An Evolutionary Algorithm for Function
Inversion and Boundary Marking

Russell D. Reed, Robert J. Marks II
Dept. of Electrical Engineering, FT-10
University of Washington, Seattle, WA 98195, USA

ABSTRACT

We present an evolutionary algorithm for distributing points evenly on a surface f(x) = c¢. Appli-
cations include function inversion (where system inputs are sought which produce a desired output)

and boundary detection for e.g.

control systems or power—system security assessment, in which

boundaries of a safe operating region are to be avoided.

1 Introduction

In many control applications it is necessary to en-
sure that the system stays within a safe operating
region. If the system approaches the boundary we
would like a warning to be generated and would
like to know how to adjust the operating point to
avoid the boundary. If the system goes outside
the boundary, we would like to know the quickest
way back in. In other applications, it is useful to
be able to invert a function f(x) = y to find the
values x which produce a desired output y.

Function inversion may be useful in neural net-
work training since training points near the clas-
sification boundary may provide more useful in-
formation about how the network needs to be ad-
justed than points distant from the boundary. A
gradient based neural network inversion algorithm
is described and used for query—based learning in
[5, 6]. Use of a genetic algorithm for inversion of a
neural network is described in [1].

Closed—form solutions describing a boundary
surface can sometimes be found when f(x) is rela-
tively simple, but may be intractable when f(x) is
a complex nonlinear function. In the following, we
describe an evolutionary algorithm for distribut-
ing a set of points approximately evenly on a p—
dimensional surface defined f(x) = c.

2 The Algorithm in General
Terms

The goal of the algorithm is to distribute a set of
points evenly on a manifold defined by f(x) = ,
where f(x) is some generating function, x is a vec-
tor in RP, and c is a constant (or slowly changing).
The level sets f(x) = ¢ can be thought of as con-
tours of the function analogous to contour lines on

a geological map. Depending on f(x), the surface
may be nonlinear and disconnected. Differentiabil-
ity of f(x) isn’t required, but gradient information
can be used if available.

An evolutionary procedure is used; a large num-
ber of points are generated at random positions,
the worst are eliminated and replaced by variations
of the best. After many iterations, the population
evolves to a state that satisfies the governing con-
straints.

‘Birth’ and ‘death’ of the points is controlled by
two basic goals: (1) the points should lie on the
surface, and (2) the points should be evenly dis-
tributed over the surface. The first goal is achieved
by periodically eliminating points with the worst
functional errors e(x) = | f(x)—¢|. The second goal
is achieved by generating their replacements from
perturbations of uncrowded points (which are well
separated from their neighbors) and by repulsion
between nearest neighbors. Since the uncrowded
points survived elimination their functional errors
are likely to be smaller so the error tends to de-
crease as the dispersion increases.

The algorithm is similar to the evolutionary
strategy of [7] but the two subgoals are satisfied
by two different mechanisms rather than embedded
in a single fitness function which might have unde-
sired local minima. Unlike the genetic algorithm,
reproduction is ‘asexual’ —there is no mating or
string crossover.

In very loose terms, an analogy could be made
to certain species of marine life (e.g., barnacles,
crabs, snails) adapted to conditions in the shoreline
tidal zone. Individuals that stray too far from the
water line (have high |f(x) — ¢ errors) suffer and
do not reproduce. Within the tidal zone, food amd
shelter are limited so individuals finding relatively
uncrowded areas thrive .

Table 1: Variable definitions
Variable | Meaning
P dimension of the space
Xi position of point 7, x € R?
f(x) the generating function
c the contour defining the surface,
fx)=c
N population size
M number of points replaced per
generation
a noise level used to generate new
points from old points
m number of nearest neighbors used to
measure crowding
s stepsize for repulsion from
neighbors
ar average distance from point 7 to its
m nearest neighbors

3 The Algorithm

The process starts with N points randomly dis-
tributed over the space of interest. In each gen-
eration, M points with the worst functional error
[f(x)—c| are deleted and replaced by perturbations
of the least crowded remaining points. Details are
outlined below.

Generate N points randomly distributed (e.g., uni-
formly) over the space of interest. For each gener-
ation:

1. sort the points by their |f(x;) — | errors

2. delete the M points with the worst |f(x;) —¢|
errors

3. generate a replacement for each deleted point:

(a) sort the remaining points in order of d}*,
their average distance to their nearest m
neighbors,

(b) select a parent k from the least crowded
points. Random selection from the first
N/5 points in the d; sort order is typical.

