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Abstract computationally demanding than the time domain methods, but 
A method is proposed in which a neural network trained 

to predict the dynamic security of a power system is 
inverted to provide information regarding nearby operating 
regions. Given an initial operating state, the nearest 
operating state of a given security status can be located. 
This information is useful in the everyday operation of a 
power system in that it outlines operating regions that 
should be avoided and provides information regarding 
operating regions that enhance system security. The 
proposed system is tested on the IEEE 17 generator 
transient stability test system. 
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Introduction 
The goal of dynamic security assessment @SA) is to 

determine if a given power system operating configuration will 
be able to survive the transient period immediately following a 
contingency. Contingencies usually result from the unexpected 
loss of equipment such as transmission lines or generators. An 
insecure system can result in equipment damage, excessive 
voltage, current or frequency violations. In severe cases, a 
blackout or brownout may occur. 

Presently, several methods are commonly used to predict 
the dynamic security of power systems including: 

1) Time domain simulations 
2) Energy function methods 
3) Eigenvalue methods 
4) Intelligent systems methods 

Time domain simulations require the simultaneous solution of a 
set of algebraic and differential equations that describe the 
power system [l-21. This method is accurate but its 
computational complexity and inability to determine a relative 
stability ranking of a given case limit its applicability. 

In the energy function methods, the power system is 
described by its transient energy at fault clearing [3-41. The 
magnitude of the transient energy is compared to a critical value 
and used to determine the system energy margin. The energy 
margin is a measure of the amount of excess energy that if 
stored in the system will cause instability. This method is less 

less accurate. 
Eigenvalue methods require the computation of eigenvalues 

of the linearized system equations [5-61. These methods are 
accurate only for small disturbances and can be computationally 
demanding for large systems. 

Intelligent systems methods include training neural 
networks to predict the stability of a power system. These 
systems require extensive off-line simulations to acquire a set of 
training data. After the system is trained, neural networks can 
provide extremely fast solutions. Properly trained neural 
networks have proven their ability to generalize from the 
training data and accurately classify the security of new power 
system operating conditions. 

Presently, many of the above mentioned DSA methods are 
in use by several utilities in the day-to-day operation of their 
systems. These DSA systems can classify operating states 
based on their relative stability, but fail to offer any information 
regarding nearby operating regions. The system proposed in 
this paper not only has the ability to predict the dynamic 
stability of a power system operating state, but also provides 
insight into nearby operating regions. Specifically, this new 
system has the ability to determine the nearest operating state 
where the system could be unstable, thus informing operators of 
regions to avoid. 

The proposed system starts with a standard multi-layer 
perceptron (MLP) neural network (NN) trained to predict the 
dynamic security characteristics of a given power system. Next, 
a border tracking algorithm is introduced that, given the current 
operating point, can locate the nearest point that satisfies a 
given stability criteria. An example might be to find the nearest 
unstable operating point to the current operating point. The 
border tracking algorithm is essentially a neural network 
inversion routine which conducts a constrained search of the 
input space of a trained neural network. 

Neural networks for Security Assessment 
Multi-layer perceptron neural networks have been 

successfully applied to the area of dynamic security assessment 
of power systems. In Pao, et al., [7], a technique was proposed 
where a MLP was trained to predict the critical clearing time 
(CCT) for a fault based on the pre-fault system attributes, such 
as the acceleration powers and relative load angles of individual 
generators. The training patterns were generated for different 
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load levels and base topologies via dynamic simulation of the 
test power system. It was shown that a neural network can 
generalize its knowledge and predict the critical clearing time of 
previously unseen topologies and load levels with reasonable 
accuracy. El-Sharkawi, et al., [8], used a similar approach 
where the inputs to the neural network were the various real and 
reactive generator bus injections, and the output was the 
corresponding security status. The trained neural network was 
then used to determine various Zdimensional security contours 
with respect to selected security attributes. British Columbia 
Hydro, used a similar approach but instead used their 'Second 
Kick' method to determine the stability ranking of each case 
1141. El-Sharkawi and Huang [9], presented a query based 
method in which a partially trained neural network was inverted 
to produce additional training patterns that lie on or near the 
security border, thus improving the networks ability to classify 
a given operating condition as secure or insecure. 

One of the greatest challenges in applying neural networks 
to dynamic security assessment is the selection of good training 
features. Several methods have been proposed to select good 
training features. Class-Mean-Separation [I 31 uses the notion 
of interclass distance to remove redundant features from a 
training set. Another proposed method is Karhunen-Loe've 
Expansion [lo] which selects the most prominent set of features 
based on an eigenvalue approach. 

Concept of Security Border/Contours 
Neural network training data for DSA consists of a set of 

power system features and corresponding security rankings. 
The neural network is trained via the standard back-propagation 
algorithm to predict the security ranking. A rank of 0.0 is 
assigned to the least stable cases and 1.0 is assigned to the most 
stable cases. Marginally stable cases are assigned a rank of 0.5. 

