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67.4 The Sampling Theorem
R. T Marks II

Much of that which is ordinal is modeled as analog, Most computational engines, on the oty
hand, are digital. Transforming trom analog to digital is straightforward: we simply sampl,
Regaining the original signal from these samples and assessing the information lost in the samplisg
process are the fundamental questions addressed by the sampling theorem.

The fundamental result of the sampling theorem is, remarkably, that a bandlimited sipnad s
uniquely specified by s sufficiently close squally spaced samples. Indeed, the sampling theoren
illustrates how the original signal can be regained from knowledge of the samples and the sampling
rate at which they were taken.

Papularization of the sampling thecorem is credited to Shannoen [1948] wha, in 1948, used it
show the equivalence of the information content of a bandlimited signal and a sequence of discrer
numbers. Shannon was aware af the ploneering work of Whittaker [19153] and Whittaker's s
[192%] in formulating the sampling theorem, Kotel'nikov's [1933] independent discovery in the
then Soviet Union deserves mention. Higgins {1985 credits Borel [1897] with fiest recognizing
that a signal could be recovered from its samples.

Surveys of sampling theory are in the widely cited paper of Jerri [1977] and in two books by the
authaor [1991, 1993 ], Marvasti [1987] has writlen a book devated to nonuniform sampling.

The Cardinal Series

If a signal has finite energy, the minimum sampling rate iz equal to two samples per period of the
highest frequency component of the signal. 3pecifically, if the highest frequency c:q;-mporlﬂltd
the signal is B Hz, then the signal, x{1}, can be recovered from the samples by

x(t) = 1 z 2 ..”_}M (67.66)
® o V2B 2Bt —n

The frequency B is also referred to as the signal’s bandwidth and, if B is finite, X1} is said w bt
bandlimited. The signal, x(t), is here being sampled at a rate of 2 Bsamples per second, If sampli®
were done at a lower rate, the replications would overlap and the information about X{w) [
thus xi¢)] is irretrievably lost. Undersampling results in aliased data. The minimum sampling &%
at which aliasing does not occur is referred to as the Nyquist rate which, in our example, B
Eq. (67.66]) was dubbed the cardinal series by the junior Whittaker [1929].
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FIGURE67.11  llustration of the interpaolation that results feem the cardinal series,
A sin funetion, weighted by the sarmple, is placed at each sample botnom. The sum of
the sincs exagily generates the original bandlimited function from which the samples
were taken,

A signal is bandlimited in the low-pass sense if there is a B > 0 such that

fl b
X(w) = X(0)T1| = (67.67)
'\L”EB

where the gate function [T0E) is one for & £ 1/2 ane is otherwise zero, and -
X(w)= j x[e)e™™ ey (67.68)

is the Fourier transform of x¢). That is, the spectrum is identically zero for w > 2w, The 8
parameter is referred 1o as the signal’s bandwidth. The inverse Fourier transform is

TR T
xir) = — Xlw)e™ dw [67.64)
,?.,ﬂ il . i

The sampling theorem reduces the normally continuum infinite of ordered pairs required o
specify a function to a countable—although still infinite—set. Remarkably, these elements are
abtained directly by sampling,

How can the cardinal series interpolate uniquely the bandlimited signal from which the samples
were taken? Could not the same samples be generated from another bandlimited signal? The answer
& no. Bandlimited functions are smoath. Any behavior deviating from smoeoth would result in
high-frequency comgponents which in turn invalidates the required property of being bandlimited.
The smocthness of the signal between samples preciudes arbitrary variation of the signal there.

Let's examine the cardinal series more closely. Evaluate Eq. [67.74) aL ¢ = m/ 2B, Since sincl n) is
ong for 1 = 0 and is otherwise zero, only the sample at © = m¢2B contributes 1o the interpolation at
that point. This is illustrated in Fig. 67.11, where the reconstruction of 2 signal from its samples
using the cardinal series is shown. The value of x(¢] a1 a point other than a sample location [eg.,
P=im+12)/28] is determined by all of the sample values.

Proof of the Sampling Theorem

Borel [1897] and Shannon [1948] both discussed the sampling thecrem as the Fourier transform
dual of the Fourier series. Let (¢ have 2 bandwidth of B. Consider the periodic signal

Yiw) = Z Xlw — 4mnB) [(67.70)

R=—-

The function ¥iw) is a periedic funcrion with period 4%8. From Eq. (67.67) Xlw) is zero for
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w > 2n B and is thus finite in extent. The terms in Eq. (67.70) therefore do not overlap, Periﬁdk
functions can be expressed as 3 Fourier series,

= — fH
Yiw) = 20'." exp[—’éﬂ—] {6}‘.?|:|

where the Fourier series coefficients are

ink . frEn \1:
o, = —1- ¥im}exp Jon | den
41[--8 =1k EB
or
e I r " /
e 67.7
28128 2
where we have used the inverse Fourier transform in Eq. 167.69). Substituting into the Fourjer
series in Eq, (67.71) pives
- -
1 " — IR
Yiwy = — x| — |exp| — 7
Since a period of Yiw) is X{w], we can get Irack the original spectrum by
J {1
Xiw)= ¥ ()] —
4nk |

[ o

Substitute Eq. (67.73) and inverse transforming gives, using Eq. (67.69),

(! ] J:“-{ = = ] Jm -'l Tt
x(1) = zx o exp o |E‘ di
4mB J-isp S~ ap 2B |
oar
- I/n T ,
xi) = Z x| — |sinc (2Bt - #) (6774}
el kE.i':’-J
where
; sin et
sinclt) ==

