140 IEEE Transactions on Energy Conversion, Vol. 10, No. 1, March 1995

Localization of Winding Shorts Using Fuzzified Neural Networks

M. A. El-Sharkawi

R.J.Marks II Seho Oh S. J. Huang

Department of Electrical Engineering, FT-10
University of Washington

Isidor Kerszenbaum and Alonso Rodriguez
Research Center
Southern California Edison Company

Abstract

Shorted turns in field winding of large turbogenerators are
difficult to detect and localize. We propose a technique
whereby shorts are detected and localized using an artificial
neural network with a fuzzified output. The method is based
on injecting two simultaneous and identical waveform signals
at both ends of the field winding. Selected features of the
received signals are used to train the neural network. Once
trained, the neural network can detect and localize short turns
in the field winding. The proposed method is verified by a
field test on 60 MVA turbogenerator. The results show that
the proposed method is quite accurate and efficient.
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1. Introduction

Shorted turns in the field winding of large turbogenerators (2
or 4 poles) are a common problem whose detection and
localization have remained elusive. Shorts occur primarily
from incessant pounding of the rotor copper conductors while
the machine is turning in low gear. This low speed operation
is designed to avoid the deformation of the shaft that occurs
when the rotor remains stationary in the bore for long periods
of time.

The pounding of the copper conductors results in the
accumulation of copper powder within slots. When the
machine is subsequently energized, the copper dust causes
arcing between the turns in the slot. Over time, a full short
circuit between turns may result. Broken rotor conductors
and water intrusion may also cause short turns.
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In many instances, the rotor short turns are speed dependent,
i.e., the fault tends to disappear once the machine is brought
to standstill. This makes the determination of such a fault
difficult.

Methods thus far proposed to recognize the existence of a
short-turn in a rotating turbogenerator are based on sensing
the increased mechanical vibration or the change in the
effective m.m.f. produced by the winding. Such methods are
often quite inconclusive.

A promising method requires placement of pickup (search)
coils inside the bore area [1]. The passage of leakage flux
from each conductor slot induces voltage in the search coils.
The amplitude of the voltage is directly proportional to the
ampere turns in the slot. Therefore, a reduced voltage is
observed when a shorted turn exists. Although this method is
reliable, it requires the instaltation of the pickup coil. This
can only be done during a raajor outage of the machine.

Another method is based on special design of the field
windings [2]. The windings of each phase of the generator
are divided into two sections connected in parallel. When a
shorted turn is present, there is no longer a symmetry
between the flux distribution of the two pole faces. The
airgap flux density will then contain even harmonics. Equal
and opposite even harmonic voltages are induced across the
phase windings resulting in circulating currents flowing
around the parallel half phase. The shorted winding can then
be detected through the measurement of the circulating
current. This method relies heavily on winding redesign.
This method also provides no information about the location
of the shorted turn in the winding [3].

A promising technique that does not require installing
equipment inside the turbogenerator uses traveling waves [4-
5]. Two traveling waves are sent through the rotor from
opposite ends and the signal difference is observed. Due to
symmetry, if there is no short, the difference between the two
receiving signals is quite small. When a short occurs, the
difference between the two received signals can be quite
significant. An expert can examine the difference and decide
whether the field winding has a short.
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In this paper, the traveling wave method is refined to allow
for fault localization. A neural network with a fuzzy logic
output is used to specify the localization of the short. The
developed method is quite general and can be used for
localizing short turns in power devices such as transformers
and motors.

The proposed detection method was tested in the Southern
California Edison facilities on a 60 MVA turbogenerator.
The generator has 14 coils with 17 turns per coil. The shorts
between windings were intentionally introduced to verify the
proposed technique.

