to time someone finds
out a new . known results of to be rediscov-

because the of papers among a lot of scientific journals,
conference books four decades makes
impossible for information.

aware of on some selected ar-
eas in which the has been nRrt1rl1IR11'lv

One of the
the estimation of

in

a wavefield.
number met with several

tions has host of results. This will be a central
theme of the present contribution. We shall review the of the
main ideas on this from the up to recent achievements.
'Ve shall refer far one-dimensional coherent cases
where can be in the neatest way. It will
be seen the mathematical become so-

clear connection to In this part, of course,
be Fourier anarvsis,

imnnl'hmt for

form and their
ods be underlined.
approaching the
imaging and interferometrv

A tool of relevant interest is the Mellin
transform. Here too. a can be that leads to
the so-called Foundations and main features of this

will be seen outlines
Although many fields of are coherent to a

HHlC"JlI. most often we have to do coherent fields. A complete
description of them the use of coherence
relevant role this and shall some hints to explain
this happens.

Several of the above
<SU1Cl,eu heading of the
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announced the principle (2.3.1)

wh~r~ k is the wave number of the field = A the wavelength).
ThIS IS a of waves whose wave vectors have direction
cosin:~ a, j3 and 'Y and are contained in the solid n specified the
conditions I a I:S; 13 I :s; A. To obtain the complete field say y, z)
von Laue multiplies 1) a function f(~, 1)) and

across the square < 11)1:s; ::::. He further assumes A « 1
so that 'Y S':' L The result is

da dj3. (2.3.2)

do.df),

. As a next step, von Laue

j AjA eik(ux+)3y)
-A -A

sine
00 00

m=-oon=-oo

4

x

. (2::::x Sll1C T/3-

y, z)

where, as usual, we put sinc(t)
an estimate of the lUlA~g.ntIS

On . f(( 7/) into a Fourier series and interchanging integrals, von
Laue obtains the followinz expression:

y.z)

well as in
function

In the meantime. the work of Shannon had 819].
Within a few years the first applications of information theory to optics

48:~. 484. 278. 907. 908. 686, 317. 318, 563,
By the end of the 1950s and at the beginning of the 1960s,

sampling theorem to be taught in textbooks [909, 687]
role of information in science was discussed [115].

of information spread out further in the optical litera-
381, 307. 552, In the same the optical

processing of information began to be popularized 913] and the con-
nection between and communication was clarified [532]

the invention of off-axis holography. Finally, the publication of text­
books stressing the role of mathematical transforms and sampling [339, 704]
marked the beginning of the full maturity period.

sine dj3,

(2.3.4)
. Under the kA:::: » 1, he reaches the con-

are negligibly small unless the following condi-

sine

2'='A
1m I < -~-: I 1 2 :::: A,\ n < -A-'

The m:m?er of distinct these conditions equals (4 :::: AI,\)2

and ~hls IS also the number of complex coefficients J(mn needed to specify
the field, the number of DOF. .

appearing in
elusion that these
tions are met:

It is fair to begin by a short account of the 1914 paper von Laue. Let
us first define the number of DOF of a space-time field distribution as the
number of needed to the field. One can refer either to

real or to DOF.
Von Laue considers a beam of monochromatic, linearly polarized light

falling on a ~,1) within a solid angle n and evaluates the number
of DOF of the radiation a square region I ~ I :s; ::::. He first
expresses the field at a typical . y. z) a cone of
radiation with vertex at the point 1),0). Using the Debye integral [106]

he writes this contribution as follows:

2.3 The von

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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As far as the DOF are concerned, the von Laue derivation is
as follows. Let us consider a interval dv and a finite time span T.
Expand the field into a time series within the interval . The
harmonics to the interval are the ones whose frequencies

the Inequalities

n
v < < v + du.

T

Their number amounts to Ttli/, Combining the and temporal
von Laue concludes that a beam of with spectral width dv and con-
tained in a solid n possesses

function and function. For co-
the functions the and the image represent
i.e., scalar field distributions: whereas represent opti-

cal distributions if the light radiated from the is quasi-
monochromatic and incoherent. The response to be used
in these two cases is of course that to incoherent ob-

proportionat to the modulus of the coherent one. In the
geJleral case of coherent both the object and

are to be described means of densities [569J,
functions of of The response has

the form of the of the coherent responses evaluated at two distinct

4 T dv

Image

fff f

FIGURE 2.1: A unit magnification system.

DOF when it illuminates an area 4 for a time T.
von Laue refers to real DOF because he argues that no DOF are to be
attributed to the pnases.

\Ve will not further discuss the von Laue paper but we cannot re-
marking how pioneering it is. Note in fact that the sine series annearinz
in is but the of what we now call the
plane wave spectrum or angular spectrum of the radiation field [106, 339].

a spectrum can be into a series because its (in-
Fourier transform (shorthand: FT) has a finite support (the square
I e I :$ 7] I :$ von Laue does not notice explic-

that the coefficients J(mn are samples of the spectrum, the
substance of the theorem is present.

1)

the fundamental function is the coherent impulse response.
a one-dimensional we shall denote it bv Its FT S(p),

the coherent transfer is often called the function
because it can be of as the transmission function of the of
the The basic for coherent imaging is exemplified
by the unit of Fig. 2.1. The field U!~,U!UU"U'l1.

say propagating up to the undergoes a Fourier transfor-
mation. With a suitable definition of the the pupil 7r can
be considered as a of where the object spectrum

is Such a is modified through multiplication
the function. After that. toward the image This

can be described as an inverse FT if the coordinates axeS in the ob-
and are oriented. In the field

can be as the convolution

325.

superresolution."

an2

This section might well be subtitled "The "',."crIT]" for
There is in fact an intimate connection between the concept of of
freedom of an and that of power, and the degrees
of freedom are used for many other purposes, one of the subjects that
has turned out to be most is the of the
classical resolution limit.

In the we will not stick too strictly to the of the Mill) 1l::'CL.

Instead. we will to evidentiate some of the main ideas that developed
in the field.

Let us recall that under certain <';n,,,];f,,:;nrr assumptions [339,
106J an system can be of as a linear shift-invariant sys-
tem characterized by its response. Accordinalv, the image function
is the convolution between the function and the response.
This holds true for any state of coherence of the radiated the

that a suitable meaning is to the words
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where the integration
the spectra

are related

where Xo is an shift.
a set of its samples 3

15

15

105

5 10

o

field distribution

o

·5·10

·15 -10 ·5

0.5

FIGURE 2.2: An

-0 .5 -trI1""T"1i'T'"i'T'"i'T'"i'T'"i'T'"1"'T'"1"'T'"1"'T'"1"'T'"1"'T'"1"'T'"1"'T'"1"'T'"1"'1
-15USE OF THE

The venerable concept of re~mJVJl]IQ:

manner. A
When the object is made up of two in
the If the distance between the two

the two more and more until the overall
practically indistinguishable from the one that would be produced

The two points are no "resolved.'
quantify this statement, the coherence of the radiated

are to be taken into account . We will not go into
details. Suffice it to say that for any state of coherence one can define a
resolution limit.

The resolution limit was of as an ultimate barrier for a very long
time. after the advent of quantum mechanics, the possibility
of that limit also seemed to be prevented the Heisenberg un-

in the or antennas
were [797J and their counterparts, namely, superresolv-

pupils, were later , In principle, the impulse response of
an optical could be narrowed at will. Although the actual j)l'IJO'IIC-

tion of formidable difficulties, it was clear
that the power concept lacked a solid foundation. The transfer of
information from the object to the was to be reexamined different
means. A possibility was offered by the theorem.

2.4.1

In order to outline this we shall refer to the simplest case, A
one-dimensional coherent object field distribution is imaged through
an system whose pupil is a filter extending from
-PM to PM on an axis of spatial field distribution

is then given the convolution

Due to its band-limited nature, the
sampling expansion of the form

can be expressed through a

FIGURE 2,3: Set of samples of g(x) obtained with Xo = o.

3Sampling expansions suitable for soace-vanant systems also exist [593].

Let us consider the image distribution of Fig. for the sake
of simplicity, g(x) is real and 2PM = 1. The set of samples obtained with
xo = 0 is shown in Fig, 2,3, The vertical can be thought of as
the and of a set of point-like coherent sources that
would give rise to our image. The point to be made is that this
is one possible object out of infinitely many objects producing the
same image. As an let us consider the obtained when
Xo = 0.5. These are drawn in Fig. 2.4. It is seen that only two samples are
different from zero, [As a matter of fact. 2.2 was obtained as a
of the function sinc(x - 1.5) + 0,8 + 1 . It is tempting to conclude

- n],
DO

o
n=-oo
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1 -
-

IUi-
--
-
-o + -L_'-- _

we can say that the
and has an

of course. is what common
example, no one looking through the viewfinder of

expects to see than the one
Within the finite extent

we find a finite number N of samples

N=

FIGURE 2.4: Set of samples of obtained with Xo = 0.5.

and is also the number of complex DOF of the
that the result is of the same in the
For obvious reasons, the called the soace-banduiidth.

. The term Shannon number is also used,

15105-5 II5 10

athe FT

2 ,2

The ~"D"iA"" derivation of the number DOF is crude and
objections can be raised it. we have assumed that the

non-negumme samples are those within the ge'DlIl,etJI.·ici'tl
This is based more on intuition than on mathematicall sound
arguments. As a matter of it is not difficult to find in which
many relevant are outside the . This may
be seen, e.g., in 2..5 that the followinz

A group of 501 coherent nomt-nke sources whose are
alternatively +1 or -1 are between -;];111 and .1:M, with a mutual

The condition » 1 is satisfied and
are outside the interval [-xM, . The horizontal

unit in 2.5 . We note in that the same
can be used to evidentiate how minute of the can '~"ArI'1r"D

in the in fact that we pass from 501 to 500
])n,1111t-LIKe sources. The shown in exhibits several

in of of 71' of of the extreme

As a second may be observed that non-uniform ex-
:391. 956. 11 . For a band-limited func-ist

tion can be a set of :';i:UIlJIJ'le:; grouped
bunches provided that the average satisfies the
dition. Within II the mutual distance between adjacent samples
be much smaller than ). now that the is specined
a non-uniform of this with one of the bunches within

enough. we can choose the in such a way that
the number contained in the is substantially
,.,.~uc~. or smaller than the value of

A third is the following.

of well-resolved nomt-uke sources. However
no such conclusion can be

that the true is
unless we have sufficient
drawn

The classical formulation of the power is based on the
assumption that the observer has to decide whether a

or two are present. In a similar the observer
needs one hit of information. Although this may be the case in some

astronomical or the situation is much
more than this.

The remarks out the role of prior in scientific
observations. There is an early of the of this
factor at the very of modern science. This occurred when Galileo
aimed his at Saturn. He saw and decided to
communicate the results of his observations to to the

of those old he sent Kepler an anagram in Latin language.
The decoded message meant "I observed a very high composed of
three bodies." He was wrong. of course. but how did that occur? ~We can

guess that the was not very and Galileo had no nrevions
experience of surrounded annuli. The most commonly known

for celestial bodies was the As a consequence. he interpreted
as a central with two much smaller bodies at

come back to and ask what are to be made
in our in the presence of One of the simplest
cases is when we know that the has a finite extent. say from
-XM to XM· The formation law is still given with the
difference that the infinite limits of are by We
want to an estimate of the number of DOF of the To this
we note that the response of our has a
f011g111y speaking, of about . Let us suppose that the

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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0.6

0.4

0.2

listening to a music we could claim to be able to predict the future
mj~lodi(~s after few notes. on the grounds that the piece has a finite duration
and is through an amplifier with finite bandwidth. said

it remains to make clear where the above argument fails. The trap, of
course, is that when we descend from the heaven of Fourier
tr2Ll1sforms and functions to our we find a world fraught
with noise and measurement errors . We cannot assess the actual value
of the above unless we find some to the
reconstruction so that we can examine the effect of noise in it
measurement . This is where the of researchers has pro-

the richest harvest of results. \Ve shall now go some
of the most relevant approaches,

FIGURE 2.5:
tive ±1 amplitudes

distribution of 501 coherent nomt-tike sources with alterna-

2.4.3

a.s -

a.'!

We have a coherent object with finite support [x M, through
the rect[p/(2PM)], where = 1 for 1t I:; 1/2 and is
otherwise zero. a of variables. the imaging equation can
be written

0.2

«"ml·,r.!" we made the substitutions

II

-0.2 to avoid multiplication

(I x I :; (2.4.6)

-0.4 -
x ) -> f(x),g

and where604020o-40 -20

-0.6 +,....,..........,-..-............,...,,....,.....,....,.-..-,....,....,.......-....-.,.-,-.,.....,,....,...,
-60

Because of the nature of the kernel, there exists a discrete set of real 01'-

thozonal eigenfunctions corresponding to positive and less than
eizenvalues f-ln = O. L ... ). The is for decreasing eizenvalues

(2.4.9)(I :r 1 :; c/2).sinctz - y)

c = 11T· .. n"

is the product. In optical terms, Eq. describes the
imaging of a coherent object with c/2] through a low-pass

extending from - to 1/2. the of the geometrical image
is considered. For the moment, noise is ignored. 'We have to

Let he the space of functions defined
. We assume to belong to . Eq. (2.4.6) is a Fredholm

in the first kind, whose convolution kernel sinc(x - y)
to be definite. A unique solution exists. It can

be found through the eigenfunction that we shall now sketch,
Consider the homogeneous Fredholm of the second kind

FIGURE 2.6: distribution of 500 coherent point-like sources with alterna-
tive ±l amplitudes

function with finite is , [381,
to the spectrum of the field distribution. Such a Qn,,,,,,t,-,,m

in the interval because of its we can
extrapolate it along the whole frequency axis. Therefore, a perfect recovery
of the should be As the spectrum in has the
whole image as its own it may appear that we need the
knowledge of the field from -x to oo, but we can push our argument
a little further. In the the FT of a spectrum
with finite and can be extrapolated
starting from its in a finite for or
even in a smaller interval. In any tiny piece of the should
be to reconstruct the object perfectlv

This of course. sounds the same token. when

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)



50 Franco Gori 2. Sajrnp,Jjng m 51

In order to we have to extend the definition of the
PS\VF outside This can be done with the aid of
As the left-hand side makes sense for any x, we can remove the limitation

x I > and let be defined in the outer I x I > c/2, through
the convolution of the inner with . \Ve shall refer to
defined as the extended <P n Note its very definition,

this is a band-limited function. The inner of will be termed the
truncated Now. if we assume the to be normalized in the basic
interval

the eigenobjects
them the of the
factor. The cnrr-r-rr-icrirt cr result is that there exist objects
eQillivalEmt frequency that are perfectly "11<"'5<::'-'

however. a factor and we can expect
once the exceeds the cutoff of the
10\'\1-p.8SS filter. what as soon as c exceeds a few
units. As an versus n are in 2.7
for c = V« are almost for index values
less than c and then become small. The transition from to

eizenvarues occurs in a range of indices that grows to
Such a function behavior is no valid when c approaches

1. In this case. even the first lower than one. as
can be seen, e.g., from 2.8 As we shall see. this
has consequences.

In terms. we would expram the small values of the J.Ln
that the energy the goes mostly outside the

2515 20o

Eigenvalues versus n for c =

....... ,. ...
0.8

0.6

0.4

0.2

0

0 5

FIGURE 2.7:

0.8

0.6

1 > J.Lo > J.Ll > ....
The are the wavefunctions (shorthand: [832.
519. A notation for them would be because there
is a different of PS\VF for any value of c. we should write

However. we shall drop such fin on c.