T

is the inverse Fourier transform of TT (w2, Eq. (67.74} is, of course, the cardinal series.
The sampling theorem generally converges uniformly, in the sense tha:

im x(t) - x.(0) = 0
R

where the truncated cardinal series {5

I\ ' A

Xl = z x| %

a=—n A\ A

sinc (2Bt — n) (67.75)




:'Eur'mﬂﬂ”” Theory 1513

eufficient conditions for uniform convergence are |Marks, 1991]

1. the signal, xi¢), has finite energy, E

Ei= JN %617 dt < e
3. ot X{w) has Anite area,

A= E|x|:m:|!dm .

care must be taken in the second case, though, when singularities exist at w =227 B, Here, sam-
ding may be required to be strictly greater than 28. Such is the case, for example, for the signal, x(1)
i {2 Be). Although the signal is bandlimited, and although its Fourier transform has finite area,
Jafthe samples of x{¢) taken at ¢ = #/28 are zero. The cardinal series in Eq. (67.74]) will thus inter-
late 1 2ero evervwhere. 1f the sampling rate is a bit greater than 28, however, the samples are not

gro and the cardinal series will uniformly converge to the proper answer.

The Time-Bandwidth Product

The cardinal series requires knowledge of an infinite number of samples. In practice, only a fnite
member of samples are required., If most of the energy of a signal exists in the interval 02 ¢ 2 T, and
wesample a1 the Nvquist rate of 28 samples per second, then a wotal of § = (2577 samples are taken.
(16} denates the largest number not exceeding 8.) The number §is a measure of the degrees of free-
forn of the sipnal and is referred to as its time-bandwidth product. A 5-min single-track audio
weording requiring fidelity up o 20000 Hz, for example, requires a minimum of §= 2 % 20,000
2% 60 = 12 million samples. In practice, audio sampling is performed well above the Nyguist
Tae.

Sources of Frror

Exet interpolation using the cardinal series assumes that (1] the values of the samples are known
tactly, (2} the sample locations are known exactly, and [3] an infinite number of terms are used in
the series. Deviation from these requirernents results in interpolation error due to (1) data noise,
(2 jitter, and (3} rruncation, respectively. The effect of data error on the restoration can be signif-
tant. Some innocently appearing sampling theorem peneralizations, when subjected o perfor-
mance analysis in the presence of data error, are revealed as ill-posed. In other words, 2 bounded
TTor on the data can result in unbounded error on the restoration [Marks, 1991],

Data Nuise

The saurce of data noise can be the signal from which samples are taken, or from round-off error
S 10 finite sampling precision, If the nose is additive and random, instead of the samples

“emust de] with the samples

i
el T3 e
\2B) REBJ
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ia) Interpolation. The tails of a signal are known and we wish to restore the middle,
ib) Extrapolation. We wish to generate the tails of a function with knowledge of the Midg,

{c} Prediction. A signal for ¢ > 0 is to be estimated from knowledge of the signal for <

Final Remarks

Since its popularization in the late 19405, the sampling theorem has been studied in depth, Mare
than 1000 papets have been generated on the topic [Marks, 1993]. I1s understanding s fu“'iiimen_
tal in matching the largely continuous world to digital computation engines.

Defining Terms

Aliasing: A phenomenon that occurs when a signal is undersampled. High-frequency informg.
tion about the signal is lost,

Cardinal series:  The formula by which samples of a bandlimited signal are interpolated 1o form
a continuous time signal.

Fourier transform:  The mathematical aperation that converts a time-domain signal inlo the fre-
quency domain.

Jitter: A sample i3 temporally displaced by an unknown, usually small, interval.

Kramer's generalization: A sampling theory based on ether than Fourier transforms and fre-
quency,

Lagrangian interpolation: A classic interpolation procedure used in numerical analysis. The
sampling theorem is a special case,

Myquist rate:  The minimum sampling rate that does not result in aliasing,

Fapoulis generalization: A sampling theory applicable 1o many cases wherein signal samples are
obtained either nonuniformly and/or indirectly,

Sampling rate:  The number of samples per second,

Sampling theorem:  Samples of a bandlimited signal, if taken close enough tagether, exactly spec-
ify the continuows time signal from which the samples were 1aken.

Signal bandwidth: The maximum frequency component of a signal,

Time bandwidth product:  The product of a signal’s duration and bandwidth approximates the
number of samples required to characterize the signal.

Truncation error:  The error that occurs when a finite number of samples are used to interpolate
a continuouws time signal.
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Jnformation

pin-depth study of the sample theorem and its numerous variations is provided in R, I Marks 11,
i Introduction o Shannon Sampling and Interpoiation Theory, New York: Springer-Verlag, 1991,

in-depth studies of modern sampling theory with aver 1000 references are available in B, |
wirks [L, Ed., Advanced Topics in Shannon Sampling and Interpelation Theory, Mew York: Springer-
ferlag, 1993

The specific case of nonuniform sampling is treated in the monograph by E A, Marvasti, A Uni-
gd Approach to Zero-Crosstng and Nonuniform Sampling, Oak Park, 1 Nonuniform, 1987,

The sampling theorem is treated generically in the JEEE Transacrions on Signal Processing, For
pplications, topical journals are the best source of current literature.