2. Description of Proposed System

Figure 1 shows the basic concept of the traveling wave
method for fault detection. Two identical signals are injected
into the winding from either side and are received on the
opposite end. The receiving signals are subtracted to form
the signature signal, A-B. The frequency of the injected

signals should be selected at a rate no greater than about -1(;—
<

where 7 is the travelling time of the field winding which is
dependent on winding parameters. The interference between
the falling edge of the injected signal and the reflected wave
is then essentially eliminated.
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Figure 1. Travelling wave signature signal acquisition

The method's circuitry is depicted in Figure 2. A pulse
generator is used to send two signals to the symmetrical
circuit. The frequency of the signals is dependent on the
winding parameters. The symmetrical circuit receives the
two reflected signals and provides the signature signal to a
PC-based computer through a general purpose interface
board (GPIB). Several sampled signals for different short
locations are collected for feature extraction and subsequent
neural network training. The neural network used in this
study is the layered perceptron [6-7]. The output of the
neural network is fuzzified to increase the accuracy and the
dynamic range of the neural network's output, and also to
diminish the effect of noisy measurements [9-12].
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The shape of the signature signal is used to perform two
functions: 1) detect the existence of a shorted turn; and 2)
localize the short. A high frequency sampling device is used
to ensure that the entire signature signal is captured. This
results in a vector whose high dimension cannot be easily
processed by the neural network. Hence, the cardinality of
the training data must be reduced without destroying the
data's information content [13-17].
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Figure 2. Signature signal circuitry
3. Fuzzified Neural Network

With the introduction of new neural network topologies and
efficient training algorithms, neural networks have proven
useful in several power applications [7]. The neural network,
when adequately designed and trained, can synthesize a
useful nonlinear mapping between input and output patterns.
This is a key property for short turn detection and
localization.
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Figure 3. Short turn localization procedure.

Figure 3 outlines the general procedure for short turn
detection and localization. The training data acquired by the
setup for the signature signal is used for neural network
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training. Extracted features from the signature signal are
used as inputs to train a standard feed forward layered
perceptron artificial neural network [8]. The location of the
short is coded into a number of output neurons determined by
the desired resolution of the short localization. For example,
a field winding may be divided into coils and the coils
divided into turns.

The location of the short is coded into a number of fuzzy
membership functions determined by the desired resolution.
In this study 6 membership functions were used. The number
of output neurons of the neural network is the same as the
number of the fuzzy membership functions as illustrated in
Figure 4. The turbogenerator has 14 coils with 17 turns each.
The total number of turns is 238. These turns are divided
into six groups as shown in the figure. Each output neuron
corresponds to the value of the membership function. For a
short at turn #75, the membership function (and the NN
output) is [0 0.4 0.6 0 0 0]T.

During testing, the output of the neural net is defuzzified
where each membership function is weighted by the state of
the corresponding output neuron [9-12]. The weighted
membership functions are then added and the center of mass
(first moment) of the sum is the short location. If, for
example, each membership function is of identical shape and
has a center of mass C;, then the (defuzzified) centroid is

> B.C
shortlocation = Q)

D3

where B; is the output of the ith output neuron.
defuzzification methods can also be used [11].
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4. Field Testing

The proposed detection method was tested on a
turbogenerator in Southern California Edison Company. The
rotor is a 2-pole, 3600 rpm, 60 MVA with 7 concentric coils
on each pole. Each coil has 17 turns. Thus the loss of one
turn reduces the ampere-turns of that pole by about 0.85%.

The photo of Figure 5 shows the rotor of the turbogenerator
and the equipment used for detection. The neural network
and fuzzy encoding were implemented by PC software. The
hardware is used for the signal generation and acquisition.
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Figure 5: Photo of field test
To train and test the neural network, temporary shorts were
introduced between adjacent windings. Two simultaneous
signals were then injected from both sides of the field
winding., The difference between the two receiving signals is
the signature signal. This signal is used to detect and localize
the shorted turn. Examples of several sampled waveforms
are shown in Figure 6. The horizontal axis represents the time
in microseconds and the vertical axis is the magnitude of the
signature signals in volts. The signature signal is the
difference A-B.

