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in the final solution is obtained and convergence speed is increasedbyDelta Coding
dynamically controlling the coding of the search space. The additionTpe delta coding algorithm proposed in [13] also motivates compo-
of fuzzy rules for control of coding changes provides more unifortfents of the fuzzy GAP coding algorithm. The delta coding algorithm
performance in genetic algorithm searches. Similar fuzzy contrgégins by performing a standard genetic search until the population
of learning and optimization parameters based on implementatigpsmngs has converged.
heuristics have been applied to error back propagation training ofatter convergence, the best solution found by the genetic algorithm
multilayered perceptrons [1], [2], [4], [5], random optimization [2]s saved. The genetic algorithm is restarted with the search parameters
[4], ART neural networks [2], [4], and Kohonen neural networks [12}yeing offsets from the previous best solution rather than the actual
The following section describes previous work on improving thgarameter values. This has been shown to improve search since the
performance of genetic searches by dynamically controlling thg,ch space is advantageously altered in this step.
representation of the search parameters in the coding. The USRfter each delta iteration, a specified number of bits are removed
of fuzzy rules to dynamically control GAP coding is describegom the delta representation. The delta values are reinitialized and
in Section Ill. Section IV contains results of fuzzy GAP codinghe genetic search is restarted if the delta values are not all zero.
experiments and compares the performance to the standard genetify gelta values are zero after an iteration, the number of bits is
algorithm with static coding and the genetic algorithm parametgicreased. This process is repeated until a suitable solution is found.
coding method proposed by Schraudolph and Belew [10]. The use of delta values in this method is similar to both the ARGOT
technique and the fuzzy GAP coding adaptation method. However, an
intermediate mapping is used in the latter two techniques to change
the representation rather than merely changing the number of bits, the
Several approaches, including parameter coding control, have b@@tegy used in the delta coding method. Mathias and Whitley present
proposed to improve the performance of genetic algorithm searchgAhorough study of the algorithm in [6] and discuss the benefits of
brief overview is appropriate. using Gray coding in genetic algorithms.

Il. BACKGROUND

A. Adaptive Representation Genetic Optimizer Technique (ARGOT). Dynamic Parameter Encoding

Schaefer [9] proposed an algorithm for modifying the represen-The dynamic parameter encoding (DPE) algorithm proposed by
tation of search parameters by controlling coding. The coding &hraudolph and Belew [10] has also provided significant inspiration
adapted as the genetic algorithm searches by means of an intermed@atduzzy GAP coding. In the encoding procedure proposed by
mapping. The intermediate mapping converts the genetic stringsSchraudolph and Belew, the search space for each parameter is
the search parameters. A standard genetic algorithm is used to prowdéned by an offset and a range. The genetic string can then be
the search using numerous triggered operators to adapt the parantetarght to represent numbers in the interval [0.0, 1.0].
coding. These operators are applied to the coding transformatioriThe DPE algorithm considers only a few of the most significant
when certain conditions are detected. bits of the search. When the population has converged, the search

A variety of population measurements are used to trigger tlspace is reduced by half using a histogram filtering approach. The
operators. Measurements such as the degree of convergence,ctiiwergence of each parameter is considered independently and no
position of the cluster of strings, and the variance of the cluster argtialization is performed between the genetic iterations. The search
used. The measurements dictate the change in the number of bitsefions are not moved and are only reduced in size.
the parameter coding as well as the shift, contraction, or expansiomhe independent parameter convergence criteria causes difficulty
of the search region. with some problems. The experiment on the eight dimensional

Although effective, the algorithm requires the setting of manRosenbrock’s function described in Section IV is a good example.
algorithm parameters and thresholds. These algorithm parame®ue to the random initialization, some parameters will converge
can be difficult to define and make implementation rather difficulbefore others. But the converged parameters may not be in the correct
Schaefer’'s heuristics for dynamic coding, roving search regionggion due to the shape of the objective function. The small number
region centering, and expansion and contraction of the search regioinbits used in parameter coding also causes convergence problems.
can be implemented using fuzzy GAP control. If the true objective function minimum is not represented to sufficient

precision by the small number of bits, the region will potentially be

B. Evolution Programs moved to the wrong location.

Evolution programming is eloquently presented in the book by
Michalewicz [7]. These search algorithms are similar to genetic
algorithms but do not require the search parameters to be coded intdhe fuzzy GAP coding proposed in this paper for controlling the
binary strings. The parameters, rather, are represented as arraygesietic algorithm parameter coding shares many of the characteristics
floating point numbers. The coding effects of binary strings such @ the algorithms described in the previous section. The use of an
course resolution are thus not present. intermediate mapping between the genetic strings and the search