(c) generate the new point Xpew = X +n
where n ~ N(0, ¢I), for example.

4. (optional) Repel crowded points. For each
point z; among the most crowded N/5 points:

(a) Calculate the vector v away from its
nearest neighbor xi
v = X;— Xk
and the gradient vector
of
& = 5
f g/llgll-

(i is a unit vector normal to the surface.)

(b) Project v onto the subspace orthogonal
to g (i.e., remove the component of v
parallel to g so that the result is paral-
lel to the contour and the new point will
have the same approximate f(x) value)

v—vTha

s - u/|lul]
where s is small constant step size, e.g.

s = 0.01.

(c) Replace xj with x; + Ax. Since Axis a
vector parallel to the surface, f(x) should
not change much when s is small.

u =

Ax

Example

Fig. 1 shows a simple 2-dimensional example to
illustrate how the algorithm works. The function
is the sum of two tanh functions:

flz,y) = [tanh(2 — 4z + 2y)

+tanh(1 + 1z — 2y)] /2

The target contour is ¢ = 0.5. Other parameters
are N =50, M =3, 0 =0.05, m =2, s =001
Fig. la shows the distribution after a few gener-
ations, a-d show snapshots at selected iterations.
As the system evolves, points with the worst errors
are eliminated. Replacements are generated from
perturbations of points that survived (and so have
smaller functional errors |f(x) — ¢|) so the average
error in the next generation tends to decrease if o
is not too large.

Fig. 2 shows another example with a multi-
modal function (¢ = 0.9, N = 100, ¢ = 0.05,
M =5 m=2,s=0.01).

4 Remarks

Selection of o

Initially, a reasonably large o is desirable to ex-
plore the space. In later stages though, the worst
|£(x) — ¢ error will be small and it may be desir-
able to decrease o in order to increase the survival
rate of offspring. That is, the average distance of
a new point from its parent is ¢. Using a linear
approximation, Af = frpew — f(zr) = ||g8(x%)|lo
where g(zp) = 8f/0x evaluated at xj. If the sur-
face is steep at x; and o is large then Af will be
large and the error is likely to be high leading to
deletion of the point in the next generation. On
the other hand, if ¢ is small then Xpe, Will likely
be close to its parent; the points may then gather
in small clumps and not be well dispersed over the
surface. -

Figure 2: Evolution of the population for a multi-modal 2D function.

Dispersion

Repulsion between nearest neighbors helps to
avoid clumping. In repelling crowded points, the
recipe above uses gradient information to project
vV = X; — X} onto the surface tangent plane. Gra-
dient information isn’t necessary, however. The
simpler form, Ax = sv/||v||, where points simply
move directly away from their nearest neighbor,
gives similar results in the final stages when most
of the points are already nearly on the surface and
so v is nearly parallel to it. In areas where the
surface has high curvature and points are widely
separated, however, this may cause new points to
fall outside the error tolerance band.

Number of Neighbors

The m nearest neighbors, rather than just 1, are
used to measure crowding in order to smooth the
distribution. This seems to be a relatively unim-
portant factor since m = 1 works reasonably well
in low dimensions. It may be more important in
higher dimensions.

Relation to Genetic Algorithm

This algorithm is slightly different from other evo-
lutionary algorithms in that different fitness func-
tions control which points reproduce or die. In ba-
sic genetic algorithms, for example, fitness is deter-
mined by a single fitness function F'(x); points with
low F' values are deleted and replaced by combi-
nations of points with high F values. Here, points
with poor | f(x)—c| values are deleted and replaced
by variations of points with high d values. The in-
tention is to minimize the average error |f(x) — c|

and maximize the average distance between neigh-
boring points without having to define a single fit-
ness function which may have undesired local min-
ima.

More importantly, the goal of the algorithm is to
optimize a function of the entire population rather
than a function of a single point. In the basic ge-
netic algorithm, each unit represents an alternative
solution to the problem and the end product is a
single unit representing the best solution. Since
the remaining units tend to be similar to the win-
ner, the population forms a cluster. Variations of
GA have been proposed that attempt to preserve
genetic diversity by various methods such as nich-
ing, sharing, or maintaining separate subpopula-
tions with limited mixing ([2] summarizes a few
methods), but they fight this convergence—to—a—
point characteristic. It might be possible to use
GA or some other optimization method by treat-
ing entire populations as points in a larger space,
but this could be extremely inefficient if not han-
dled carefully.