The signature signals are sampled at 5 MHz. If the entire
signal is used to train the neural net, the network will
certainly suffer from scaling problems and the curse of
dimensionality. Feature extraction, rather, must be used to
capture the information contents of the signal using small

Location i; o ¢ data. Some feature extraction methods are based on

mathematical techniques [16-17]. Others are based on

engineering judgment and heuristics.

Figure 7 shows an expansion of a signature signal. Because
of dispersion, the changes in the signal due to different short
location near the initial time were the largest. Therefore, we
divide the signature signal into two sections: initial and
extended. In the initial section, the waveform is divided 4
intervals of 18 microsecond each. The extended section is
composed of 4 intervals of 36 microseconds and 5 intervals
of 72 microsecond intervals. The area of each interval is

Area, = j v(t) dt @



A total of thirteen areas are obtained for each signature

signal. These areas are used as the input to the neural
network.
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Figure 6. Samples of signature signals.

A total of 67 training patterns were collected by shorting
adjacent turns at several locations within the field winding.
A neural net with one hidden layer, thirteen input neurons,
four hidden neurons and six output neurons was used. This
architecture gave a lower test error than other architectures.
The network was trained by using the standard back-error
propagation method.

After training, the neural net was tested for 60 short locations
taken at random points. None of the test data was used
during training. The test results are listed in the Table 1.

As seen in the table the proposed technique is highly accurate
and very robust. In all test cases, the coil with shorted turns
was accurately identified. Moreover, the shorted turns were
all localized to within a few turns.
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Table 1. Field test results.

NN Structure
Input Neurons 13
Hidden Neurons 4
Output Neurons 6
Patterns
Training Patterns 67
Testing Patterns 60
Test Results
Percentage of Accurate 100%
Identification of Coil
Maximum error in short + 7 turns (£ 3%)
localization

5. Conclusions

A method to detect and localize shorted turns in the field
winding of turbogenerator was developed and verified. The
procedure is based on neural network and fuzzy logic
technology. When tested on a 60 MVA turbogenerator, the
method was accurate and robust.
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Discussion

N. Iwan Santoso (Siemens Corporate Research Inc., Princeton,
NJ): I would like to congratulate the authors for their interesting
application of neural network approach to diagnostic and alloca-
tion of shorted turns in field windings of large turbogenerators.

Our experience in motor diagnostic using neural network
approach show that it requires sufficient normal and fault data
for training the network, before the network can give a reason-
able good performance during testing. Moreover, the trained
network is not usually transferable for diagnosing another simi-
lar machine because of characteristic differences between those
machines.

Based upon these investigation, two questions come to mind:

—_

. Is extensive measurement for obtaining the necessary training
data required for each individual machine? Is geucralization
between machines for this particular problem is possible?

2. Considering the large difference between time of measure-

ment and time of failure, the characteristic of the winding

may have change significantly. How robust is the performance
of the network to this type of changes?

Comments and suggestions from the authors would be most
appreciated.

Manuscript received February 14, 1994.

L.L. Lai and K.H. Chu, (Energy Systems Group,
City University, London EC1V 0HB, England,
UK): The neural network (NN) has capability
of nonlinear mapping, parallel processing and
learning. On the other hand, the fuzzy logic
technology is characterised as extension of
binary Boolean logic. The fuzzy logic is a
class in which transition from membership to
non-membership is gradual rather than abrupt.
Both the NN and fuzzy logic. have some diffi-
culties. The NN can produce mapping rules
from empirical training sets through learn-
ing, but the mapping rules in the neural
network is not visible and is difficult to
understand. On the other hand, since the
fuzzy set does not have learning capability,
it is difficult to tune the rules. In order
to solve these difficulties, recently, much
research has been trying to integrate the
fuzzy logic techriology and NN.

The authors are to be congratulated for an
interesting paper in this area. It would be
appreciated if the following points are
clarified:

The neural network should respond to new
patterns not originally included in the
training set. A common feature of any neural
network is its capability to produce good
response to a pattern which is not covered by
the training set. If a neural network fails
to do this, it is not acceptable at all.
Would the authors explain how do they obtain
the training data and testing data? Would it
be true that the two sets are in fact very
similar in this case and therefore the accu-
racy is so high. as reported in the paper.