The evolutionary operators are problem dependent. Many of tapace parameters is also used in the fuzzy GAP coding—similar to
proposed operators are geometrically intuitive. The ability to includeth the ARGOT and Dynamic Parameter Encoding schemes. The
complex constraints in the search is a significant advantage. Howeggnetic string contains parameters which represent delta values. Each
the large search space and specialized operators required by tis€ggch space parameter is specified by the following equation:
algorithms can often make convergence very slow. If constraints are <

Ps =

IIl. Fuzzy Gap CODING

required in the search, the use of an evolutionary program rather
than a genetic algorithm is warranted. However, experience indicates
that many problems can be solved to a satisfactory accuracy usimgerep. is the search space parametey,is the genetic parameter,
the faster convergence of genetic algorithms and specifically by thés the number of bits in the genetic parametgr,is a specified

fuzzy GAP coding methodology proposed in this paper. parameter range, ard is a specified offset. This coding is illustrated

5 1)R+ 0 (1)
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Fig. 2. Shape of the distance function. The distance measure is scaled

0 — Offset (O) relative to the parameter range. A parameter in the center of the range will
have a distance measure of zero. A parameter value at the extremes of the
Fig. 1. Correspondence between a binary genetic string parameter andrtérge will have a distance measure of one.
floating point search parameter. The range), offset (O), and number
of binary digits (I) are used to specified the floating point parameter. By
controlling the offset and range, more accurate solutions are obtained using
the same number of binary bits.

in Fig. 1. The search space parameter is controlled by specifying an
appropriate range and offset. The offset is the minimum search space
parameter value and the range specifies the interval to be searched.
By adjusting the offset and reducing the range, increasingly more
accurate solutions can be coded into the binary string.

A. Convergence Criteria

Membership Value

To investigate convergence of fuzzy GAP coding, the criteria used
by Whitley et al.[13] is used. Convergence is measured by evaluating
the average number of bits which differ between all the genetic
strings. Each string is compared to every other string and the number
of different bits are counted. If the average number of differing bits
per string pair is less than a threshold, the genetic algorithm has

converged. This convergence criterion requires a large computatioRigl 3. Membership functions of the distance classes are constructed using

effort for searches with many bits or strings. triangles. A parameter near the center of the search range will have a distance
measure which is near zero and thus will have membership in the “very near
center” and “near center” classes.

0.5
Distance

B. Position Measurement

After the genetic strings have converged, the new range and Oﬁﬁ‘?tFuzzy Rules
for the search parameters are determined by measuring the distance o .
between the center of the current range and the best solution found "€ distance measure is divided into four fuzzy classesy near
in the search. The measurement is performed for each param&fHer, near center, far from centeand very far from center The

independently. The distance measure is relative to the range of Hii@nge in the range is also divided into four fuzzy clasdesrease
parameter and thus lies in the interval [0.0, 1.0] greatly, decrease slightly, increase slighthndincrease greatlyThe
' membership functions used for the distance measure classes are

2 <*" - O) — 1‘_ (2) shown in Fig. 3. The membership functions are positioned such that
R only two have a nonzero membership value at any value of the

This distance scaling function is shown in Fig. 2. A distance valféistance measure. The “change in range” membership functions are

of 0.0 indicates that the best solution was exactly in the center @¥nstructed in a similar manner and are shown in Fig. 4.

the range. A value of 1.0 indicates the best solution was either at thelhe fuzzy If-Then rules have the form

lower limit or upper limit of the range.

Heuristic rules are easily developed given this position measure-
ment. For example, if the best solution is near the center of tméhere the antecedent applies to the distance classes and the conse-
range, it makes sense that the range should be reduced in size. qUnt applies to the range change classes. The following fuzzy rules
best solution in the center of the range indicates that previous rarffscribe the changes in the range of the search parameter using these
adjustments were correct and the true solution is near the cenfd@sses.