Variations

There are many possible variations of the basic al-
gorithm. One possibility is to minimize |f(x) — ¢|
for each point using gradient information and max-
imize dispersion by repulsion from nearest neigh-
bors along the contour. A problem is that this may
settle to a static distribution in which the final
state is completely determined by the initial dis-
tribution. In this algorithm, randomness (due to
random selection of the parent and the noisy per-

turbation) helps the system explore the space more
effectively. Another problem is that if |f(x) — |
is minimized by gradient following methods, then
every point will eventually arrive at an attractor;
since some attractors may have much larger basins
of attractions than others, the points are not likely
to be evenly distributed on the surface. Repulsion
from neighbors may help disperse the points but
won’t allow movement between two disconnected
pieces of the surface. (I.e., it would not even out
differences in population density between isolated
‘islands’ such as in Fig. 2.)
Other possible variations include:

e o adaptation, possibly using different values
for directions parallel and orthogonal to the
local gradient depending on the local steep-
ness of f(x)

e population size adaptation

o adaptation of the crowding factor, possibly al-
lowing more crowding where the surface cur-
vature is high (to better delineate high curva-
ture regions)

These may have significant effects on convergence
time and the quality of the solution, but the basic
behavior remains the same.

One form of adaptation that is in keeping with
the evolutionary approach of this algorithm is to
have offspring inherit their parameters from their
parent with perturbations (i.e., mutations) to ex-
plore the parameter space.

It is interesting to note that the condensed near-
est neighbor classification algorithm [4, 3] also
tends to find points near a boundary. Given a set
of points in two classes (inside or outside the sur-
face in this case), it keeps only those which are
misclassified by their nearest neighbor —a process
which tends to favor points near the boundary.
This doesn’t necessarily disperse the points evenly
over the surface, however, and a very large initial
set of points might be needed to get a good defini-
tion of the border.

Dimensionality

Since the procedure evaluates f(x) many times
(once for every new point), it may not be efficient
when this is a costly operation. This is character-
istic of many evolutionary algorithms, however. In
such cases, a neural network or other approxima-
tion system might be useful.

It should be noted that the number of points
needed to outline a boundary may be very large in
even moderately high dimensional spaces. To some
extent, this is a ‘problem of the problem’ given
the goal of placing a set of points on the surface.

For safe-operating-region problems (where the ul-
timate goal is to warn of boundary crossings), a
two-level procedure is envisioned: points in the
initial set are used as markers telling which por-
tion of the boundary is closest and a more precise
second—level search (with this technique or some
other) is done to get a more precise picture of the
boundary in this region. It isn’t necessary that the
initial points outline the boundary with high pre-
cision. If the surface is not too complex, then a
tractable number of points may suffice regardless
of the fact that they may be widely separated.

References

[1] R. C. Eberhart. The role of genetic algorithms
in neural network query-based learning and ex-
planation facilities. In COGANN-92. Interna-
tional Workshop on Combinations of Genetic
Algorithms and Neural Networks, pages 169—
183, IEEE Computer Society Press, Los Alami-
tos, CA, 1992.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, & Machine Learning. Addision—
Wesley, Reading, MA, 1989.

[3] D.J. Hand. and B.G. Batchelor. An edited con-
densed nearest neighbor rule. Information Sci-
ences, 14:171-180, 1978.

[4] P.E. Hart. The condensed nearest neighbor
rule. IEEE Transactions on Information The-
ory, IT-14(3):515-516, May 1968.

[5] J.N. Hwang, J.J. Choi, S. Oh, and R.J. Marks
II. Classification boundaries and gradients of
trained multilayer perceptrons. In IEEE Inter-
national Symposium on Circuits and Systems,
pages 3256-3259, IEEE, 1990.

[6] J.N. Hwang, J.J. Choi, S. Oh, and R.J. Marks
II. Query-based learning applied to partially
trained multilayer perceptrons. IEEE Transac-
tions on Neural Networks, 2(1):131-136, 1991.

[7] 1. Rechenberg. Evolution strategy. In J.M.
Zurada, R.J. Marks II, and C.J. Robinson,
editors, Computational Intelligence Imitating
Life, pages 147-159, IEEE Press, 1994.