As a result of training, the network learns a mapping from 
the input features to the stability ranking. Contours of the map 
are operating states of equal stability ranking. The 0.5 contour 
is of interest because it corresponds to marginally stable 
operating states. This is defined here as the stability border. 
All contours with values above 0.5 are stable operating states, 
while contours with values less than 0.5 are unstable cases. 
Figure 1 shows a possible feature map of one generator in a 
power system. The input features in this case are the generator 
real power output and reactive power output. Several possible 
contours are shown. 

The network mapping contains the information relating the 
input space to the output space. The idea is to query this map to 
extract useful information for the everyday operation of the 
power system. Ideally, the system would be able to answer 
questions such as: 

What is the nearest unstable operating point? 
What is the most stable operating configuration? 
Given recent trajectory, when is instability likely to 
occur? 

Border Tracking Algorithm (BTA) 
The neural network input-output mapping is a function f(x). 

The stability border is the set of points x such that f(x) = c; in 
this case, c=0.5. Given an operating point x,, the task is to find 
the nearest point on stability border. 

Since f(x) is differentiable, one possible approach is to use 
gradient information to reach the border from an initial search 
point at x,. Gradient descent on a function such as ( f o  - c )2 

starting from x, would give the same results. Gradient 

information is calculated by inverting the neural network [19] 
about the security border, i.e. fl(c). Some potential problems 
include; (1) If there are local minima, the point may never reach 
the border. (2) Since f(x) is nonlinear, the gradient at xo might 
not point in even the general direction of the nearest border 
point. (3) The resulting trajectory is likely to be a curved path 
so endpoint is unlikely to be the point on the border nearest to 

xo. 
The first two problems are addressed by doing repeated 

searches from different starting points around x,. Initial points 

are obtained by adding noise to x, with the variance chosen a 
significant fraction of the points fall on either side of the 
border. This ensures that the initial points sample a 'region of 
interest' that contains both x, and some part of the boundary. If 

f(x) is not too badly behaved, most of the searches will reach 
some site on the border. The third problem is then addressed by 
doing constrained gradient descent on I x, - x I to move x 
towards x,  while staying on the surface. 

Briefly, the algorithm is as follows. Generate random points 
x around x, using a variance large enough so that a significant 

fraction lie on either side of the border. For each point, iterate: 
1. If x is on the same side of the surface as x,, follow the 

gradient to the surface. 
2. If x is on the opposite side of the surface, use interval 

halving or a similar scheme to locate the surface. 
3. Once xi is on the surface, do constrained gradient descent 

on I x, - x I to move x towards x, while staying on the 
surface. 

- 

Qt2 

Figure 1 Feature Map of a Single Generator 



Search for Operating Points on the Security 
Border 

The border tracking algorithm conducts a constrained search 
of the input space to locate the operating state on the stability 
border that lies closest to the current operating point. To assure 
the feasibility of the new point, additional constraints must be 
imposed. These constraints insure that the new operating state 
does not result in any limit violations for the power system. 

Additional constraints can be imposed via an iterative 
process whereby the border tracking algorithm is coupled with a 
standard power flow. The power flow is used to check for limit 
violations. If limit violations are discovered, the search 
algorithm will adjust the variables with violations and continue 
on the new path toward the border. The process repeats until an 
operating point is found that satisfies both the border tracking 
and feasibility search algorithms. 

A graphical example of the iterations is shown in Figure 2. 
The initial search point corresponds to the current operating 
configuration. First, border tracking algorithm locates the 
nearest point on the security border. This point is not 
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Figure 2 Graphical Representation of Solution 

guaranteed to be feasible in the sense that it may contain limit 
violations or may not satisfy the power flow algorithm. Next, 
the feasibility search algorithm removes all limit violations and 
the process is repeated until the final point is both feasible and 
on the security border. 

Query Learning 
The overall accuracy of the proposed technique depends 

entirely on how well the neural network resembles the actual 
power system. If the neural network cannot accurately classify 
a given operating condition, the new points found by the 
inversion process will be meaningless. Query learning is used 
to enhance the accuracy of the NN inversion and hence the 
entire algorithm. Query-based learning [16] is the process of 
asking a partially trained neural network to respond to 
questions. The response of the NN is then compared with the 
answers computed by an oracle. The oracle has the ability to 
respond with the correct answer to a given question. Any 
questions the NN fails to answer correctly are then added to the 
training set and the network is retrained. 

One of the key issues affecting the performance of the final 
NN is the proper selection of the training data set. A NN can 
only accurately respond to patterns that are similar to patterns in 
the training set. For this reason the training data must 
adequately cover all feasible regions of the input space. For 
applications where the input dimension is high, such as for 
power systems, it is not possible to collect enough training data 
to cover the entire input space. In such cases, a relatively small 
subset of the entire input space must be used to initially train 
the NN. A query learning procedure can then be used to reveal 
areas that are poorly learned [9]. For each poorly learned area, 
examples are added to the training set and the network is 
retrained. 