Range adjustments in previous generations center the range on the If the distance is \(ery near centérthen the range change is
best solution. So, if the best solution is near one of the limits, the (decreased greatly

best solution is moving and the search space should be adjusted to If the distance is fear centey then the range change ise-
include more of the space about the best solution. Thus, increasing creased slightly.

the size and centering the range is reasonable. The use of fuzzy rules If the distance is far from centej then the range change is
allows easy and straightforward implementation of heuristic rules. (increased slightly.

d(z,O0,R) =

If (antecedent) then(consequent)
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1.0 K 1 OF THE TEN DIMENSIONAL OPTIMIZATION PROBLEM
i
B : Parameters Number of Strings = 100
3 vy Common to All Probability of Cross Over = 0.95
N L Three Genetic Probability of Mutation = 0.001
E=3 ) Algorithms
—.E_‘ 0.57 f}'\ Static Algorithm Average Number of Different Bits =
fﬂé o Convergence 0.10
o !
= ,/ Fuzzy GAP Coding | Average Number of Different Bits =
B Algorithm 20.0
Convergence
0.0 L — DPE Parameters Filter Time Constant = 50
0.0 1.0 20 Convergence Threshold = 0.95

Range Multiplier

Fig. 4. Range multiplier class membership functions are constructed USLEH . . . .
triangles. The lower and upper limits are vertical to control the minimum anHf1€ Standard genetic algorithm is designed for large parameter
maximum values of the range multiplier result. identification problems (for example, the hydraulic brake simulation

problem below) and seems to function quite well. Good solutions
) ) were obtained in a small number of generations. The basic algorithm
+ If the distance is \ery far from centeythen the range change s gerived from the simple genetic algorithm described by Goldberg
is (increased greatly 13].
Each of the search space parameters may have absolute limits on
allowable values. The range of allowable values is often known far Quadratic

many practical search problems. However, difficulty results if only the . . . L L .
Zhe ten-dimensional quadratic function is a simplistic toy opti-

above rules are used when the true solution is close to the absolut ation problem. However. the problem illustrates the advantage
range limits. If the best solution is near the range limit, the ran zation p - However, P - v 9

will be increased and will typically result in a new range which§ dynamic coding of genetic parameters and provides a convenient

exceeds the hard limits of the search. The range will then be resef g Panson of algorithm performance. The objective function to be

the original value and no progress will be made. To over come tlﬂl’n'mlzed is given by
difficulty, an additional (crisp) rule is used. . R

« If (hard limit is exceedgdthen enter range on best solution E(@) = Z“"" @)

with maximum range =t

Application of this rule will result in a much smaller search regiod "€ minimum error occurs when all elements of the veatoare
than determined by the fuzzy rules. Since the range is allowed 48'°- The minimum value of the error is also zero. _
shift and grow as better solutions are found, the reduction in range! "€ Parameters of the algorithms used for comparison are listed
is not a problem. An incorrect range reduction will result only if thd? Table I. The basic genetic algorithm parameters were common
problem is not sufficiently smooth and the reduced range does #t@ll the algorithms. The convergence parameters for the fuzzy
include the global minimum. Since the genetic algorithm is allowegPntrolled coding algorithm and the DPE method were selected to
to converge before changing the range, the static coding algoritffpduce good results. The effect of the convergence parameter on
would not find a better solution. the fuzzy controlled coding algorithm is discussed below. Since the