0.4 dx = 1 (2.4.11)

0.2 then it can be that

FIGURE 2.8: Eigenvalues versus n for c = 4/n.

1
d:r= ­

J.Ln

vVe can read the left-hand side in Eqs. 11) and as a
sort of measure of energy and we can say that the PS\VF have their energy

inside or outside the basic interval on whether the order
index is smaller or than c.

The behavior of the PS\VF can be clarified a bit further discussing an
even more fundamental of them. The PS\VF are sert-reprocucmz
under finite FT. If we take the FT of the truncated , we obtain a function
with the same as the extended itself. There is a scale factor as
well as an amplitude factor to be taken into account. The complete relation
is

252015105o

A few words about the PSWF are in order. Within the basic interval
c/2] have a number of zeros equal to their order so that

they become more and more rapidly oscillating when n increases. Defin-
an spatial frequency as the inverse of twice the mean dis-

tance between adjacent zeros. we can say in [-c/2. c/2]' <Pn has an
eonivalent spatial frequency of . Observe now in optical terms.

(2.4.9) defines a set of objects (<p n ) that, when imaged through the
reproduce themselves within a constant (J.Ln)' They can be

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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into

. To

coincides

andinto

we find that

a formal solution of
into a series of PS\VF:

and

{
oc

00

n=O

n=O

complex conjugate of

=

We shall now use the PS\VF to
this we both and

On ;n"cwhn,<T

14)

to the followingIS m-onorr.ion»the FT of the extended
truncated version of it:

.:.. ".-'-">" of course. consistent with the fact that the extended is
band-limited.

It is useful to observe that there is a familiar of functions that are
self-reproducing under Fourier transformation. It is the set of the Hermite­
Gauss functions. To facilitate we insert a parameter c into
their definition as follows:

is influenced noise
images. gn is affected

=0.1 .. ).

= 0.1 ... )

coefficients !in the corresponding eizenval-
coefficients . i.e., the solution of our "r"hlm"

= gn + En

9n =

Hence. on dividing the
ues /-ln, we obtain the

18)).
What about the number of DOF of the ? In the noiseless case

considered so far. all of the DOF of the represented
the set of coefficients are transferred to the the set of the

gn- However, in the passage from the object to the each coefficient
is multiplied the In particular, the object
coefficients with index c more than the width of the transition

are multiplied by very small numbers.
\Ve have now to see how the recovery process

311, 937, 782. . For
by an error. Let

- tIn = In + - = 0.1. ... ).
l.in

It is seen that the error term is this process. To
a of this we consider an Let c = and

suppose we want to evaluate up to n = 20 (which to twice
the number of DOF furnished . From the tables of it
turns out that when we to recover , the error term is mutupned
the figure of . Unless the errors on the image coefficients
decrease as fast as the J.i n , this would induce disaster. in
most realistic the causes of error are to behave as sort of

be the noisy value of gn with an error term tn. The estimated value of
say is obtained from division /-In:

is

(2.4.16)

(2.4.15)

FT of

du.

is the nth Hermite polynomial,where

On and. we can expect that for c
the PS'VF with index smaller than c become similar to the Hermite-Gauss
functions. In this is the case. it is for this reason that
we can assimilate the modes of a laser with spherical mirrors to
Hermite-Gauss beams

The Eq. can be of as the result
of two steps of the form . First. ([In is truncated to the basic inter-
val and Fourier transformed. to Eq. this produces the
extended <P n up to a of scale and a factor. Note that the
scale is such that we find within the the same inner part of

that was included in the extent. After truncation the pupil.
an inverse FT the This again 13) or. more
properly, its The final result is the attenuated version
of <P n .

In a more formal way, and make an inverse
FT of both sides of Eq. nterchanging order of inrpO'll'"l1'jnn on the
left and variables on the we obtain
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n=O

is obtained from the noisy image. say g(y), inseen thatIt is
the following way:

N'

response. At first it may appear that this would seldom occur.
there is an class of instruments in which this is the case. It is
the class of instruments where the is illuminated a

of across it. At any the effective reduces
to the illuminated and the is then small.
\Ve can say that the trick is to use the DOF of the channel
that are the illuminating spot can
have a is to be somewhat extended.
A hint on this will be later.

It useful to observe that the recovery process up to the index can be
described as the result of the to the of a certain integral

to the noisy case. we write the truncated series
estimate of the object. say , as

simplest way to cope with the noise is to use a truncated
series in the recovery. This means that we use
up to a value of n determined as Let ¢ and 71 be the root mean
square values of and in the that both the

and the noise are processes. To prevent noise from overcoming
stop the at the maximum value of ti such that the

is still satisfied:

white thus a mean squared value of En 111(leT)eIlCH~nt from
n. This the recovery of coefficients with index significantly
OTI'»1cP1' than c. The enormous of data errors in the
evaluation of the solution is a of a of inverse

79 I, . The methods for ill-
rWI,hlplT'" in such a way as to obtain sensible i.e, methods

regularizing the have had a in recent years.
particular, those methods have been to the problem of

78. . Here we shall limit ourselves to very

(2.4.25)

(2.4.26)

y) dy.

1
N'

y) =
n=O Iln

=

where

2 .4

The virtue of this a.nnroacn is to evidentiate that the kernel RN , is
independent from the to which the recovery process is to
be Note that RN , is a shift-variant kernel.

Elegant as are the PSWF are not simple to use for
numerical evaluations [829. 833. 309]. The situation is even worse when the
eigenfunction tecnruque is to be used for more imaging processes in
which the eigenfunctions are seldom known analytically. meth-
ods of not the explicit of the eigen-
functions are welcomed. One of these is an iterative method in

and explained energy considerations in the domains
of the image and its FT.

An of the method in terms of PSWF was indepen-
given in we shall use the in [346]

because it affords an easy extension of the method to more general imaging
situations.

sampling and the eigenfunction
for c, the eigenvalues

approximately like taken at the rate
They are very near to one up to n :S c and very near to zero

indices. This pictorial remark can be converted into a rigorous
turouzn the theorem, 516. 517]. Under much more

general conditions, e.g., for shaped the theorem asserts
that in a well-defined sense the are asymptotically approxi-
mated the

If c is not say for c of the order of unity, are different. In
this case. even the recovery of a of object coefficients beyond the
Shannon limit is in that it to a resolution
two or three times that the classical one. A value of c near to one
means an extent to the width of the impulse

Denote N 1 this of Then. N ' is the number of DOF of the
It depends, of course. on the ratio let us say the noise to ratio.
Nevel,thelE~ss, due to the fall-off of the for any realistic
case. the value of N' will not exceed c very much. 1\101'0 N' is
determined the width of the transition so that the estimate of
the number of DOF furnished is to be corrected adding
a term like For::= 15.9
and Tlf¢; = the tables
of 19 does not
imply a very the sampling
based estimate is asymptotically

The substantial agreement
approaches can be expressed
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0.8

0.6(]»] <y)

a more compact form by introducing the
nn,'r",trw as follows

The basic idea is to transform this Fredholm Hllegnu equation of the first
kind into one of the second kind and solve the last a Neumann series.
This is done a sort of complementary operator

0.2

=u-
c 5 10 15 20 25

where U is the identity operator can be written
FIGURE 2.9: Plot of p~1;I) vs. n for c =

which is a Fredholm equation of the second kind. the usual pro­
cedure we can try to solve iteration, Successive approxima­
tions of the solution are

'••.•.• e·.
s '

, '0'°
0.8

o.s

0.4

VS, n for c =

+ = +
f(3) + +

+ 1) )

+ + + ... (i{M-lg)

0.2 ..
• •

0

0 5 10

FIGURE 2.10: Plot of

15 20 25

into account that !tn < 1. we see that the coefficients tend
to unity for 11/ -. oo. In the same limit. tends to the solution of

(2.4.29). On comparing (2.4.32) to (2.4.19) and taking into
account Eq. we note that for any finite 111 the net effect of the

iterations is that the !tn are the quantities ]J~M).
These are drawn in Figs. 2.9 and for c = 32/7T and c =

respectively. for a few values of AI (indicated near each . The

behavior of the ]J~M) with to n is similar to the one exhibited by
the !tn (see 2.7 and 2.8) except that the transition from to low
values occurs at a higher index for M, In a sense.
this is to the that would be a
progressively wider pupil.

For small eigenvalues !tn, the number of iterations reouired to bring ]J~M)
near to one grows like as can be deduced from(2.4.33)

and taking into

=0.1.. .. ; M=1.2 .... ).

and we defined the quantities

=(1-

I!)) into the last of
obtain

00

--'----'--'-'-'-- ip n (x) = L]J~M)

n=O

00

p~) = 1- (1-

insprt.imr from Eq.
(2.4.31). we

where we used Eq.

The effect of successive iterations can be studied with the aid of the PSvVF.
and we see that the action of on ipn is

t he relation
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line) .

0.5

(dotted line) and sinc(x)

n=-oo

o

outline the most elementary way to design a SRP. Denote
impulse response of the As the pupil function vanishes

can be the sampling expansion

FIGURE 2.11: A plot of

2

The is to find the values to be to the samples S(n) in order
to an response that is narrower than sinc(x) on a limited
interval. Once this is the FT of Eq. ) the Fourier series
expansion of the function. The values can be found

trial and error as follows. that a finite number of them,
say 2M + 1, are different from zero. 'Ve now require S(x) to be one at
the and to vanish at 2M selected X n = ±1 ±2, .... ±1If).

furnishes a set of 21\1 + 1 linear equations in the 2111 + 1
unknown quantities The ;rn are chosen in such a way as to force

to be narrower than and to remain at low values on a certain
interval. An to visualize this approach. Let 1..1 = 4 and

outside

We have seen methods for solutions to the recovery
problem using, either the PSWF. The result can be
described as an with increased resolution with to the

the original pupil.
an attractive alternative is to replace the so-called clear

with transmission function a superresolving
. This would give an increased resolution in

real time without any post-processing of the we want to see
something more about such and to establish a link between them
and the previous approaches,

(2.4.33). as in Fig. a rather small number
of iterations an bandwidth two or
three times than the one. To obtain the same result when
c is greater than some as in we would need an rmpractr-
cally high number of iterations. One the other two remarks are to be
made. variations of the method can faster convergence and even
closed form the recovery
of coefficients pre-
cluded noise From this of method
suffers from the same limitations as the direct eigenfunction technique.

The virtues of the methods are: a) it allows one to implement
the without their explicit knowledze:
it works with kernels of many In the form of the
method, the iterations are when the scientist realizes that noise is
beginning to dominate the reconstruction. This is done by
some criterion for the reconstructed

knowledze about the can be incorporated
form of the method 1].

The method implies convolutions and truncations.
This is done back and forth between the two domains
where the and its Fourier transform are defined. Numerically. this is
obtained by the discrete FT with fast [1 . It is curious
to observe that on continuous with discrete FT. one makes
a of both a function and its that the effects

sampling do not cause overlapping. This amounts to assum­
ing that both the function and its FT can have finite support and this is
prohibited, the same properties that are
at the root of the recovery processes [295].

It is seen from Eqs. (2.4.31) that the of each iteration is fed back
to the of a system described the operator . This remark suggests
that the Gerchberg method could be implemented
with feedback. This can be in fact demonstrated 580]. It is to be
recalled that the method has been preceded a similar method
originally proposed in and later reconsidered and extended several
authors [431. 310. 395, 893. 414]. The main difference [365] is that the
original van Cittert method does not use the a information about the
finite extent of the object so that it essentially an ordinary inverse
Fourier filtering [310]. The analytical technique underlying the Gc~rcJllb{:rg

method was known in mathematics after the work in [523].
it must be mentioned that a somewhat similar iterative method was used
by Landau in a to companded 518].

The Gerchberg method is a prototype of constrained iterative algorithms
and can be extended and in several ways [745, 982, 955, 184,
781, 581, 834.
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can

2.5.1 SINGULAR

divert light from the outer sidelobes into the central thus disturbing
the the is inefficient from the energetic of view
because much of the energy collected the pupil is thrown into the outer
1'ej2;1011S of the the lacks It would be useful in
fact to be able to change the amount of and the consequent

of the outer sidelobes when different levels of noise are to be faced.
of course, is for a fixed An alternative PV001VlllC)

is to simulate the effect of the SRP the obtained
with a clear pupil, We can understand that in order to simulate the
effect of the SRP we can convolve the the clear

with the response. In the Fourier in
this amounts to the to

simulate the presence of the SRP in the formation process. In this
way, the response of the SRP can be at will 360].

this type of with the one seen in subsec-
we note that in both cases the is acted on by an integral

operator, the main difference that acts as a convolution kernel.
whereas RN' y) is shift-variant.