There must be certain parameters that tend to
indicate a short circuit on the winding.
Could the authors confirm that the parameters
that they have used are the most important
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one. Are there any other parameters that have
been considered as well?

The discusser interests in the methodology
that the authors used to construct the train-
ing set. The choice of input dimension and
the content of the training set play an
important role in the network learning capa-
bilities. The training set should be large
enough to provide evidence for generalisa-
tion. Could the authors explain in detail how
to use the 'fault locations' for the training
set? Are the authors happy to confirm that
this fuzzified neural network has generalised
the problem?

Could the authors explain in detail how to
deal with the scaling problem? It is not
fully clear to the discusser from the paper
and this is a very important matter for
training and testing neural networks.

Manuscript received March 4, 1994.

M. A. El-Sharkawi, R. J. Marks, and 1. Kerszenbaum:

In Response to Dr. Lai and Mr. Chu: The points raised by Lai &
Chu are good ones. We thank them for making them.

Cross validation of a trained neural network is of fundamental
importance. Care must be taken so that the neural network does not
memorize. We report in the paper that cross validation was made
with 60 test cases. With reference to Figure 5, training data was
taken corresponding to shorts imposed at the far end of the rotor —
the end where the people are standing. The test data, on the other
hand, was generated by imposing shorts at the other end. If
testing was performed from data taken at the same location as
the training data, the results of the neural network performance
would be nearly meaningless. This point should have been made
in the papgr and we thank Lai & Chu for bringing it to our
attention.

Choosing features from raw data is an important component
in the training of a neural network. All of the raw data cannot
be used in the training due to the curse of dimensionality. In
preliminary studies, we tried a number of different feature sets
—including use of characteristics of the signal signature (ie.
magnitude and location of the largest peak). We found, in our
studies, that the method described in the paper gave the best
performance. Feature selection remains more of an art than a
science. We cannot claim the features we used are optimal.
Indeed, there exists no method we know of to ensure optimality.
The best that can be done is to find better and better feature
sets.

Our intent of using the fuzzified output was to increase the
dynamic range and corresponding accuracy of the fault location.
Note that the curse of dimensionality does not apply to the
output of the neural network. As with the choice of the features,
we tried a number of different output fuzzy parameterization
and found that the architecture described in the paper per-
formed to the desired precision.

Lai & Chu asked how we determined that the cardinality and
distribution of the training set were sufficient for successful
neural network training. A training signature signal was taken
for a short imposed at each of the rotor’s turns. This was a
sufficient distribution simply because the resulting trained neu-
ral network generalized well—to 100% accuracy. Indeed, a more
sparse sampling could have also performed well. We have not
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investigated this since downed rotor time is quite expensive.
However, this may be a worthy investigation.

In Response to Dr. Santoso: We are appreciative of the insight-
ful comments of Dr. Santoso.

The DC-field winding of a turbo-generator is essentially dif-
ferent from that of an induction machine. DC-field windings
tend to have only a dozen or so of coils. Most field windings
(turbo-generators) have two to four poles. Regardless of the
machine’s size and ratings, the general geometry of the windings
does not change significantly between different machines.
Therefore, we are led to believe that training of a neural
network in a particular configuration (two or four-pole winding;
number of coils; etceteras) will be sufficient to discriminate

correctly for a family of machines. We believe the neural net-
work will have to be trained on perhaps no more than a few
machines to provide coverage of most of the machines in use.
However, this is an area that requires the availability of more
rotors for test. We will appreciate any manufacturer or customer
in possession of large turbo-generators which will facilitate the
testing of rotors, when available, with this device.

We do not believe degrading of the insulation has any influ-
ence on this particular test. Our device can only detect a
shorted-turn once it has occurred. We have found the limit for
detection of a shorted-turn is about ten to fifteen ohms between
the turns. Unfortunately, the test will not detect a worsening
insulation condition. This still relies on conventional insulation
tests.

Manuscript received April 11, 1994.