The result of evaluating the fuzzy rules is a set of membershii@tic coding algorithm does not adjust the parameter coding, a high
values in the output fuzzy classes. Since the range multiplier m@§gree of convergence was required to achieve good results. The
be crisp (a single value), the fuzzy decision must be defuzzifieMe convergence _algorlthm_ was used for the static algorithm as for
First, each output class membership function is multiplied by tH8€ fuzzy GAP coding algorithm. .
corresponding rule consequent membership value. For example, lef€ Search with each algorithm was repeated 20 times and the
the distance class membership be {06, 0.4, 0.0, 0.0}, where tggor of the best sqlutlgn at each ge_ner_atlon was averaged to produce
set of numbers represents the membership of a parameter in %cur\{es shown in Flg. 5. The solid line shows the performance of
distance classefvery near center, near center, far from center, veryn€ Stafic genetic algorithm. The search converges well before 500
far from cente}. The consequent membership values would thedenerations and typically finds the best possible solution given the
be {0.6,0.4,0.0,0.0}, where the set represents membership in tHd€CISION of the parameter coding. The DPE algorithm does slightly
range change classdslecrease greatly, decrease slightly, increas@etter than the static alg_orlt_h_m on average. However, tht_a best s_olutlon
slightly, increase greatly. The decrease greatlynembership function found by the D_PE is S|gn|f|can_tly bettgr than the static algorithm.
is multiplied by 0.6 and thelecrease slightlynembership function is 1he fuzzy algorithm makes continuous improvement on average. The
multiplied by 0.4. The other output membership functions are set Rgrformance of the fuzzy GAP coding algorithm is superior to the
zero. The defuzzification is then performed by computing the cenfd1€r algorithms in terms of the average final solution. The DPE

of mass of the weighted and aggregated output membership functigh§thod found solutions which were closer to the optimal values but
convergence to incorrect regions caused less reliable convergence on

average.
Additional experiments were also performed to determine the effect
The performance of the algorithm described above is now ibf the number of bits used to encode the parameters. The reader
lustrated. The performance is compared to the standard genstiould refer to Section IV-F for details.
algorithm with static coding and to the related Dynamic ParameterThe additional time required by the fuzzy control of the genetic
Encoding (DPE) method proposed by Schraudolph and Belew [1@]gorithm over the conventional algorithm is very small. The param-

IV. EXPERIMENTS
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Fig. 5. Comparison of the three algorithms on the ten-dimensional quadratic .
function. Note that the average error is displayed on a decibell{2@, ig. 6. Performance of _the three s_earches_ on the Rosenbroc_k “!”C“O”- The
ERROR) scale. The average error of 100 trials is given in decibels. objective function value is plotted in a deC|b_eI scalg. The solid Ilne_shows

the average performance of the static genetic algorithm over 100 trials and
5000 generations. The dotted line shows the performance of the fuzzy GAP
controlled coding and the dashed line shows the performance of the DPE
method. The static method and the DPE method produce equivalent results
and the results are graphically indistinguishable. The difference between the
fuzzy controlled coding algorithm and the static genetic algorithm is about 6
dB corresponding to a factor of about 4.

TABLE 1
GENETIC ALGORITHM PARAMETERS USED FOR
OPTIMIZATION OF N = 8 ROSENBROCK FUNCTION

Parameters Common to
All Three Genetic Algorithms

Number of Strings = 100
Probability of Cross Over = 0.95
Probability of Mutation = 0.001

Static Algorithm Convergence

Average number of different bits =
0.2

Fuzzy GAP Coding Algorithm
Convergence

Average number of different bits =
4.0

6 dB improvement over the static algorithm. The DPE performance
is similar to the static algorithm. The DPE algorithm converges on
solutions one parameter at a time. Since the DPE coding adjustments

do not allow widening the search region once it has been reduced,
errors made in the early part of the search are not corrected later
when other parameters allow location of better solutions. Unlike the
quadratic function, the DPE algorithm did not find the best solution of
eter adjustment is only performed after the convergence has béleathree methods. The poor performance of the three search methods
detected. The parameters were set such that convergence was raf@iyonstrates the difficulty of this problem.

detected and it was found that both the fuzzy gap coding algorithm

and the conventional algorithm took the same time to completlg. Bessel Function

When the parameters shown in Table | were used, the fuzzy 9%Hne of the greatest advantages of genetic algorithm search is the

;?gdég?h?;gggsma(rjeggged,dsazpr:(i)r)n(::r?eiiy;‘% 220/?) a?:;l?;;g\rf?slsgaﬁ)lility to avoid local minima. Any change in the algorithm should not
T o ifferfere with the location of global minima. To test both the ability

easily computed in this case. The percent increase in execution ti{g ind global minima and improve performance, the following error
will be far less as the complexity of the objective function increasefsu.nction was used: '