I > 1 that the
1.1,1.1]. These

choose X±l X±2 = :r±3 = X±4 = ±LL The function
found on solving the problem is drawn in 2.11 where is also
for the sake of is seen that the resolution is increased

a factor of 2. The values of = O. L .... 4) turn out be =

H"PU"0~responsedr:~stical1y

external sidelobes are the
To the sidelobes from the
finite extent to half the interval on which
control is to sayan extent L 1 in our example
SRP the that the vanishes outside a certain
interval. As an one finds that when the useful interval is
increased the width the central core of is the
outer sidelobes become and The design of SRP to
~ cl ~a

function means of a band-limited function
can be based on the use of the PSWF

to have a form in
be eXIPaJ1d(~d into the PSvVF series

As we shall see the exemplified by the use
of the PS\VF can be extended in several directions. Nonetheless, it cannot
be when the and the output of our linear system belong to
different functional spaces. In this case, a generalization is given by the
singular value that we shall sketch here 76]. Let
us consider the following linear operator A:

(2.5.2)
n=O

rcepiece now the truncated their extended version. This gives rise
to a function that coincides with for I x I :::; and is band-limited.

Eq. we immediately find that the pupil function,
is

DC

(2.5.5)

possess a discrete set of eigenfunctions
to the same set of non-nezattve

< x.y)

where the asterisk denotes the complex conjugate. We assume H(x, y) to
the condition

where the mtegrauon limits and the definition range for x are when
the kernel , y) is We also consider the adjoint operator
defined by

J
the operators A+A and

Un and Vn·

n=O

11le1'e10Ire. we can choose at will for I x I :::; Equation (2.5.3)
us the that the wanted response. Of course, we have

no control about the behavior of for I x I > and this is where
high sidclobes make their appearance. Note that the useful interval

for the to be imaged is We add that a simi-
lar can be used for a related in antenna
namely, to find the line source that best a specified radiation

the PSWF offer an solution to
~ cl cl~

sidelobes of the impulse
In of their SRP are difficult to use for

few cases [234. 1 384] The main reasons for this are the First.
the must he realized with because even small errors can
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<

is written

2. Sampling in

whose

FT is known to vanish outside a finite interval. This is the present
nr,...h]pnl is also known as the of a band-limited function. The
operator A this process is defined as follows:

Franco Coii

== == 0.1 .

= 0, L ).

The eiaensvstems are to be found the equations

62

The functions Un, Vn are the functions of the operator A and the
(real numbers On are the values. The
action of A ) on Un is the lU1.1U\1/1l',h.

(-oc < :1' <

<

and are

<

< 1/2).=

seen that the operatorsIt is

DxCelJL for a scale factor. the two are identical to the
one entering . As a consequence, both sets of func-
tions reduce to the set of PSWF. The values On equal (see

and Because of the of the
a recovery would be possible in the noiseless case. The re-

covery of the On in the presence of noise could be examined along the same
lines discussed with reference to ( It is clear, however. that the
substitution of the Iln with the On is an because an > Iln.

The same scheme can be to instruments. that
at a certain time the object is illuminated a field distribution whose

we denote by and an with re-
sponse The field from the can be as the
product of the dimensionless times the field
that the would emit if it were illuminated an orthogonal
wave of unit The field can be through the
action on of a suitable A defined as follows:

It is seen that case e.g.,
In . when and y) = we come
back to except that now x can vary on the whole axis.

In order to find what information about the can be obtained.
some features of A are to be studied. It may well that A is not

In terms. this means that the can be into

13)

11)

admits the

= 0,1,

= 0,1,.

into account

+

=0.1. ... ).

and

n=O

=2:
n=O

belongs to the null space of A. In addition.

is to be solved. In g,elJlenU, the followinz expansion holds:

where r(x)

On inserting 1) into
and (2.5.12) one finds

10)

are similar to Eqs. The
values are by the values and two different sets of functions
Un, V n are used. In depending on the of a of

namely. can be lost.
We shall now two of applications of this to the

recovery problem discussed earlier. We saw that the formation can
be thought of as a process. In each of a finite support
function is Fourier transformed and the FT is given on a finite interval.
Let us consider the of recovering the function starting from the
knowledge of a of its FT. This occurs, for if we detect
the spectrum across the either directly or through inverse
Fourier transformation of the field distribution all across the axis.
The task is equivalent to extrapolating the spectrum outside the
Heversinz roles. we can say that we want to a function whose

Suppose now that the equation

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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6

6

4

4

has to exclude the

2.12 after filtering,

2

2o

o-2

- 2

distribution of

- 4

- 4

distribution of two point-Irke mutually incoherent sources.

- 6

- 6

FIGURE 2.13:

Here, we encounter a basic constraint about the solutions of inverse
lems relating to incoherent Being an the solution must

FIGURE 2.12:

4Even in the noiseless case, the inverse Hll,<::U1H16

p = where H(p) vanishes.

).4 This amounts to the ongmai
response . The resulting corrected is given in Fig, 2.13.
Two resolved sources can be if we know that either one
or two sources are see subsection 2.4,1), the shows some
Qrlhh,,·j·.<: consisting of oscillations. The main remark is that nega-
tive sidelobes are present. a feature inconsistent with the nhvsical meaning
of the function as an

2, Snmpluig in

19)

Fienco Gori64

the sum of a transmittable part and one part that no The
recovery then refers to the transmittable part A case

the one where both Hand fare sine functions with the same width. This
occurs when the same is used both to illuminate
and the system can be found in closed
form . Once the theorem appears in the In

it turns out that the transmittable of the can be obtained
sampling it and certain In addition for confocal

scanning microscopv, an inversion formula can be found <:t~,rtiI11O'

from a of the

2.5.2

r Ipi l
= l1 -- --Jrect

where and intensity distributions across the ob-
and the The proportionality factor in front of the

mtegrai is such that a maximum value of one is attained the incoherent
transfer function called the transfer function The lat-
ter, say is to the autocorrelation of the actual In
the present case, we have

The carried out earlier could now be for incoherent imag-
However. there are certain differences that deserve attention. the

bandwidth is twice the one pertaining to coherent although the
comparison is to be made with some caution because now the transfer
function refers to the of the instead of
the field. In addition. the incoherent transfer function is not fiat
within the band of the system. This that

enhancement could be obtained to the correct weight
frequency components inside the bandwidth of the system. Let us

a of this inverse process. 2.12 represents
the of two point-like sources of weight
centered at ). The unit on the horizontal axis ).

the two sources are not resolved. \Ve now filter the spectrum of
so as to an transfer function that is flat in

present radiates
quasi-monochromatic spauanv incoherent the formation law

intensities. For the one-dimensional case with a clear pupil
exrenomg from -PM to PM the law can written

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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The inversion formula reads

\Ve have seen the essential role in the description of
imaging processes. Nevertheless. most are
to be described means of another namely, the Fresnel
transform, This is a linear transformation depending on one real parameter
a. 1'01' a function , the a-Fresnel transform to be denoted Eo{f}(x)
or is [348]

soJlutiOllS of the wave . Further extensions refer to the
presence of aberrations as well as to produced
noint-Iike element . The number of DOF for scattered

can be evaluated in a similar way and this leads to interesting
anl~lo$;ies to the DOF in 424. 739].

It is interesting to observe that can be linked to one of the
newest to data neural computing [589, 2].

We discussed several methods. other meth-
ods exist [559. 560.

- n],+9

00

n=~oo

=

The role of this constraint also appears when we
sampling to the problem. The function as ex-

is band-limited and can be written as the sampling

where Xo is an shift. At first this looks similar to (2.4.4)
for the of the bandwidth. We can say that the

completely determined taken at the rate
the from one another

because have to where the lobes of
the sine functions are positive contributions.
We add that the functions is related to
the so-called

The nrp""'1lt imaging process could be examined tnrcuzn
tion the and the eiaenvalues
analvt.icallv known, can be computed numerically

it turns out that the say Jln, are approximately
Jln = [1- , up to values ofn smaller than 8XMPM. For

PTf'Ht.,pr values of n, the are small. This agrees
with the theorem which connects the and the eigenfunc-
tion approaches,

(2.6.2)=;:f;;.

so that inverse transform the Fresnel transform of parameter
-0.

The extension to the two-dimensional case is The con-
nection between the Fresnel transform and the Fresnel or paraxial approx­
imation of is seen from the diffraction inte-

discussedsimilar to the ones
for the coherent case can be to incoherent imaging.

nositivitv constraint can be included in the superresolvinz algorithms

It is to be noted that the between coherent and incoherent
imaging is not an immediate one. In the first case, one deals primarily
with field whereas in the second case intensities are the basic

. In noise effects are different [205, 206].

(2.6.3)

where Vo and Vz are the coherent) field distributions across the
z = 0 and z = const. > 0, for the factor exp(ikz), we
see that Vz is the two-dimensional Fresnel transform of with parameter

because k =
A function is said to be o-Fresnel limited (shorthand: if fa.

vanishes outside some finite interval. say . Functions of this type

1
0= AZ'

OF2.5.3

to now. we limited ourselves one-dimensional without aber-
rations. The can be extended in several directions. First. two-
dimensional can be considered. If a coherent with a finite
support an area S is a clear covering a
finite area P in the the number of complex DOF
of the SP. This is the so-called Gabor's theorem

whose one-dimensional version leads to As in the one-
dimensional case. the of this result can be differ-
ent suitable forms of the theorem [319, or

bVUV'C CH properties of the
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possess several nr,nn,pr+ip~ For it can be than an a-FI
function cannot be also if 0' ;f::. /3, nor can it be band-limited in the
Fourier sense. In addition, an o-Fl function cannot be purely real. For o-Fl
functions the holds

69

the formcan beseen that the samples of

2. Sempling in

It is

Franco Gori68

In particular, suppose that 0' satisfies the condition

(1' := 21'
1

00

2:1
n;;.;::-oo

Converselv if a function vanishes outside a finite inl'p]'",,:

then its a-Fresnel transform can be as follows:
say

In this case, the samples
Because of

to the Fourier coefficients of
exists

11)

(2.6.14 )

(2.6.12)

(2.6.

we obtain

(q :

(1' .

1

00

n=-(X)

is satisfied. Let us an ideal sampling mask in any of
Disregarding the unessential factor , the field emerg-

the mask can be a say s(x), of the

00

n=-oc

It is seen that the series in Eq. 13) a periodic function. it
is possible to choose D and hence 3 in such a way that

The field across a z = const. > 0 at a distance D
beyond the mask can be evaluated, up to a phase term exp(ikD), as the
;3-Fresnel transform of with ;3 = . We find without difficulty

where
these

from
form

(2.6.7)

r

reads

00

n=-oo

x

whose Fourier series expansion in

The between and (2.6.6) is due to the fact that the
inverse a-Fresnel transform is simply obtained 0' into -0'.

Let us see the of these limiting ourselves to the
one-dimensional case. \Ve assume to be a coherent field distribution
with finite support :rM] from a plane z = O. From the one-
dimensional analog of Eq, we see that the field distribution across a
plane z = const. > 0 is up to a phase term where
0' is virtue of field is
comnletelv determined its samples at a distance from
one another. Such a distance grows linearly with z and this gives a measure
of how the information density varies on free propagation.

In the case of sampling a function produces an infinite set of !'plnli,(',,<

of the spectrum. In terms. if we cover with a grating a coherently
put in the front focal of a converging lens, we obtain

of the in the back focal We can
ask whether similar can be observed in Fresnel

In order to answer the previous it is useful to an alternative
representation of the samples of . Let us introduce the function

00

n=-oc
m=-oo

where

dx.

where
rp ---
q

(T, q : integers)
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of variable xconverges. Thethat the ,nT,pOT}!.1

to the alternative expression

This a clear onpr:,ti!rHLfl.l meaning to the Mellin transform. We first

f( ) which the interval 1]
pass from x to
of the z-axis to the whole < 0, is to
the of on a
and 2.15 where the function (1 ~ Ix -
is with a linear and a logarithmic
that if we into i.e .. if we expand

2. Sam)':llinlg inFranco God

is zreater

of
Let

nrpulml<: case. we denote
is of the form

periodic renetrtion of a magnified

n=-oo

70

The series in
dernagmned version
than q. If we consider
the series cancels out.
are formed of the original

The above somehow
or Talbot effect

nenornc. To facilitate comparison
. The Fourier series expansion

1000

000800600

100

400200

10

o
o

1.5

0.5

FIGURE 2.15: Plot of the triangle function with a log;arithl:nic horizontal axis.

FIGURE 2.14: Plot of the triangte function with a linear horizontal axis.

I)

simplest of a rather
Fresnel

phenomena, e.g .. the Lau
421.

\ ... v"" U J becomes identical to the series
the
the

complete review the reader is referred to
an extension of the PSWF to Fresnel transform

This can be of when with Fresnel
Finally,

The a-Fresnel transform of

2.7

If condition

In several the Mellin transform is of interest. Different
definitions of this transform are used in the literature on
the to be treated. We now dwell a bit on these definitions and
on the related theorems. Further, we shall out the classes
of where these notions come in

A first definition the Mellin transform [111
of a function defined in is the f0110":in2::

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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(2.7,7)

73

loaD

2.15, scaled with a factor

di:

, Eq. (2.7.7) becomes

shift has been omitted. Written
(2,7,5) becomes

100

) sinc(2PMf(e

of variable x =

_ /.00 , dx
f(p) = ' f(X)X- 21n p c.'