A flowchart of the entire query learning process is shown in 
Figure 3. The query learning process begins with a partially 
trained neural network. A set of testing data are then generated 
and the border tracking algorithm is used to determine the 
nearest operating point that lies on the stability border for a 
given operating point. The actual stability ranking of the new 
operating state is then verified via dynamic simulation of the 
power system. Any points that have large errors represent areas 
in the input space that have not been properly learned by the 
NN. These data points are then added to the training data, the 
network is retrained, and the process repeats until the system 
produces acceptable results. 
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Figure 3 Flowchart of Query Learning 



Case Study 

System Description 
The system studied is based on the IEEE 17-generator 

transient stability test system [12]. It consists of 17 generators 
and 162 buses. Classical machine data are available for each of 
the 17 generators. The data consists of the rotor inertia time 
constant and transient reactance. The first swing stability 
criterion is used to classify the system stability. The criterion 
monitors the rotor angle of each generator during the first 
oscillation. If any generator angle loses synchronism with the 
rest of the system, the system is said to be unstable. 

Feature Selection 
The trained neural network is queried to determine new 

power system operating points. Since the new points are used 
to govern the future operation of the system, the chosen features 
must satisfy the following requirements; 1) the features must 
define the power system, and 2) the features must correspond to 
power system variables that can be controlled by system 
operators. The features must fully describe the following; 1) 
system topology, 2) bus power injections, and 3) system control 
parameters such as relay settings, load shedding, etc. The use 
of dynamic features and non-controllable static features are thus 
rejected. BC Hydro reports that removing the dynamic features 
from the training data set has a very minor effect on the 
accuracy of the neural network [15]. 

The training features chosen are the real and reactive power 
outputs of each of the 17 generators and the total system load. 
These quantities fully define the system state and thus satisfy 
the above requirements. The fault critical clearing time (CCT) 
is used as the stability index. The critical clearing time is 
defined as the maximum time the fault can exist on the system 
before instability occurs. To determine the CCT, each system 
configuration was subjected to a series of faults of increasing 
duration until instability occurred. The faults ranged in 
duration from 0.25 to 0.425 seconds, resulting in 9 quantized 
stability ranges from 0.0 to 1 .O in 0.125 increments. 

System Simulations 
The Extended TransientIMid-Term Stability Program 

(ETMSP) written by the Electric Power Research Institute 
(EPRI) is used to conduct the simulations [17]. This software 

can accurately simulate the dynamic response of very large 
scale power systems to any number of contingencies. 

The test system was studied in response to a single 
contingency with a fixed system topology. A three-phase fault 
was placed at bus #75 and cleared by removing the line between 
bus 75 and bus 9 [12]. An initial data set of 500 patterns was 
created by varying the system loading and generation levels 
between 60% and 120% of their nominal values. The stability 
of each case was determined based on the first swing stability 
criterion. The data was divided into 400 training patterns and 
100 test patterns and normalized before training the neural 
network. Table 1 shows the distribution of patterns in the 
training data set. 

Table 1 Distribution of Training Patterns 

Neural Network Synthesis 
A standard feed-forward neural network was trained with 

varying numbers of hidden neurons. It was determined through 
experimentation that a single hidden layer with 8 neurons gave 
the best results. It was noticed that the standard back- 
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Figure 4 NN Testing Error Probability Density 

Stability 
Classification 

propagation algorithm resulted in large maximum training 
errors (-50% error). To reduce these large errors, a new 
training algorithm was used that stresses learning on patterns 
with large errors. The new algorithm varies the learning rate, 
(eta), based on the magnitude of the error on a pattern by 
pattern basis. Patterns with large errors are assigned higher 
learning rates than patterns with small errors. A similar 
technique was used in [la]. The final neural network resulted 
in a maximum testing error of 0.296250 and RMS error of 
0.10225 1. Figure 4 shows a plot of the error probability density 
function of the testing data file. The testing data contains 
patterns that have not been used in NN training. 

Number of 
Patterns Boundary Tracking 

The border tracking algorithm was then tested with the 100 
test patterns. It was found that the iterative process converged 
in 94/100 cases, the 6 failures were traced to power flow 
divergence problems. The 94 new points were then validated 
via ETMSP simulations. A 50% threshold was allowed for 
correctly classified patterns. Any patterns with an error greater 
than 50% were considered misclassified. 

The validation of the initial neural network revealed an 
accuracy of 74.4% correctly classified and 25.6% misclassified. 
The incorrectly classified patterns were then added to the 
training data set and the neural network was re-trained. A new 



testing data set (100 patterns) was then generated and the query 
learning process was repeated. After 4 iterations the query 
learning process converged to an accuracy of approximately 
98.7% correct classification and 1.3% misclassification. Table 
2 shows the classification results for each iteration of query 
learning. 

Conclusions 
A technique is proposed to locate nearby operating states of 

a large scale power system. The technique starts with a NN 
trained to predict the dynamic security of a power system. 
Operational constraints are enforced to assure the feasibility of 
the final operating state. A query based learning procedure is 
used to overcome limitations due to insufficient data and 
enhance the overall accuracy of the system. Results are given 
for a test power system. 

Table 2 Border Tracking Accuracy 
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