E(;E):%{Q—.JO<J°;1>—Jo<‘“8_1>} (5)
To provide a more difficult test of the coding algorithm, Rosen-
brock’s function [8] is used. This function provides a shallow slop@here Jo is a zero order Bessel function of the first kind. This
toward the minimum in some regions and a steep slope in othef®0 dimensional error function has a large number of local minima
This problem is badly conditioned and has significant curvatughd a global minimum at the coordinates (1.0, 1.0). The search
variation. The problem is a challenging optimization problem even fgPace extended from65.536—65.536. This large range prevents the
gradient techniques. Several gradient techniques have been develd@eafion of adequate solutions using a static genetic algorithm when
to solved this problem. However, the function provides a convenie@fly eight bits are used for each parameter.
comparison of algorithm performance. The function is The plot in Fig. 7 shows the performance of the three algorithms
N2 for the multimodal Bessel function. The parameters used were the
E(Z) = 100 Z (zig1 — 222 + (1 — ai)? (4) sameas the parameters_used for the quadrati_c function solution. The
pard DPE method and the static method had essentially equal performance.
where N = 8 was used. The error function is minimum when aIf‘D’Oth .met.hods failed to find adequate ;olutions dge to the course
elements of the vector have a value of 1.0. quantlzatlon but reached the best solution very quickly. T_he dottc_ed
The parameters required to achieve good search results are l('JTtE shows the performa_nce of the fuzzy controlled coding. This
ferent from those used for the quadratic function. The converge %rformance plot was clipped 2200 dB and actually e>.<ceeded
parameters need adjustment to prevent the search from converginén level on average. The fuzzy control of parameter coding proved
e

an incorrect region. The parameters used are listed in Table II. e vastly superior in this case.
parameters were not tuned but merely adjusted slightly to improve i ) )
the performance of the static and GPE algorithms. D. Hydraulic Brake Simulation
The performance of the three searches are shown in Fig. 6. Th&he fuzzy GAP coding algorithm was initially developed to solve a
fuzzy controlled coding shows the best average performance witlificult applied parameter identification problem. The objective was

Filter Time Constant = 100
Convergence Threshold = 0.99

DPE parameters

B. Rosenbrock’s Function
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Fig. 7. Performance of the three genetic algorithm coding algorithms on 2‘ 1

the multimodal Bessel function. The error is the average of 20 independent & -150 T | 1
trials. The DPE method and the static method exhibit essentially equal ;g ;

performance and are graphically indistinguishable. Both methods failed to

find adequate solutions due to the course quantization. The dotted line shows 200 ’ —

the performance of the fuzzy GAP coding algorithm. 0 20 40 60 80 100

Convergence Parameter

) . S Average Number of Different Bits
to develop an emulation model of the Boeing Commercial Airplane

Group hydraulic brake system to replace hardware with simulatiGig. 8. Effect of the average number of different bits on the average final
software. The use of hydraulic hardware in a simulation system lo8pOr- The_ minimum error achieved for eac_h trial is averaged over 10(_) tri_als
can be profibitvely expensive and tme consurming. Replacement4f, "% 1 value = poted a2 8 urcton of he comuergence crterion
the hardware with a computer model allows faster studies in systems

using the hydraulic system as a component.

A rough model of the brake system was developed with the helpTable Ill shows the results of the static coding and the fuzzy GAP
of a brake system engineer. The model is nonlinear, dynamic, aéefing control. The first row shows the final scaled sum of squared
required optimization over both continuous and discrete paramete@gors using the initial full range for all parameters. The fuzzy control
The discrete parameters were removed from the search since the sahreoding algorithm produced a final error which was reduced by
values were always found. In order to facilitate optimization of theore than 77%. The fuzzy GAP control algorithm was still making
model, the hydraulic hardware output was acquired correspondiifigprovements when the program terminated but the accuracy at the
to numerous inputs under exhaustive conditions. The fitness funct@fpping point was judged sufficient. The second line shows the
used for the genetic algorithm was derived directly from the rms errBgrformance of both algorithms using the reduced limits. Even though
between the model and hardware output. the limits were reduced by hand over the span of many different