.0 VX

n=-oo

j(p) =

10

f(x) =

00

2. Semplitig in

FIGURE 2.17: Plot of the triangle function in
a = 0.2,

for the sake of the
in terms of the original variable,

Using again the

This constitutes the expansion for Mellin band-limited functions.
Note that the samples are not spaced, Instead, the ratio between
the positions of adjacent samples is a constant and a resolution ratio
exp[1/(2PM)] can be introduced. Roughly speaking, we can say that in
a Mellin band-limited function independent pieces of information tend to
accumulate near the origin, To underline this peculiar distribution of sam-

one speaks of exponential sampling [697].
We shall now introduce a different definition of Mellin transform which is

useful for many . Let us denote j(p) this alternative form
of the JVlellin transform of

7

In view

Franco Gori

1000

scaled with a factor

example for
recognized regardless of

800600400

is Mellin lJaJllQ·,1I11:11t,B(1, in the sense that
PAl' Then. we see from that

ordinarv Fourier sense. we can write an

LU1,;et,Uer with the Fourier inversion <VLHHua, we obtainUsing

72

magnification of

> 1) the plot is simply shifted to the
. or t? the left a to I, respectively, This
IS shown m 2.16 and 2.17 which refer to the same triangular function
as 2.14 and with a a = 0.2.

The second operation rmphed is a FT.
of the of the first the overall effect of a

on its Mellin transform is 1l1111tlplica,ti()J1
term. More precisely, we have

This is of interest in
pattern recognition, 'when a certain
the scale factor

o 200

FIGURE 2.16: Plot of the tri"nrrln function in
a = 0.2,

(2.7.5)
n=-::x:;:

In addition to the passage from to the present definition
of Mellin transform multiplication . After a FT is
performed. It is seen that the new definition preserves the property

Robert J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory, (Springer-Verlag, 1993)
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expressed
divided by

that now the nant-nano side has to be
The inversion formula now be(;01111eS

in

(2.7.15)

(ka{})]
2

ka{)

Depending on the problem at hand, the solution of (2.7.11) can be
by various methods. The simplest method is, of course,

inverse to

where {) is the and is the Bessel
function of the first kind and order one. If the n<lrt.irlp radii are distributed
according to a certain function, the total is

is of the form (2.7.11) with f(y) and
by and The kernel J( is given

bv the terms within square brackets multiplied /0' Equation (2.7.15)
is to be solved in order to find the particle size distribution [945].
Other include by photon correlation spec-

. aerosol size distribution and laser velocime-

16)
of

12)

van-

7.11)

-n].

2 . dx
K(xy)x- ""p .JX'

"'lith the

)e
00

n::;;:;-oo

1
=

is to be recovered from the knowledge of
perform a Mellin transform of we have from Eqs.

For that are Mellin oano-nmiten. Le., for which
ishes when > PM, a theorem can be derived with a reasoning
i:tll(:UU;~Ull:; to the one to . The sampling expansion now
reads

and

The Mellin transform is the basic tool for "nl"illllY mtezral equations of the
form

where the integration
v cu ro, Uit xy = t.

that the action of the operator 11)
on is to a of its Mellin transform. A companson
with Eq. shows that for the Mellin transform
plays the same of role as the FT for convolution kernels.

As a simple of the occurrence of 11) in let us consider
a medium in which opaque with various di-
ameters are suspended. This system is coherent
light and the is The contribution
given a single with radius a can be approxnnately evaluated
as the of a disk with the same radius. \Ve

for those values of p where R( is different from zero. However. in most
cases, R(p) is to be small for certain ranges of P values
thus error amplification when 16) is applied to
data. Furthermore. in many cases, vanishes outside a finite interval
[-pM, . The solution of 11) then requires a discus~ion some-
what similar to the one connected to imaging through convolution kernels

Sec. , including the use of theorems and singular func-
tions. For more information. the reader is referred to [8L

Here and in the previous sections. we have seen examples of linear trans-
forms applied to optical Other transforms are of interest in op-

for Abel, and Radon trans-
forms [IlL 1 387, 704]. A sampling theorem applies
to any linear transform whenever the function to be transformed is Fourier
band-limited. say in . Let us express the linear in the
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a known

2. Seiapliug in

to a oano-nmiteu function and it can be determined by
sarnpling [776]. In the on rl and l'2

through their difference. This has for
sarnpling nartrallv coherent fields

elementary one-dimensional example
at X2 - Xl = nb.x

17)

mtezrat svrnho! the sampling expansion

f

Franco Gori

00

n=-oo
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where is a J0\1{-oaSS filtered version of the kernel H defined as follows: AD
b.x = --. (2.8.3)

spaced points at a distance 6.x fromFIGURE 2.18: Linear array of four
each other

Let us consider a linear array of four points at a distance
b.x from each as in Fig. 2.18. can be measured
at any of of the array, we obtain four corresponding to
n = O. L 2. 3. However, the array is a redundant one because the distance
x2 - xl = b.x can be obtained with 4 - 11 different pairs = 0.1,2,3).

array of 2.18 eliminates the (except, of course, for
n = and furnishes samples of up to n = 6 the same number
of elements. It is easy to that in the two-dimensional case similar
Q",nt},,,,,,i,, f"l'I,C'Prllll'f'S can be to arrays where the number
of distinct pairs afforded N point-like elements grows like . Such
techniques have found wide in radioastronomy [334, 229].

it is an
for numerical evaluations

smc;I:LPM(t -t) =

It will be noted that looks similar to a numerical integration
formula, e.g., for evaluating
exact formula. Examples of the use of
are in

2

The flow of information in a partially coherent field is to be described
means of the correlation functions. The neatest way to do this is to work in
the space-frequency domain for each temporal the spatial
correlation properties of the field are accounted for the cross-spectra
rlo""i'·u [569]. It has been shown that for any source the cross-
spectral density , R 2 , at two space points with radius vectors
and R 2 can be as the average

(2.8.4)v) =

V\Te can ask whether there exist more general phenomena causing
to be One reason is the following. The angular
spectrum of a monochromatic field comprises both homogeneous
and inhomogeneous or evanescent waves [106, 339]. The latter are strongly
damped on free At distances than a few wavelengths
from any material surface the is well approximated the ho-
mogeneous part Across any where this condition is met each
member of the ensemble of monochromatic fields involved in the average
of 1) has a spatial structure of the form

where r is a radius vector in the chosen and C is the circle of radius
in the spatial According to Eq. , the corre-

1)

,I"2, v) = ---,--- /

on an ensemble of realizations of monochromatic fields at the temporal
frequency u, Most features of the partially coherent field can then be traced
back to features of the monochromatic fields. it is not
surprising that sampling a role in coherence

The best known partially coherent fields are the ones produced by spa-
tially incoherent sources. Let us denote 10 the in-
tensity at frequency /.I in a source point with radius vector p
the source plane). The density (1'1,1'2, at two points
possessing radius vectors rl and r2 in a plane to the source plane
at a distance D from is the van Cittert-Zernike theorem [106]

It is seen that. except for a geometrical factor (which is independent of
the source intensity distribution), the FT of 10 Suppose
now that Io(p. has a finite TVD is proportional, throuzh
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1111r1,,1'O'("'''' a
the relation­

can be

same pattern because
use the measurable

\ DC

rect
) n=-oc

- nxd

{ t::.:r } 1)

Sam;:l1ilJI,!; in

A peculiar

the
finite sampling, Assuming liuearitv

between the output
written

suppose that we want to measure a cer-
distribution across a Whatever

we choose. the measurement some form of sampling
411. As a let us consider a one-

diJmE:nsiollal array of detectors. Each detector has a certain width t::.x over
which it ;",..,,,,.,..,.,,,,, the Let the distance between centers
of two detectors be Xl and be the number of detectors. The

of the array can be of as the result of two processes.
intensity is convolved with . Second.

the detection process.
and the

where factors have been omitted and the convolution op-
eration is denoted *. Let us discuss the effect of this of

The convolution of a filter-
of the FT of . say The transfer function is of the

form and severe attenuation of above
the function that we but

a blurred of it. there is the sampling
replicas of the filtered version of at a distance from one
another. This will rise to there is the effect

from the finite extent of the Because of this
the set of is convolved with a function. into
account these effects and some about the intensity
distribution to be measured. one chooses the above parameters so as to

errors below an level.

width and distance.
Detection of coherent field distribution follows

the lack of detectors forces us to

moire may be produced
errors when the intensity distribution to be sampled, for a halftone
screened has an structure. In this case, a double
sampling at two different rates select less
suffering from errors thus eliminating moire fringes

Similar remarks it a permanent record
of the distribution emulsion. The
detectors are now silver halide are somewhat different
from each other and distributed within the emulsion, the same

with reference to the mean values of

with

Frsnco Gori

a very wide subject

78

same

The pn?cedhlg remarks deal with in space,
the coherence on the power spectrum at the

throuzh the Wiener-Kintchine theorem. to that
autocorrelation function and the power spectrum

form a Fourier This the basis of Fourier where sampling
has essential role

The processinz

of the average under the mtegrat is
its included in the tour-dimensional domain

C x C III can be determined throuzh a suitable sampling.
An extensive treatment of fields the

lines was in work referred to the mutual
intensity but most of his results could be in terms of cross-

2.9

of mtfw,,,,,tin.,,

ranging from old and well-established tec:l1n.lqlles phase-contrast mi-
croscopy to rather new and 1'»'n;rll" developing
cal of neural networks). H"ClC'CU.

in sections can also be in optical processing.
is a tool of continuous use in this field. As an example,

us consider the production of of an object illuminated
with coherent . In principle, this is obtained with the

of a suitable mask in the plane. In-
if the has a finite support, the spectrum displayed in the

function and its a multitude
replicas of the in the plane. one would like to

with one and the same If the mask is
a set of holes slits for one-dimensional in an opaque background.

of different are of the non-zero size of
the holes. In the mask behaves as an whose
diffraction orders are known to be A solution
is to use a mask like a Dammann grating . This is
a whose transmission function between +1 and -1 a number
of times in The of the transition can be calculated
so as to a finite number of orders of weight. As
there is no the the fraction of power directed in
the wanted can be very . Note that a of this can be

beam In can be used
H"elJlH~ purposes Another of occurs

subtraction with both coherent and coherent [332].
Besides of this there are countless occurrences of sam-

It is worthwhile to review some fundamental
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but the problem remainsto

2. tiaml)11Ilg in

e

FIGURE 2.19: A two-dimensional sampling array with a square cell lattice.

•

• •

• •

called the cross set. is itself a square lattice with side 2)2 rotated
through 1r / 4 with to the x- and y- axes. The second set will be

called the dot set.
Suppose that the whole array is used to a band-limited function

whose spectrum is confined within a circle of radius centered at the
This rise to a of the as schema-

x

y

reldund,alllcy factor decreases from
reducing the redundancy.

sampling theorem to circle band-limited functions
, It a continuous suitable circles. AI·

"h,·"M.h this theorem is for like the eval-
uation of the number of the implementation of circle sam-

is not easy. A notable exception occurs when the circle band-limited
function is also In this case, the is actu-

one-dimensional and we can use the theorem based on the
l:'ourieI'-U:essel series or on the Dini series

A different way to reduce has been found in [215] exploiting
the mutual of the samples in the redundant case . We shall
discuss the basic idea in a case.

Let us consider a two-dimensional array with a square cell lat-
tice. The side of the cell one. The lattice sites are in 2.19
as the union of two sets crosses and respectively. The

the
produced

This occurs
. The

Franco Gori80

the obtained in the interference between the unknown
field and a reference field.

Another in which is almost is the
modulation of a wave. reasons like the periodic rep-

etition of cells with a certain area in many spatial
there is another fundamental motivation. If we want to

distribution to a we can use a suitable On
the other this is because of the difficulties of

objects. It is much easier to code the dis-
an modulation. This of course, the very

of this in is
the where both the amplitude and the

distributions of the to be are modified the passage
throuzh a In order to isolate the term of interest in the diffracted
field from other unwanted terms. off-axis is used. This implies
an inclined reference beam and this is to the spec-
trum of the to be recorded on a carrier

Aitnouzn in some cases filters can be in an ana-
manner, most are with the aid of a

. The basic layout of a computer-generated hologram
is an array of cells. One (complex) value of the function an ampli-

and a is coded in each cell a suitable control of the
amplitude transmission function. a dot is drawn on
an opaque in each cell. The size and the of the dot
account for the amplitude and the phase, of the sample to be
synthesized. What is to be underlined is that this arrangement in a lattice
of cells the use of sampling from the outset. Furthermore,
extensions of the sampling theory can be usefully For example,
as the are approximated by dots of non-zero area, errors occur,
They can be eliminated a suitable predistortion of the function to be
synthesized [44].

Computer-generated holography is today a rich topic with a lot of
cations. For review papers, the reader is referred to , 141].

In ordinary the use of for hizh-densitv storage and
interferometry was discussed in 361

A frequently occurring task is the of a two-dimensional function
whose is limited a let us say a circle band-limited func-
tion. Of course. a lattice with square cells can be used. However.
this is a redundant because the alias-free region in the frequency

is a whole square circumscribed to the required circle. This IHlJJlle~

that the is times than it would be required
circle area. Better results are obtained if the ,.~.~n',·,,'m replicas

by the are according to a hexagonal zeometrv
when a lattice with cells is used
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FIGURE 2.20: Spectrum of a band-limited function sampled with the array of
2.19.

83

Conclusion

FIGURE 2.21: Spectrum of the samples corresponding to the cross set.

2.10

vVe have been wandering through a number of applications of the sam­
pling theory to optics. the tour is unequally weighted and far
from complete. The author hopes that a couple of points are underlined
by the present chapter. First: in one form or another, appears
recurrently in optical problems. Second: many new and extended forms of
sampling continue to be discovered and deserve further research.