The parameters of the model were found using the static genéﬂ'@ls, the fuzzy controlled coding algorithm still reduced the error
and fuzzy GAP coding algorithms described above. The mod@y approximately 25%. The fuzzy GAP control algorithm achieved
consists of 33 floating point parameters coded into 16 bits ea@PpProximately the same performance level using the initial parameter
Detailed discussion of the details of the model are beyond the scdpgdes in a single trial. Further processing further reduces the error but
of this paper and are described in [11]. the performance of the model was considered adequate for emulation

Using static genetic algorithms, the model error decreases rapi@fythe brake hardware and processing was halted.
during the early portion of the search but progress slows considerably
later. The slow progress later in the search indicates that reducing EheConvergence Criteria Experiment
search space will provide additional improvements in the hydraulic The only variable parameter available in the fuzzy GAP control
system model. The parameters have a rather large range of allowalifyrithm is the convergence criterion. If fewer than a specified
values and some have a much larger effect on the error than othekgrage number of bits are different between the genetic strings, the
Early attempts to reduce the search space were performed manugléhetic algorithm is considered to have converged. The effect of the
A new search space was specified around the best solution fowathvergence criterion is now examined.
by previous trials. This method improved the results in the geneticThe ten-dimensional quadratic problem is used for this study. The
search but was much too time consuming for practical applicatiorithal average error achieved by the genetic search is plotted in Fig. 8
The use of fuzzy rules to control the coding is a natural means & a function of the convergence parameter, the average number of
automating manual tuning. different bits. Each search is executed 100 times using the same

Since the processing time is extensive for this problem, a modifipdrameters as used for the fuzzy controlled genetic search in Section
convergence criterion is used to provide more updates for the dynanveA. The average error is seen to have a minimum at a value of
coding algorithm. The genetic search continues until all the string@®. Using a value of 20 for other problems, however, did not result
are similar as before and, additionally, if a specified number @f accurate search results. The same study was performed on the
generations have been performed without reduction in the error, tResenbrock function but the final average error was very flat through
algorithm is considered to have converged. Typically, a maximum tife lower region and large values of the criterion resulted in incorrect
5000 generations are performed and if no improvement is madesiolutions. It is reasonable to assume that a relatively small value is
2500 generations, the search is terminated. appropriate for most search problems. At very small values of the
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10 number of bits is changed. The original problem allowed an average
01 of 20 different bits in each string before convergence was declared.
5 0.001 Eight bits were used for each of the ten parameters. Therefore, 25% of
& 1E05 the total number of bits in a string were allowed to be different. The
ERT ; above experiment was repeated but the convergence parameter was
< 1E09 constrained to represent a fixed fraction of 0.25 rather than a constant
2 1E-11 number of different bits. For example, a convergence parameter of
é 1EA3 10 was used when only four bits were used for each parameter and
1E-15 a convergence parameter of 45 was used when each parameter was
1EA7 X coded with 18 bhits. The performance identified with “Fuzzy (0.25)"

0 5 0 15 20 25 30 35 in Fig. 9 indicates that a small number of bits provides more accurate
solutions with less work. The fuzzy GAP coding algorithm exceeds

the performance of the static algorithm even when as many as 24
bits are used to code each parameter.

Bits Per Parameter
—e— Minimum Conventional —a— Conventional
—a— Fuzzy (20) —o— Fuzzy (0.25)

Fig. 9. Plot of the average final error achieved by genetic search as a function V. CONCLUSIONS AND FUTURE WORK

of the number of bits used to code the search parameters. Each point in th&#he fuzzy GAP control of genetic algorithm parameter coding
plot represents the average of 100 independent trials. The minimum possigleshown to be an effective method for improving the resolution

error using a static coding genetic algorithm is shown for comparison. T@} . .
final average error for the static algorithm, the fuzzy GAP coding algorith f genetic searches. The algorithm has also been shown to be

with a constant convergence parameter of 20, and the fuzzy GAP codfffpre reliable than other dynamic coding algorithms providing more
algorithm with a variable convergence parameter is shown. accurate solutions in fewer generations. This occurred despite the

use of many of the concepts of these other algorithms in fuzzy

L. . . ) GAP coding. The algorithm was shown to converge even when the
convergence criterion, little adjustment of the parameter coding WHbjective function had numerous local minima

be allowed and therefore little advantage will be gained by using the-l-he fuzzy rules used to control the genetic search in this paper

fuzzy cqntroll_ed coding. If the convergence parameter iS_ too IargWere derived heuristically. Though the rule performed very well,
the coding will be (_:hanged befor(_a Proper convergence 1s reachf‘éjchniques for automatic generation of fuzzy rules could be used
The premature coding changes will result in searches in th? Wroﬁgprovide more robust rules. The rules used in this work were devel-
areas and thus poor se_arch performance. A moderate value is alv‘@[yéd, coded, and applied to the test problems without modification.
suggested unless multiple searches can be performed. Since the performance of the genetic algorithm under control of the

rules was significantly better than without the fuzzy control, no effort
F. Parameter Size Experiment was made to improve the rules.

Another variable not considered in the studies above is the effeciThe parameter coding is modified after the genetic algorithm has
of the number of bits used to code each parameter in the search. Eggitverged and thus improvements (using the same number of bits for
bits were used for each parameter in all of the experiments descrilgegh parameter) are only available after an additional genetic search.
above. If genetic algorithm search performance were not a functiSearch time is increased to provide the increase in solution accuracy.
of the number of bits used to code the parameters, arbitrary accuracy
could be achieved by increasing the number of bits used to code each ACKNOWLEDGMENT

floating point search parameter. However, increasing the number of h h d lik knowledae Boeing Ph Work
bits for each parameter results in an increase in the dimension of thd N€ authors would like to acknowledge Boeing Phantom Works

search space and thus effects the search and the Boeing Commercial Airplane Group for support of this work.
The quadratic problem is again used for comparison. Fig. 9 sho%ge contribution of R. von Doenhoff of the Boeing Commercial

the average final error obtained for 100 trials. The algorithm para{%\l_rplane Group was critical to the development of the hydraulic brake

eters are the same as used in Section IV-A and are shown in Tabl&/Stem model. The review of this work and subsequent suggestions

Due to the effects of quantization, the static algorithm may obtainbg Prof. J. N. Hwang of the University of Washington are greatly
minimum error determined by the number of bits used to code tﬁgpreuated.
parameters. The minimum possible error is shown for comparison.

The static algorithm search achieves the minimum possible error

when the number of bits is less than 10. As the number of bits i§1] P. Arabshahi, J. J. Choi, R. J. Marks, Il, and T. P. Caudell, “Fuzzy
increased, the static algorithm does not improve the search accuracy. control of backpropagation,” iRroc. 1st IEEE Int. Conf. Fuzzy Systems
The search is slowed due to the increase in the dimension of thg] é’FL,JAZril-JISEhEaﬁi‘%Z)Jsg?loti)leRgoj Cl\ﬁérll\(/lsaril 1§2§'T9PF-) 98;;3;5- Fuzzy pa-
problem but only 1000 generatlons- were aII_owed before termlnatloh rémeter adaﬁtafioﬁ in op‘tim.iza-ltion: Sc’>m7e neurél n-et traininlq examples,”
of the search. The fuzzy GAP coding algorithm shows that when a  |EEg Computat. Sci. Eng1996.

constant convergence parameter is used (indicated by the line label@ll D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-

“Fuzzy (20)"), the smaller the number of bits, the more accurate chine Learning New York: Addison-Wesley, 1989.

. : ; ; ; [4] J. J. Choi, P. Arabshahi, R. J. Marks Il, and T. P. Caudell, “Fuzzy
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as the number of bits increases, the dimension also increases a8yl S. Haykin, Neural Networks: A Comprehensive FoundatioNew
convergence is more difficult to obtain. Thus, the search is much York: IEEE Press, 1994, pp. 201-205.
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Genetic K-Means Algorithm hierarchy. Partitional clustering algorithms generate a single partition,
with a specified or estimated number of nonoverlapping clusters, of
K. Krishna and M. Narasimha Murty the data in an attempt to recover natural groups present in the data. In

this paper, we confine our attention to partitional clustering of a given
set of real-valued vectors, where the dissimilarity measure between
Abstract—n this paper, we propose a novel hybrid genetic algorithm  two vectors is the Euclidean distance between them.