Franco Cori82

tized in 2.20 where the of the spectrum are onto the
of the Px. Py. Let us consider now the spectrum of

the samples to the cross set. This is a (two-dimensional) pe-
riodic function whose period is a square with side 1/(2.)2) rotated through
1r/4 with respect to the Px,py- axes, (see Fig. 2.21). We focus our atten-
tion on the square evidentiated by heavy lines in 2.21. When drawn
in Fig. 2.20, such a square falls in a free where the spectrum of
the whole set of vanishes. vVe conclude that. within the chosen
square, the spectrum of the cross is opposite to that of the dot
samples so that the first is immediately deduced from the second. Accord-

the dot samples are sufficient to find also the cross samples. The
latter are therefore redundant and can be thus increasinz the

'"sampling ernciency .lJlUHHUl'. on this more and highly ef-
ficient schemes can be devised [215J. The contribution of Cheung
in this volume discusses other methods which sampling density can be
reduced. Another type of sampling that can be usefully employed for certain
band-limited functions is polar sampling [858, 863]. The reader is referred
to the contribution Stark in this volume for such a subject. a
sampling theorem that applies to three-dimensional optical microscopy has
been established in [681].
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vE

v E A.

generalized sampling expansion.

shifted to A:

(3.2.3)

~ 1
F=-

i=O

m-l

are restored in A as a linear combination of the
sets. The m restored are then shifted to

=c

•••

matrix of dimension G is the vector with entries
is the vector with entries Existence of a solution

be non-singular in every point of A. If this condition is

3. A Alultidimcnsional Extension of Papouli.s· l:;xT:,ansici11

FIGURE 3.1: The architecture of an

This of is shown in 3.2. The of the first
partition, Fo(v), lies in' the region (-0', -0' + c). We denote this region as
A. Let Gk(v) be the spectrum corresponding to the set
Then for k = 0 to m - 1,

where Fi(v) is the

Equation (3.2.2) can be put in matrix form as

where H is a
{Gk(V)} and
requires to
satisfied. then

spectra of the Tn
1)

. In
has

uniquely de-

Kwan F. Vi,Lce,i""

k = 0 to m - 1.

interpolation functions for each of the
interpolation function for the

interpolation formula

1. 2.... is the order of
uniquely determined m sets:

Yk is the response of a linear

=

k=O n=-oc

(t -

m times the interval,
every is rate. There are m

sets. The overall to the rate. If Tn = 1
and = 1, the conventional Shannon theorem results.

Two extensions that fall under the GSE are interlaced
sampling and L . Both can be forrnu-
lated as second-order of the 1~D GSE. Interlaced samplmg has

= 1 and (0 < 0 < has
the same

m-l oc

1

T

The 7TI"'_"rrl,pr GSE follows from the partitioning
is partitioned

an extension of c:

86

The block diagram representing the nr"_"rn,pr GSE in 3.L
A contribution of this is that the merit of different
sampling extensions can be compared in a common
utilizmg the and Marks demonstrated that there is
a class of theorems which are . In nQ'j'h,'H

the are contaminated with noise. the interpolation
is unbounded for these theorems.

We will first review the formulation of l··D GSE.

3.2
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(3.2.12)

(3.2.11)

results:

t)

(t - nT).9k

t)

generates the expression of the interpola­
particular, let

c

1

k=O n=-oo

m-l 00

becomes

y = ( Yo(v, t)

3. A Multidimensionel Extension of PapoulJ.s· E.IX[18nSlCiJ]

where

where

from which the interpolation formula for restoring

Yi(t) = ~ j Y; t)e j 27r
l/

t dv
C A

is the internolation function for the set. Existence of the solution
requires the matrix to be non-singular at every point in A.

The product
tion formula for restoring

Kwan F.88

FIGURE 3.2: A I--D band-limited function is partitioned into m nartitions in the
I--D GSE. The support of each has an extension of c.

their PC1SitlOIlS and the is reconstructed. Shifting
of these in the !J domain corresponds to modulation in the t
domain. Specifically,

The square brackets in enclose the modulation process which shifts

the to their respective Let E be the carrier vector:

superscript T denotes transposition). Equation
written in the following form:

We now proceed to extend the I-D GSE to l\1---D band-limited functions.
As will be the of this extension lies in the manner by
which a of the spectrum is Before proceeding,
we have a brief of the M-D sampling theorem in order to
maintain the notational uniformity. A more in-depth treatment is
by Marks [590].

Extension3.3

(3.2 ..5)

(3.2.6)

can then be

l)ct (

i=O

m-l

[Fi

E = (1 ej 27rct

(3.2.7)

into (3.2.7), we obtain

f(t) = ~
c

Gej 27r
l/

t dv. (3.2.8)

3.3.1 M-D SAMPLING THEOREl\1

The 1\I-D introduced Petersen and Middleton [721],
is a direct extension of the Shannon sampling theorem. Let JCt) be a M-D
B-band-limited function. where r= ,t2'" ., . Assume = 0 for
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(3.3.17)

(3.3.18)

13).

repre­
i- The four interpolation

= 0 to 3.

j=O

element of the vector E in

diag [ 1

Yi

3. A Mnltidimensioael Extension of Pepoulis' Expnneion

=

where ej ,t2) is the (j + 1
let

Given the numerical values of ,\ and the inversion of can
be done In let i,j = 0 to 3 be the (i+1. j+

element of [IJT] . Then. with reference to

3

where the ordered
sentation 0 is replaced
functions follows as

Clearly from this example, the evaluation of interpolation functions for 2­
D interlaced sampling is not as trivial as its 1-D For I-D
interlaced sampling, the matrix IJ1 is Vosulermonde [513] and therefore
the inversion can be evaluated straightforwardly in closed form. Whereas
in l\I-D interlaced sampling, this is not the case. The inversion
of in most cases needs to be evaluated numerically

An utilization of l\1-D GSE is for sampling reduction 1,21.5].
A first-order reduction is illustrated by the following example.

J:;:x:anl1ple 3: Sample Density Reduction

If one of the partitions of F(0). say is zero. the first col­
unm of H in (3.3.6) can be eliminated and thus the system becomes an
overdetermined system. however, the system is also consistent, we
can further eliminate a row of for example. the first row.
of H also eliminates an 0 0(17), from Thus, the sample group,
{go(Vgii)} is dropped from used to reconstruct After all elimi-
nations, Eq. (3.3.6) becomes a of dimension L - 1;

=4and Y21

and

, the interpolation functions for the two

=

.1/2) 1.

.1/2)

h2 . 1/2) = (3.3.15)

h3 . 1/2)
ej2rr(v,d31 +V2 d32) .

Y11 ) = 4 _-:'-;::--'=-'--'-

YlO

Problem 2 :

Problem 1 :

Problem 2 ;

The

The four linear svstems in this example are

the four mterpolatton functions in (3.3.14) are also the outer pro-
duct of the two sets of functions, This relationship is always
true if the expression for the l\I-D are outer of the ex-
pression of I-D svstems.

An outer nrl--.rl1l1l't of these four expressions produces the expn~sslon of the
four linear used in t;:x:anI1ple 1.

where

[
1 1 1 1

]H 1 =
1 ej27r Ad 21

1 ej2rrAd,2 ej27rAd 32

1 ej27rA(d3! +d32)

With reference to Papoulis
problems are:

Example 2: Interlaced Sampling

coefficients specify the offset of the sampling locations of each
sample subset from the origin. It follows that

98
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(3.4.4)

the corresponding cell
the circular support is not

- Vfi),

DC £-1

2:
m=-oc k=O

00 £-1

L 9k(Vg7n)Yk (VUi - J\/rn)).
m=-oo k=O

oo

f(f.) =

0 •
• 0

>t 1.
II ))1

0

CJ

0 •

f(Vf'i)

o

•

o •

• 0

3. A Multidimensionsl Extension of Peooulis' Expensiou

FIGURE 3.8: A sampling geometry in which produces a rhombus, subcell
which is not congruent to the rectangular cell as shown in

which corresponds sampling at the 1\.h.·m,;c·t rimo";,,,'

shape is a parallelogram. As shown in Fig.
totally enclosed within this cell.

Restoring the function f (i.) under these two scenarios requires 110 extra
formulation. As can be seen from (3.3.6) and (3.3.8), the l\1-D GSE always
restores a period, though possibly not in the same shape of the original cell
of the replications, F(iJ). It is well-known that Fourier series coef­
ficients are invariant to the cell shape [268]. The Fourier series coefficients

here are the samples of f(f.) at locations [V, 0]. 'Ve can therefore restore

the function by the l\1~D GBE:

Hestoring the function at those sampling locations is equivalent to restoring
the samples' spectrum, F(iJ). Given that the samples are the
function is reconstructed by the traditional low-pass method,

1)

Kwan F. V1.'<:',-"'''I",

v =-g
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3

where is a matrix of dimension N. So far we have
used In this more setting, the number of sample sets,
is equal to , which may not equal to k N . The subcells, in general, need
not be to the cell. Consider a circularly band-limited function
being at a rectangular sampling geometry whose sampling matrix
is specified (3.3.] 1). A sampling geometry corresponding to the sampling
matrix, V g' where

[1 -~ J

In this we will consider the formulation of the matrix V 9'

This relaxation can result in the creation of subcells which are no longer
n~'n~,'''''''+ to the cell. In more freedom in the sampling geometry
for the sets is allowed. We will also consider the cases where the
support of the spectrum does not match the cell and therefore cannot

be enclosed within a cell.
In a more we can express

The double denote the indices of the eliminated
row and the eliminated column. Since one sample subset is the
overall is reduced a factor of Note that Fo(iJ) = 0
can occur even at densities (e.g., see 3.6 for band-
limited . If this is the case. the removal of a set will result
a below that of The of such sampling
npn~iitv reduction is treated more in Part II of this chapter.

is shown in 3.8. and the corresponding subcell is a rhombus, Fig. 3.8.
this subcell is not congruent to the square cell. For this example,

I1\1 i = 2 and thus L = 2.
The support of the function may not be totally enclosed within a cell.

Consider our If a band-limited function is
sampled rectangularly, the support of the function's is totally en­
closed within a rectangular cell. If the function is sampled with a hexagonal
geometry

o 1/ J. where

n=-(X)

an ideal low-pass filter response of magnitude
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= O.

Sample

3. A Multidimensioael Extension of Pa,poulLs' Expension

3.6

that for 1-D band-limited functions. the two densities
tical. For higher dimensional band-limited tUI11Ci;1Ot1S, N"'rl11li.,,t.

be than minimum densities.

FIGURE 3.10: An ideal filter with the support of a hexagon is used to
reconstruct the function from its samples.

If the shape of the of a function's is not a of the
spectral replications (or the gaps exist among the
replications. For ID band-limited is a period of the
replications and thus no gaps exist. For dimensional band-limited
functions, gaps may exist even when the function is sampled at the I\]"'rn,id

density. Consider sampling a 2-D circularly band-limited function at the
Nyquist density. The corresponding geometry has a hexagonal

As shown in gaps exist among the replications,
If gaps exist among the spectral samples are inter-

To show this let hm ...-. H(iJ) be some ideal bandpass filter
whose passband is only defined in gRp regions. Thus.

](wan F. VH'C;U.L'5

FIGURE 3.9: The geometry produces a parallelogram subcell
which does not enclose the zeroth-order replication.

extracts the zeroth-order For our r-r r rt rrr rr o- example,
may have hexagonal as shown in 3.10.

102

vVe have also demonstrated that the GSE formulation can be utilized to
reduce density if certain conditions are satisfied. We will expand
on this in Part II.

In Part I of this . we have extended generalized sampling
expansion to multidimensional band-limited functions. For cases where the
cells do not enclose the support of the function's restoration of
the function is achieved discrete followed a lO'V-T)aE;S
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(3.7.1)jCgrn EM=

of M is q. Each subcell holds a partition of the baseband

3. A Multidimensional Extension of reoouns Expeiision

FIGURE 3.11: the period, we obtain an aliased replica-
tions. Note that gaps still exist among the aliased repncations,

The carrnnanry

sets. Since fewer sample sets are the sampling density is reduced. If
only L-q sample sets are used, the sampling density is reduced by a fraction
of As discussed in Example 3, a function initially sampled at
the Nyquist density, any reduction of sample sets will immediately result a
density below that of Nyquist. We will show that the minimum sampling
density is equal to the area of the support of the function's spectrum.

The formulation of the Lth-order I\I-D GSE starts with partitioning the
baseband cell, Co, into L Each is referred to as a sub-
cell. If gaps exist among the gaps also exist in Co. Let AD
denotes the gap regions within Co. If L is large enough, then a number of
the subcells, say q. will be subsumed within AD. Consider the sam­
pling of the 2-D circularly band-limited function. For illustration purposes,
the function is at a as specified in (3,3.11).
The corresponding baseband cell is a square of dimension 2>.. As shown in
Fig. 3.12, if we have k ?:' 7, we have subcells totally enclosed within gap
regions. In , for k = 7, we have q = 4 3.12a). For k = 10,
we have q = 12 (Fig. 3.12b).

\Ve will use these two cases as our example in the discussion to
follow. The q = 4 case will be referred to as the fourth-order case, and the
q = 12 case the twelfth-order case.

Let M be the index set corresponding to the subcells subsumed within

AD'

(3.6.1)

=0,

r =. area of C > 1.
area of F(iJ) -

If r = 1, the function is sampled at the minimum Otherwise, the
function is The sampling of a 2-D band-limited
function at the Nyquist corresponds to r = 2//3 ~ 1.15 [211,721].

For I-D cases, every support has a corresponding minimum sampling
rate. if gaps exist in the replications. the sampling rate can be scaled
and gaps closed. This, however, cannot be applied to higher dimensional
cases. For our running example, the support shape is a circle. Clearly,
this shape does not have a corresponding sampling geometry. As shown in
Fig. 3.11, a direct down scaling of the sampling density on every sampling
dimension will result an aliased spectrum. This illustrates that
sampling M-D band-limited functions at densities below that of Nyquist is
not trivial.