(GA) that finds a globally optimal partition of a given data into a specified One of the important problems in partitional clustering is to find a
number of clusters. GA’s used earlier in clustering employ either an .. f the i ith ii f ol h
expensive crossover operator to generate valid child chromosomes from pa.\rtlltlc.)n of the glven. df"‘ta’ with a SPeF' ied number 0. ¢ l.JSters" that
parent chromosomes or a costly fitness function or both. To circumvent Minimizes the total within cluster variation (TWCV) (which is defined
these expensive operations, we hybridize GA with a classical gradient below). We address this problem, viz., minimization of TWCV, in the
descent algorithm used in clustering viz., K-means algorithm. Hence, the s asent paper. In general, partitional clustering algorithms are iterative
name genetic K-means algorithm (GKA). We define K-means operator, d hill climbi d v th t | | mini
one-step of K-means algorithm, and use it in GKA as a search operator 2Nd il climbing a_'n USUE_" Yy ) ey Cor.“/erge 0 ‘_"l oca m!n'mum'
instead of crossover. We also define a biased mutation operator specific Further, the associated objective functions are highly nonlinear and
to clustering called distance-based-mutation. Using finite Markov chain  multimodal. As a consequence, it is very difficult to find an optimal
theory, we prove that the GKA converges to the global optimum. Itis ob- partition of the data using hill climbing techniques. The algorithms

served in the simulations that GKA converges to the best known optimum based on combinatorial ontimization such as integer programmin
corresponding to the given data in concurrence with the convergence ! ! pumizat u Integer prog Ing,

result. It is also observed that GKA searches faster than some of the dynamic programming and, branch and bound methods are expensive
other evolutionary algorithms used for clustering. ever for moderate number of data points and moderate number of
Index Terms— Clustering, genetic algorithms, global optimization, clusters. A detailed discussion on clustering algorithms can be found
K-means algorithm, unsupervised learning. in [3].
The simplest and most popular among iterative and hill climbing
clustering algorithms is the K-means algorithm (KMA). As mentioned
. INTRODUCTION above, this algorithm may converge to a suboptimal partition. Since
Evolutionary algorithms are stochastic optimization algorithmstochastic optimization approaches are good at avoiding convergence
based on the mechanism of natural selection and natural geneticsfd]a locally optimal solution, these approaches could be used to
They perform parallel search in complex search spaces. Evolutiongind a globally optimal solution. The stochastic approaches used in
algorithms include genetic algorithms, evolution strategies and evoltlustering include those based on simulated annealing, genetic algo-
tionary programming. We deal with genetic algorithms in this papertithms, evolution strategies and evolutionary programming [4]-[11].
Genetic algorithms (GA's) were originally proposed by Holland [2]Typically, these stochastic approaches take a large amount of time to
GA'’s have been applied to many function optimization problems arénverge to a globally optimal partition. In this paper, we propose an
are shown to be good in finding optimal and near optimal solutiongigorithm based on GA, prove that it converges to the global optimum
Their robustness of search in large search spaces and their domgif probability one and compare its performance with that of some
independent nature motivated their applications in various fields ligg these algorithms.
pattern recognition, machine learning, VLSI design, etc. In this paper,Genetic algorithms (GA’s) work on a coding of the parameter
Manuscript received September 4, 1995; revised August 27, 1997 a%%t over which the search has to be performed, rather_than the
March 10, 1998. parameters themselves. These encoded parameters aresoalkiehs
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of aCi?\l”Cm B;}“Q?'We,tiﬁ?r?l%'ndii (e'”:a”]i kCKViSh”ét‘@e;-i_iSC-emet-id”)A is the objective function value at the corresponding parameters.
tométioﬁ, Irliziia)rq IIsn;Ntiltute gf Secl?;g?nBaongalglrfre]zpuSg(r)Olg,erllﬁZiaan(e-m:l(EA’S solve optimization .prob!ems “S'“9 a populatl(_)n of a _flxed
mnm@csa.iisc.ernet.in). number, called thg@opulation sizeof solutions. A solution consists
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