Lmeariy interdependency among samples implies ouersamplinq [588, 586,
. If there is no aliasing, we can straightforwardly define the oversam­

pling index as

104

Since is nowhere zero, definition the are 1'"10>\,'1"

interdependent.
A sufficient condition for a band-limited function at the mini-

mum is that no gaps are contained among the spectral repucations
'V<~<U".y, the among samples is dictated the support

of F( iJ). If the is identical to the cell shape, gaps
rectangular or cease to exist and are in-

dependent of each other
The condition that the rate is also the minimum sam-

rate for I-D band-limited functions. For dimensional cases,
sampling at Nyquist densities may leave gaps among the replica-
tions and hence the are linearly interdependent. the samples

1'11111111111)" example of a 2-D band-limited function

3.7 Sampling Density Reduction Using M-D GSE

If gaps exist among the replications and if L is large enough, the Lth-order
1\I-D GSE allows the restoration of the function with less than L sample
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(6,

k1

k8 Of,
(9,of,
(0, If,

If,

(9,

. (1
X Sll1C 7[t2 -

of,

1
-sine

7

3, A Muttidunensiotiel Extension of Peoouiis' Expensiou

Exarnpfe 5: Sampling Decimation

As shown in if k is increased to we obtain twelve subcells
subsumed with gap thus q = 12. The twelve position
vectors for these twelve subcells are

Note that the four interpolation functions are real. This is because the four
subcells subsumed within gap are about the VI - and

axes.

The offset vectors for the twelve manually chosen sample subgroups are as
follows:

Kwen F. Vll1eU",'..,

. (Isine 7

sin( Pf [kq,l - mJ) sin( Pf [kq,2 - nJ)
sin( 6;171) sin( 6;n)

sin(6;m) sin(6;n)

sin( 6" [k - m]) sin( 6" k )7 q,l 7 q,2

x

x

x

I
sine

7

1
sine

7

112

zeometrv, The four corresponding offset vectors are

where I :::; m, n :::; 6. The indices of these four vectors constitutes the index
set . The matrix follows as
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in 5, the algorithm
as one of the best combi-

+

32}.4,

until m = q.

41.

v=

3 and

v=

4. Go to

this set is very different from the one in t:X:alll1p.!e 5, where the set
arbitrarily chosen.

3. A Multidimensionel Extension

For the twelfth-order decimation problem
found the twelve sample subgroups
nations:

For the fourth-order decimation in Example 4, the algorrthm
found that one of the best combinations is when = n = which corre­

to

3.9 Sampling

The column vector. say which the error norm is
chosen as . The projection matrix is then updated via the Gram­
Schmidt nrocedure:

In this we consider expanding the decimation order to infinity, As
k ->X), the area of each subcell becomes small. The ratio
of q to L approaches asymptotically to the ratio of the area of to the
area of Co:

IJ = 1 to q}

Kwen F. V1.'<OU'",,,

and
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In a decimation n!'t.hIPln

to - q)!q!]. 1\JOJn11EtHy

q is small. Consider the Tnllnn-()1',4Pl'

the total number of combinations is
tive search for the best combination is impractical.
discuss a search which will locate the optimal
algorithm is iterative. For a fr'-o!"rll'!' decimation problem,
iterations is q.

Since the is the same of which formulation is used,
we will use the second tormulation in our discussion. With reference to

and is formed by the q columns of The

----.<."v,.v is an matrix which has the best condition. One
desired property is that the q column vectors chosen out

orthogonal or almost to each other. this as the
criterion, one can the to single out q such
column vectors. This has been employed in adaptive
least mean square estimation and neural network t.rru nr n o'

The is as follows.
Let Ii = 1 to be the L column vectors

be the q chosen vectors.

1
. q area of
nn - = -.---­

k-e cx. L area of
1)

= l~,k-

-> area of AD. we have

Let iJ be the sampling dpl1Sij',v after q sa rn nr« subgroups are removed:

iJ = D - qD g .

area of Co -- area of

area of the support of

Since D = area of Co, and also. as k -> oc,

Thus, the minimum density of a M-D band-limited function is
to the area of the support of the of the function.

For 2~D band-limited the min-
imum is 1r / 4 :::;::: 0.785. This minimum density can be achieved arbi-
trarily close expanding the decimation order. The following table lists
the ratio of 1 - q/Land 1', the as k increases.

column

k = 1 to

is the projection of the
. We then form the error vector:

The column vector

vector of onto

and the error norm is
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3.11

In the second half of this , we have developed a decima­
tion based on the formulation of the l\I-D GSE. A band-limited
function is first at some geometry l~. If gaps exist
among the employing the decimation tech-

samples can be deleted without loss of information. The sampling
density is thus reduced. The function can be restored with the remaining
samples. The decimation can be implemented at the stage such
that the function can be at the reduced This
reduction can even be when is at
densities. The minimum is equal to the area of the support of the
function's spectrum.

[(wan F. Vl.lt:UU'5

0.918
0.880
0.858
0.860
0.840
0.816
0.804
0.785

1-q

00

4

12
32
56

144
460

1976
00 00

k L=k
7 49

10 100
16 225
20 400
30 900
50

100
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'V""C'-',LV. the sampling rlDn"it" approaches the minimum ,ID1,,,,1,,, as the dec­
imation order increases.

10

space.
Our decimation and the interpolation formulation is also a 1\1--I) exten-

sion of the methodology discussed by Crochiere
and Rabiner . In this sense, Part II of this has laid a
foundation of the multirate digital to process
functions of such as IH1"5t:•.,.

Note that the minimum non"it" can be achieved arbitrarily

sampling decimation of any initial
For our ""'1'''';''0 example, this technique IS applicable to both the

rectangular sampling geometry as well as the geometry,
the equal to that of For this case.

1, demonstrated if k is increased to one sample
subzroun can be removed. The is reduced by After
the the function is below that of r..["·r",,ic+

The decimation can also be to sample multiband func-
tions at the minimum rate or density. Like band-limited functions,
the support of the of multiband functions is finite but fragmented.
Bandpass functions are of multiband functions. There are multi-
band functions of dimensions. In particular, the TV chrominance sig-
nal is a 3-D multiband function: 2--D spatial and I-D Dubois [267]
posed such a to TV chrominance at the minimum
density Dubois showed that the 3-D spectrum of the TV chrominance sig­
nal has a band centered at the and smaller

svmmetricallv stationed at the eight corners of a
cube. The decimation can be to close the gaps among the
diamond-shaped bands and thus avoid the unnecessary waste of the band
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t

although the derivation

= 1.2.o ... N.

11 = O. ±1.
T=

LiLi+T

x (t)

Tk 1 let the sampling times be as illustrated in

x N

-3T -2T -T

n=-x k=l

FIGURE 4.2: Periodic nonuniform sampling.

=2:::

AMPLITUDE

FIGURE 4.1: Shifted nm;iti,JP uniform samples.

-NT

set of

be also derived from Lagrange interpolation
is not as obvious.

For a
4.2 ,

• Periodic Nonuniform Sampling

The mterpoiatron formula is

4. Nonuniform Sempluig

17)

18)

(4.2.

Ferokl: Meivesti

n:SO
n > O.

n:SO
n> O.

ClC

in an Otherwise Uniform Distribution

n=-oc

case as shown in

is uniquely specitied. The interpolation function is

the above interpolation from the uniform sampling theorem

then

Yen

N

Oqm SllJICI;oIV

q=l

where Oqm'S are the elements of the inverse of a matrix whose elements are

is

The over N nonuniform is not Yen used a
"minimum criterion for An interpolat-

function on N nonuniform with minimum energy x 2

m=l

When all the uniform samples : 171:S 0, 171 > are zero, the
mterpolatron function a band-limited function interpo-
lated over N nonuniform samples in an interval of NT uniform zeros
outside the Eq, becomes

N

Let us take the

128

It Sampliug with a

where

where r denotes the Gamma function.
Yen the above theorem using uniform sampling the-

ory and solving a set of infinite linear However, (4.2.19) can

If 6. <

171, q = L 2, . , . , Iv.

Chen and Allebach showed that this interpolation is a minimum mean-
squared estimate. the Yeh and Stark [979]
and Calvagio and Munson have shown the optimality of Yen's inter-
potation in the sense of Mean Square Error
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(4.2.29)

(4.2.30)

For the spe­
is

, O:S;k:S;R-l.

XR-l
t

+

n=-oo

x

cos 21rWT - cos 27TIVt
21r TV sin 27T TVT
00

00

+ ... +

n=-oo

=

is the Lagrange ;llltpr'nnl"h,,· as defined in (4.2.6) and

x{t)

4. Nonuniform Ssmpluig

4.2.2 INTERPOLATION FROM

SIGNAL AND ITS

unitorrn samples of interlaced in time (bunched samples
case when N = 2 and Tr = -T2 = T, the

derived:

Papoulrs: powerful one can and (4.2.22)
to a combination of nonuniform of a at instances tk
and samples of N - 1 derivatives at the same instances taken at -k times
the Nyquist rate. Another application of Papoulis' sampling
theorem is a nonuniform scheme interlaced among the and
a combination of derivative Cheung et a1. [215, 590]
have shown that such kinds of under the umbrella of Papoulis
generalized sampling theorem might be sensitive to noise (i.e., ill-
posed) at the Nyquist rate. have found out in certain cases,
oversampling, the to noise goes away.

where

The of a band-limited signal from the of the signal
and its derivatives was known back in 1960s [545]. Rawn [755]
has shown an based on Lagrange interpolators: the theorem
is as follows.

Let x(t) be band-limited with bandwidth TV and let the samples of :r(t)
and its R - 1 derivatives be known at Let tn be such that - nRTI <

. Then

Convergence of the series in is uniform on For the case
reduces to the uniform derivative sampling interpola­

Linden and Abramson [545] .

(4.2.25)

- t:)

Farokh .Mal'vasti

(4.2.26)

- I which can be
can be written as

to =J O.

sin

- t:)
Ikl=1,I+N,I+2N, ...

. 21rU'
sin ---{t­

N

00

converges to

k=-oo

=

=--:-::--

. From (4.2.26) we can find

Ikl=O,N,2N,'"

130

where

Unlike the sine does not take its maximum at the sampling
but rather it attains its maximum between nonuniform samples.

The above can be derived from the Lagrange interpolation,
we can write H{t) in as

or

Each nr,~rhl"t in

where is a scale factor
determined from H{O) = 1.

where K =

t;quatlOn (4.2.6) then becomes

A comparison of (4.2.28) with (4.2.22) shows that these two interpolating

tion
has derived the generalized sampling func-

Marks [590] for an extensive discussion on ,,~- _.."--' generalized
sampling) The nonuniform are regarded as N different
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(4.2.35)

00

rzee-c-oc

n = 0, ±l. ±2 .... ,
n =I m

I------... y (t)

n=-OO

model for an interpolator.

~c

~c

~L< oc,
I> s > O.

=J
may be derived from by Duffin

Specifically. we can show that for a condition similar

FIGURE 4.5:

{

x (t)

where A and B are positive constants which depend exclusively on tn and
the bandwidth of that under the condi-
tion 1

2 cannot be zero or infinite. The exact value

where x(t) is any band-limited to W. and E and C are, respec-
tively, the energy of x(t) and a finite constant. In order to see
Eq. (4.2.34) conforms to our definition of let us take the error
in the samples as e(t n ) . The energy of the error , is if
the errors in the samples are small. This is because e(t) is a band-limited
function from a linear interpolation such as Lagrange (4.2.4) (see

4.5). satisfies

the followinz mequauv.ee are valid:

4

we mean that a slight of nonuniform
aIIlpll.twies due to noise leads to a bounded inl;erlPoJlatlon
necessary and sufficient condition for nonuniform samples

to be stable is [976].

4. 135Farokh Msrvssti

we con­
Lagrange interpolation and the

to

[~

. [ITsmc T

) sine

, we derive

00

-00

the substitution T =

However. is not band-limited in But if J.ln as a
are assumed to be IS approximately a band-limited Iunc-

the uniform for , we

134

elude that
sine function are both
owhen t = A· =I n.

Clark et al. transformation for
and to a certain class of

non-band-limited If - in
- cannot be band-limited in is only an ap-
proximation. But if 1S band-tnmted, then cannot be band-limited;

is an exact for this class of non-band-limited

n=--oo

00

00

4.2.5

From Lemma 1. we conclude that when the average rate is
than that of the nonuniform represent uniquely the band-
limited case. these nonuniform could be the

samples at a rate than the is a >:>""'Hl.IlHI1',

of bandwidth Hi can be found that has
of density than in an infinite interval. In these past
samples could be uniform. That past uniform of a band-limited

that are than the represent
the signal [627. of from the is
discussed in in the Butzer and Stens this volume.

An infinite number of in a finite interval also form a set
for a band-limited For the nonuniform at t« = 1.
'II. = 1,2, ... form a set but have no value since have
the same as the of a from the of a
nort.ion of the in an interval. We show in the next section that these
kinds of sets do not for stable restoration.
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Comments

see 1 and 2

see 1

see 3

see 3

*

k kT
- - )G(-) + H(J) see 4

T T+
ki-O

width.

1. Poisson or uniform distribution: A is the average number of pulse/unit
x is a band-limited P(f) is the power spectrum and R(O)

is the total signal power.

2. r is the

3. p is the probability of a

4. G(f) is the characteristic function (Fourier transform of the
dpn~dtvl of jitter. H(f) is to T[G(fr) -IG(fr)12 *

TABLE 4.1: Power spectrum of random samples of x(t).

Uniform

Variable
pulse width

Type of

Uniform
sampling:

with jitter

with

4. Nonuniform Seinpling

(4.3.22)

(4.3.23)

f

Feiokh Mervnsti

*

Therefore, the power spectrum

= IXUW·

=A+

lOIf x(t) is deterministic, then Per;

146

term n(t) is uncorrelated to the
of (4.3.20) is

POWER SPECTRUM

on the type of pulse used to represent the point process For the case of
Poisson or distributed impulsive sampling, the power spectrum
~t~ ~

FIGURE 4.9: The power spectrum of random samples.

where P(J) is the power 10 and * is the convolution operator.
) is illustrated in 4.9. The of

where S = A is the average number of impulses per unit time. Equa­
tion (4.3.21) becomes

where Rx(O) is the total signal power. The above shows that
Pn (J) is the spectrum of white noise for an Poisson or uniformly
distributed we can derive the same relationship
as for rectangular random of variable pulse widths.
uniform with some samples, and finally. uniform samples
with jitter [610, 611]. We have shown [(HI] that the mean square error of the
recovered signal decreases with ..\. The results are summarized
in Table 4.1. The reader should note that we have assumed that s(t) in
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(4.4.6)

sec
0.050.04

TF'

0.030.02O.OJo

2

4

o

-2

--4

Nonuniform Ssmpling

1 - p'

row-pass hltPTHHY\ can be evaluated from Table i.e.,

FIGURE 4.15: Reconstruction from ideal nonuniform samples at the Nyquist rate
interval).

where p, T and H' are. respectivelv, the of having a sample. the
sampling interval and the bandwidth. At the Nyquist rate, T =
we obtain

I the review and comments of my students. Specifically,
I would like to thank Gilbert Adams and Mostafa Analoui for their
comments.

From we know that the iterative can improve upon this
process > 1. which p > !. This analysis signifies that less
than half uniform samples the Nyquist rate) can be lost without
any loss of information. The same iterative method can be used for uniform
samples with time

FaroklJ Mtuvesti

sec
0.050.04

of uniform samples
noise ratio for this type of

0.030.020.01o

2

4

o

-2

-4
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FIGURE 4.14: Reconstruction from ideal nonuniform samples at the N"'Cllli"t rate
(f interval).

three times the rate. from Table 4JII we can deduce that if the
nonuniform samples are restricted to within t, where T is the
interval, we have a faster convergence after 10 iterations compared to the
Nyquist sampling. This conclusion is also true for Table 4.IV where we
sample at twice or three times the rate.

The reconstructed from the nonuniform samples with sample-and-
hold (S &, H- constant and variable width) and the reconstructed
from natural samples are listed in Table 4.n. 17 This table shows that for
the cases of ideal samples, the iteration converges faster than other
sampling schemes. For recovery, 5 to 30 iterations are sufficient
in most cases, on the rate.

Another iterative method is shown the method of projection onto
convex sets [979]. This is treated in this volume in the
chapter by Stark.

The iterative method can be used for interpolation
when some of them are lost. The

17The oscillations shown in this table for non-ideal sampling cases are due to
quantization error and of a convolution with a discrete
one.
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(5.1.1)(t E R).J(t):-.:: 00 (~) sin 7T(IVt - k)
f H' 1T(TVt - k)

k=-X!

If a f is band-limited to [-1T1l',1TIV] for some 1V > 0, then f can
be completely reconstructed for all values of t E R from its sampled values

k E taken at the nodes kjlV, equally apart on the
in terms of

5.1

This is the famous sampling theorem, often associated with the names
of E. T. Whittaker (1915), V. A. Kotel'nikov ( and C. E. Shannon
(1940j49). However. K. (1920), H. Raabe (1939) and 1. Someya
(1949) could just as well be associated with it. (Concerning the history of
the sampling theory see. e.g. [177.393.179. 590].)

The samples in (5.1 are taken not only from the whole past but also
from the relative to some time t = But in practice a function or
signal f is only known in the if to is the present instance, then

the values f(t) for t < to are at one's disposal. So the question arises
whether it is possible to reconstruct a signal f, at least in the band-limited
case, from samples taken exclusively from the of to. Obviously this is
a problem of prediction or forecasting of a time-variant process. Although
this problem is often treated in a statistical (or stochastical) frame, let us
begin by considering it in a deterministic setting and later carry it over
into a stochastic one.

One answer to this is the following: If the signal f is band-
limited to then for each 0 < T < lone can find so-called
predictor coefficients Okn E R such that f can be uniquely determined

0.05

Feiokli Meivesti

0.040.030.02omo

4

2

o

-2
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TABLE 4.IV: Mean square error for random sampling at different sampling rates.

Mean Square Error

Iteration No. Nyquist rate 2x Nyquist 3x Nyquist
0 1.672375e+0 4.450645e-1 2.719940e-1
1 1.143412e+0 2.49131ge-1 9.64581Oe-2
2 6.669778e-1 1.789243e-1 4.881012e-2
3 9.370443e-1 1.405293e-1 2.70785ge-2
4 8.41462ge-1 1.131710e-1 1.639921e-2
5 8.303990e-1 9.394870e-2 1.104171e-2
6 7.694325e-1 7.923566e-2 8.194261e-3
7 7.596434e-1 6.719316e-2 6.596941e-3
8 7.190652e-1 5.758550e-2 5.629838e-3
9 7.089961e-1 4.926686e-2 4.992424e-3
10 6.810131e-1 4.243471e-2 4.530937e-3

sec

FIGURE 4.16: Reconstruction from ideal nonuniform samples at the Nyquist rate

(f
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(5.2.8)

can be

(5.2.9)

(5.2.

For the latter it is

(t E R)

W>

nE

E C(R)).

(t E

n-l

+

du = I,

(v E

du

n)(11- +t-
2

is a necessary and sufficient one for

Sssuptes from the Past

f(u)rp(W(t -

lim - I~fllc(R)' = 0
W-..oo

(5.2.5) for k = 0

5. Linear Prediction

At this one should mention that the sampling series
regarded as a discrete of the convolution integral

In (5.2.1) is a Riemann sum of the "'"'~F>"'H

well-known Lemma 3.1 ) that the condition

where the "" means that the nznt-nano
the function on the left. if then the Fourier
series of the left-hand side in (5.2.6) reduces to the term for k = 0, which
must be to 1. if then the Fourier series on
the of is finite and hence the continuous function
on the left, i.e., there results III

This means that holds is satisfied for k = 0
whereas for (5.2.4) to be satisfied the whole of is needed. In other

for sums implies (5.2.8) for but not conversely.
With the aid of Lemma 2 it is easy to of kernels rp satisfying

and hence (5.2.2) and The most convenient examples are
the so-called central B-splines. Recall that a function q: I I-' R is called a
(polynomial) of order 11 E N 11 - 1) with knots al < a2 <
... < am in I, if it coincides with a of n - 1 on each of
the intervals (aw ).

The central of order n E N are defined

where max]x", have knots at the points 0, ±1, ... ,±n/2
in case n is even and at ±1/2. ±3/2, ... ±n/2 in case n is and their
support is the compact interval . The Fourier transform of the
ldn has the simple form

(5.2.5)

E

E

P.L Butzer and R.L Stew,

[159, pp. 201. 202]) there holds

-f

k=O
kEZ\{O}

=0

00

k=-oo

= { 1,
0,

the condition

one can estimate for any {j > 0 and leV > 0

00

k=-oo

Poisson's summation formula

then there holds
where f is continuous.
a

k=-oo

=1
00

Proof In view of

Theorem 1 If rp E Coo(R) is such that

is equivalent to

say. Since f is continuous at the i, to each e > 0 there exists a
l5 > 0 such that I < c for all It - k/ll'l < 6. This implies
8 1 < cmo(rp). Now take l5 fixed. If lV is so that the support of rp is
contained in . 6lF]. then = O. and follows. The proof that

is similar, since the uniform of f in
uUI"";" that h can be chosen of t, III

Lemma 2 For rp E

162

It should be noted that condition (.5.2.3) is not sufficient for (5.2.2)
or to hold but is also necessary. This can be seen taking f(t) = 1.

In practice it may be difficult to decide whether a function rp E Coo(R)
satisfies or not. The lemma is useful in this respect.

Proof
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as a

1.27)

1.30)

(7.1.28)

I,

of the samples {f (
band-limited "G'"J)"C'~

11 = 1. 2, ..,

n

fA = I

U""JIl.nJ = O.

f(t)

7. Error .t:l.lJI<:tl \/b1;"

We note here that the function = x is introduced explicitly
in instead of Implicitly,

The truncation error for this Bessel SaI111!=1!i11lg
case of can be defined in the same way as in

which in the case of the Ja-Hankel transform becomes

where tn and are the zeros of the Bessel function Jo;
= 0, 11 = 1, 2. ,.. Some familiar of the Bessel func-

tions are used to evaluate the of . The final se-
ries for the finite limit transform becomes

In to the numerous results for the upper bound
for the truncation error of the Shannon expansion (or
cardinal we find that until 1977 p. 1568], there is one simple
result for the generalized sampling attributed to Yao

. This was followed many years later by our bound [459] for
the above truncation error of the Bessel series where complex
contour was the main derivation tool. This will be the subject
of discussion in Subsection 7.2.2 , where we establish a lower bound for the
Bessel function that is essential for the was not previously
available in the literature.

Again, the idea of the error in applying the sam-
pling theorem 1.19)-(7.1.20) is that we are not sure about the
exact finite interval I. may not be "band-limited" (or "transform
limited") to b) as but we still the above Bessel sampling
series (7.1 to its ). Such an to f(t) and not
fb(t) results in the fA of the expansion,

\Ve stress again the presence forced use)
the "non-band-limited" instead of the rmmi,'pc!

), which is the essence of the ahasmz error.

1.24)

Abeln! .1. Jerri

Samplinz Series

226

As indicated in the tutorial review article p. this extension
was \Vhittaker. The above statement is very
associated with that of Kramer in his 1959 paper. However, this same
expansion. its and the of kernel with the solution of
second-order was considered earlier
in 1957 Weiss this result was
satisfied with abstract of his detailed presentation
of this result. this author, his re-
ceived a copy of the for Weiss' detailed presentation

. It may be fair now to say that this extension had been originated
or even and was settled both Kramer

and Weiss : thus we may call it the the-
p, also noted that their usual association of the

in with the orthonormal
SOj[utiOJ1S is not necessary. He to Kak , who derived the Walsh
sampling theorem as a case of the above without restoring

a solution of a differential \Ve add that there are more exam-
of this sort the very clear and method of using

complex contour for this ,20),
as well as for its extension that involves the of the and
its p, . The theorem with
more and different conditions on the transformed function in 1.19)
was addressed in

s

The rsesset-

Here we will illustrate the above extension of the theorem for the
case of the kernel a Bessel function of the first kind of order zero.

. This will be our for illustrating the necessary
tools and the errol' bounds that we shall present in this chapter. Also,
it is the most used transform. other than the Fourier
transform. with for instance in . In this case, the
transform 1 the Iollowinz
transtorm. where the interval I is taken as

The sampling function
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(7.1.33)

(7.1.32):= K{P}

= Jp(t)I«w. t)f(t)dt :=

=

~~~ I".";,, would necessitate the introduction of
. if), instead of t - T, to be com-

sampling function S(t, which we
The summary of the of

interpretation of the rsesser-tvoe sampling

with the Fourier-tvne inverse

Consider the followinz transform

7. Error '-11U'" v o .•o

Generalized translation

As we had indicated above for the expansion (7.1.20),
when we deal with transforms of we do not
the usual translation "or shift" property that we are so accustomed to in
dealing with the Laplace and Fourier transforms. This shift was
very important in the convolution products that are essential for
developing the convolution theorems for the and Fourier trans-
forms. Thus, in a convolution product for transforms (7.1
(7.1.33), which are, in without it is necessary

Here stands for the complex conjugate of t). unless
otherwise the limits of integration are not finite and will be
specified for the particular integral transform.

System Interpretation-Time V~ll""\rin!Y System and the
Generalized Translation

had adopted: writinz
this section for a
of 1.26), for example,
considered as "the of band
ing) filter with a time impulse response.
expressed as the (main) integral in the numerator of the sampling

tn) in Again, it is this same of the translation
that is needed for the of Poisson sum formula,
which became our main tool for deriving the first aliasing error bound for

. We mention that whereas we introduced
such a in [221] had a similar
concept in mind for general transforms other than the Fourier one,
which in the 1972 edition his operational calculus book [221].

shift dependent

.31)

Abdul .1. Jerri

generalized sampling ex­
long-standing attempts

transform of

OF THE

3
<

2

1.3

The first practical aliasing
pansion was achieved in 1988 as

. This was illustrated for

228

We note that the first term of the bound .31) is of the same
form as that of the error bound of Weiss and Brown [1 117],

The method for the derivation of such an error
will be the of Subsection 7.2.1. This will be presented

after the new tools" necessary for such derivation.
This will be discussed in Subsections 7.1.4 and 7.1.5.

It is now time to comment on the m
ror bound of 1.31) As will become evident in
and 7.2.1, use of kernels other than complex exponential
kernels results in loss of many and tools. This in-
cludes of the Fourier ker-
nels, and the related of such Fourier kernels for the
Fourier series expansion. Looking at the method of deriving the aliasing er-
ror bound (7.1 for the Shannon sampling series one feels helpless with
a Bessel function where the two above essential of the
derivation of .17) are non-existent. The solution is of par-
allel e.g., a Poisson sum formula [454] for the Bessel
transform without the usual reliance on the of the trigonometric
Fourier series. This formula was derived, as we shall see in Subsection 7.
with the use of our own concept of "generalized translation" [437,
that is compatible with the Hankel transform. This means that such gen­
eral translation must stand as a parallel to the usual translation seen in
the convolution product of the Fourier transforms. Earlier attempts did not
use these tools, and the results were abandoned as they involved tedious
derivation and long-winded reliance on properties of Bessel functions [940].

In the following Subsection we will discuss our first attempt [437] at
giving a interpretation for the present extension of the sampling
theorems 1.19)-(7.1.20).

In this section we will discuss the first interpretation for the generalized
sampling series (7.1.20) that we in 1969 . It parallels that
given for the Shannon series but it is for a time varying
system impulse response. This is indicated the t and T = tn dependence
in the sampling function of .21) versus the time invarying (time
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FIGURE 7.5: The square wave function 211").

7. Error

series of the but did not affect the same type of
the overshoots and undershoots near the jump discontinuity at t = ~.

7.10, shows clearly a similar size first overshoot to that of
Fig. 7.8 of the Fourier series, which is about 10% of the
jump size at t = ~. For a jump discontinuity at an end point, see [366].

It is this Gibbs' of Fig. 7.10, as a possible representative for
other orthogonal that we used as an example in order to direct
the attention to its possible remedy. Again, with the tools developed here,
the known treatment for the case of Fourier series (in Appendix
A) and the analysis in , it should not be difficult to justify analytically
this parallel result of rv 10% overshoot for the Fourier-Bessel series neal'
the jump discontinuity at t = ~ in Fig. 7.11. In both Figs. 7.9 and 7.10 we
notice an undershoot at x = O. which may resemble a Gibbs' phenomenon.
It is not the case however, since the Pa)-Bessel-Fourier series used here
represents an even function. Indeed Fig. 7.11 indicates that such an un­
dershoot decreased for whereas the overshoot at the discontinuity
x = persisted.

course, the Fourier-Bessel series is not therefore, there has
not been any interest in looking the interval of the series expansion
like (0,1) in the above case of the square wave in (7.3.12). However recalling
the relatively new generalized train (7.1.75) of Fig. 7.1, we do have a

Abdul J. Jerri

t

t

on the interval

4 N 1
= - L (2 )sin(2n-

7r n=l TL - 1

sgn(t)
110-------

-0

function
rru.eutu: and Discrete

courtesy of Marcel Dekker

FIGURE 7.4: The gate function Pa(t).

o
...........................................-1-1
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FIGURE 7.3: The
here are from Jerri
Error Analjj'sis,

expansion of the square wave in (7.3.

7.6 shows the inset of the Gibbs' near the dis-
continuity at t = 0 also at -rr, rr). Figures 7.7 and 7.8 show that

the number of terms N from 5 to 10, then to 40 did not make any
difference, in so far as the overshoot near t = 0 persists and is still a good
nercentaze of the size of the there.

In to this we noticed that the Nth partial sum of the
Ja-Bessel-Fourier series expansion on of the square wave in (7.3.12),
shows the same of Gibbs' phenomenon near the discontinuity
at x = ~. This is illustrated for in Fig. and where doubling
N to 40 in 7.10. and even to a 100 in 7.11 improved the
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of the square
See also

4

repetition" on

3

approximation SN

21

7. Error

FIGURE 7.12: The
wave function on
7.1.

o

o

Consider the ","",1",,,,,, of the truncated Fourier-Bessel series of a function

Fourier transform of the truncated Fourier coefficients (kT), which is
the convolution where =~~~ is the (Fourier)

transform of the

defined on of course, not periodic. The here is
whether we around x = b when we truncate the above
Fourier-Bessel series to N terms [366]). There is no doubt
that such truncation is the result of the coefficients Cn a
gate function PN , i.e., we use CnPN instead of Cn in In par-
allel to the above Fourier this should correspond
the of with the transform x

gate function ]IN(t). Of course, this convolution . is the generalized
one as defined in (7.1.36), with its translation
the usual translation of the Fourier transform. It is clear that
oscillating function since and that it is decaying with zeros at

and in to the above Fourier with

=-=.:.:.~~.we also around x = b. However, the
is a little ' since the Hankel convolution does not

involve a "mere" translation of but a translation

18)

Abdul J . Jerr!

function.

I
1.0

ItI :s: a
ItI > a

I
0.5

..•

= { 1.
O.]Ja

0.0

1.0 .......---"'<WiI

0.5-

0.0- - - - --

In all cases of truncation. we actuallv ernploved the
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FIGURE 7.11: The square wave function and "definite" "Gibbs' phenomenon"
of its series N = 100.

with its discontinuities at t = Such a case of trun-
cation is viewed as the result of a window of the function

to G(J), whose effect on the transform appears as wiggles
l'~'''~'-!' This effect is well-known

as the" and its is to increase the
bandwidth a. However, in many situations a may he fixed, thus something
has to be done about the gate function and its "troublesome" sharp discon­
tinuities. This means that we have to choose a window that dies out slowly
around its truncation =Fa. Indeed the (or of construct-
ing such is very intensive [380], [456, for the (trigonometric)
Fourier However. to our there is very if any,
analvsis for the more general transforms or series expansion,

It is shown Appendix that the of the
windowing effect are related to the Fourier transform of the given
window. With the tools we have developed in the 7.1.3-
7.1 a "similar" statement for the Hankel transform or Fourier-Bessel
series is in order.

In the case of the Fourier series truncation to N terms
amounts to the infinite sequence of its Fourier coefficients Ck

the gate function PNT(kT). resulting discontinuity of Ck has its effect
on the transform wiggles. or around
the ends of the can be in terms of the
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(7.3.21)

(7.3.23)

11 = 1. 2.....= O.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.5 1.0

f 2DP'1,n)JO(Al,nr ) = 1 + f 2C(AO,n).JO(AO,nr )
n=l Jg(Al,n) n=l Jf(AO,n) .

= O. 11 = 1. 2.....

FIGURE 7.14: order O'n-averagings for the Gibbs' phenomenon.
The rise time for 0'3 is reduced increasing N, N = 20,40,80.

and

0) = - 0) (7.3.22)
8z 8z

for the and its at the entrance z = O.
As expected, such conditions involve Bessel series on both sides of each
equation, but here the Fourier-Bessel coefficients are the un-
knowns. For condition becomes

Fourier is used for the radial variation fields Ti z) for z < 0 and
T2 (r, z) for z > O. For complete details of the analysis and the improvement
in the numerical solution see [457]. Among a number of the necessary aux-

conditions. the two are important compatibility conditions
of entrance z = 0 to the environment of z > 0):

where D(Al,n) and C(..\O,n) are the Fourier-Bessel coefficients of the Bessel
series solution as related to T1 and respectively. Before our recognition

(7.3.20)

t

Abdul J. Jerri272

FIGURE 7.13: A for the Gibbs' phenomeuon-e-approximation of
a continuous function sgnO"l

7.3.3

The tentative and illustrations 454] show that for
relatively large T, the generalized translation seems to have a smoothing
effect. As to the Fourier-Bessel series beyond the
interval (0, b), the form may be described as some kind of noisy repetition
(Fig. 7.12) with extended intervals related to locations of the pulses in the
impulse train of 7.1.

It is that these brief notes offer a clear presentation of the Gibbs'
phenomenon, and its possible of the Fourier series and the general
orthogonal expansion of functions with jump discontinuities as illustrated
in 7.5,7.7,7.14 and 7.9.

As we mentioned at the of this section. we shall have most
of the detailed analytical treatment of the Fourier (trigonometric)
analysis for Appendix A.

One of our earliest of generalized sampling expansions (7.1.20),
outside of communications or was to facilitate the solution of a
boundary-value problem in a flow [457]. Such a problem is concerned
with determining the effect of axial conduction on the temperature field of a
fluid (in a laminar flow) in a tube. For such a problem, for the temperature
T(r, z): 0 < r < L 0 < z < x, the finite Hankel transform Bessel-
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(7.3.34)

(7.3.35)

(7.3.36)

(7.3.38)

:::; 1
1 < w:::; 2

> 2.

[
. u ] 2

S1
2

1

becomes

l-Iwj,
0,

1.
2 -Iwl,
O.

3 . 3
=--SI

3/21i 2

00 ( k )
f TV

k=-oo

= (k) ITf IF x
k=-oo

={

x( 11) =

~{

7. Error }UJtanrSJS

1
=1.

In order to obtain a better convergent sampling sum than that of
he introduced known kernels of E
are normalized.

He then established the following more sum, where
is the Fourier transform of Let x E L(R) n have the prop-

(7.3.33) with Ix(t)1 :::; const.jr]"? for some I > 1 and = 0 for all
Iwl > f2, f2 > O. Moreover, let be continuous on ( f2).
Then for any f E C(R) n

whose Fourier transform is

uniformly for all t E R.
As we have already this approximation sum demonstrated better

convergence [845] than that of with such kernels as the
de la Valee Poussin means,

with its Fourier transform

Unfortunately, such a better approximation with (7.3.35) lacks the
important property for signal functions , namely, the
interpolation at the sampling points }.

Splettstosser raised the question as to whether such approximations be
modified in such a way that and that the order
of is at least as good. He demonstrated this point for the
case of the kernel of

where the sampling sum

k

IV

z
sin z

as usual, interpolates

is

si

1 00 (k)
/21iTV f III 9

k=-oo

f(u)g(t -

which is (J E
Lebesgue integrable Fourier transform

*

Let be the Fourier transform of
the convolution product (J *

of mlSua,,,,,, Consider the function

276

This result was stated in Subsection 7.1.4, as a case of our extensios
of (7.1 to the product of three functions, to help with the d"ri"·,,tiinn

the sampling series in (7.1.48). 1\ Ioreover, with the
the new tool of the generalized convolution theorem in .36), we
able to extend these associated with the Fourier transforms
to the result 1.56) of the general transforms 1.32)-(7.1.33) associated
with the generalized sampling theorem 1.20)-(7.1.21). We shall rely
such new tools in extending our results. of retaining the interpo,
lation property to the Fourier transform development of Splettstosser,
the general transforms of 1.32)-(7.1.33). '

For not necessarily band-limited Splettstosser established
for f E C(R) n L(R) and FE L(R), then for each t E

f(t) = lim 00 f ( k.) si{1T(1Vt _
w .... OO II

k==-oo

with F(w )G(w) as its Fourier transform. employed an
t-vvr-t e rrt known tool in theory concerning the discretization
of the above convolution It states that if, in addition to 1,
L(R)nC(R), are also band-limited to lTTl', F(w) =
all > IT IV, IV > 0, then

in terms of the classical si-sampling function,
the function f(t) at the sampling points {
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(7.3.60)

(7.3.61)

(7.3.63)

(7.3.65)

(7.3.67)

(7.3.66)

for this finite

I)]. (7.3.68)

(7.3.64)
problem (7.3.58)-

n = 0,1, ....

Also

1
+­

2

+

+ Sh· u(I)] cos

(1 -

n = 0, 1,2, ... ,

+

in (7.3.61) is the Fourier-cosine series

8h

O.
-8h·

. are the zeros of

1) = o.

tan

this transform on the
with the identity

u'(l)

00

= 2Sh

as Sh --. oc, becomes

DC

(Yc *Yc)(An) = I:
k=O

7. Error .f'1iJ""'.Y'ZH::J

and with Sh --. oo we can see that

The inverse transform to

where An, due to

The compatible transform [456] for this problem is the finite cosine trans-

If we

we have

and in terms of

where .rc {1} = ).
Now we write .rc {y2} as a convolution nroduct

cosine transform.

+

(7.3.55)

(7.3.58)

Abdul J. Jerri

0< x < 1,

whose MCiin.eli form for the

y(m)+

If we solve for y(2)(>.), we have

An iterative process with a new
iterate is

282

This new form proved to have much better convergence
the point that the same problem of Do's and Weiland's problem
convergent for r.p up to 100. Such convergence is supported the Bunact:
fixed point theorem , where it is shown that the form of the modified
iteration (7.3.56) contractive for :.p up to 100. This is to be compared
with a convergence for r.p < 1.35 had we with the following original

without the modification that resulted in . (7.3.56),

This method was applied with success to a of non-linear problems
[455, see the references which included the above
in planar as well as and coordinates, non-linear waves,
and Poison-Boltzmann [455]. Also, the modified iteration
was applied to other representations of such nonlinear problems besides
the above self-convolution in (7.3.51) and (7.3.52). which is
(basically) to quadratic non-linearity. The other representations include
Green's function representation and finite difference [460] and
references 9, 10 in [4.55]). The latter representations are highly suitable
general non-linearity.

'We must attribute the development of this method to the familiarity
with the simple, but powerful, of band-limited functions.

In the case of the above coordinates. the role of the Shannon
sampling theorem due to the need for interpolating values of the
finite cosine transform. which we shall discuss next.

The Planar Pellet and the Use of Shannon Sampling Theorem

Here we will show where and how the Shannon theorem was used
in the analysis of the planar pellet (7.3.4 7)-(7.3.49). For the actual

problem, a change of variable = 1 - (with a = 1) was used
[263] to have it in the form
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(A.lO)

t

t <

1. t >
-1. t <

*
B

{

can be shown as the result of convolving sgn(t)

FOR THE

The new function
with the gate function

FIGURE A.III: A remedy for the Gibbs' phenomenon-s-approximating
by a continuous function sgn,,!

(t- =Oforlt-,I> (or for r < t-
and T > t + and performing the last integration.

We can see from the last integral in 10) that is also the result
of , with constant 1. over intervals of width 2·

7. Error

We have shown that there is no way that the Gibbs' effect dis-
appears for the truncated Fourier sgnB of the
function with its at zero. So the alternative is to

a continuous function which as B ->')G.

A for such change of the function is that we may look
at two different functions with the same band limit B and may
call them by that their transforms on B) carry

the same energy and choice is to rPT,I:i('p

the part of on , td = (- ) around t = 0 in 7.3
straight line as indicated in Fig.

Abdul J. Jerri

window

2 7r
= - . -(0.906)

11 2
sin z 2
--d:r =-

x 7r

from substituting
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tnrouzn an ideal low-pass filter with a ]JB

d

d27rBt

assumed to be continuous which
can be as

continuous by the
window. In contrast. as seen in the

1l1TPur» I representation in sgn B of cannot be closer to
increasing B. and as we shall illustrate it turns out

increasinn B we will the time scale in which
the peaks without their relative In

fact, the size of the first maximum above of the Gibbs' phenomenon
in AJI is about of the size J = 7T' at t = 0 of how
large we take B to be. To derive and illustrate this phenomenon, we will
find the locations and of the first maximum and minimum of
Si(27T'Bt). If we take the first derivative of in and it
to zero, we have

7r

2

which has zeros at
and minima of sgn B

nitude can be found
1. = 1. .

'If

which (1 - = 0.047 or about
at t = O. as an undershoot from

analvsis of the Gibbs' phenomenon for more with
discontinuities in the interior of the domain, will follow the same way. Such
functions can be constructed from the or its combinations.

adding them to a continuous function. Thus in our to find a
possible remedy for the Gibbs' it is sufficient to with the
more basic signum function.
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