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angle every 1.5 s such that this approach can deal in reasonable
response time with common obstacles that might cause collisions in
indoor environments.

VI. CONCLUSIONS

In this study, a vision-based obstacle avoidance approach for ALV
navigation has been proposed. The vehicle can detect obstacles,
including walls and objects in the way, in an unknown indoor
environment and safe collision-free paths can be generated from
quadratic classifier design in real time. According to the collision-
free path, the vehicle can modify the turning angle of the wheels
to achieve the purpose of collision avoidance. Besides, a systematic
method has been proposed for generating input patterns for classifier
design to compute safe quadratic paths.

The use of quadratic paths instead of linear ones produces smoother
paths and prevents dead-reckoning navigation to increase the flexi-
bility of ALV applications in unknown complex environments with
obstacles. Additionally, quadratic paths also match the ALV trajectory
better than linear ones. A method for computing the optimal turning
angle to avoid collisions in real time has also been proposed. The
proposed approach has been implemented on a real ALV and a lot of
successful navigations confirm the feasibility of the approach.
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Dynamic Fuzzy Control of Genetic
Algorithm Parameter Coding

Robert J. Streifel, Robert J. Marks, II, Russell Reed,
Jai J. Choi, and Michael Healy

Abstract—An algorithm for adaptively controlling genetic algorithm
parameter (GAP) coding using fuzzy rules is presented. The fuzzy GAP
coding algorithm is compared to the dynamic parameter encoding scheme
proposed by Schraudolph and Belew. The performance of the algorithm
on a hydraulic brake emulator parameter identification problem is
investigated. Fuzzy GAP coding control is shown to dramatically increase
the rate of convergence and accuracy of genetic algorithms.

I. INTRODUCTION

Genetic algorithms are powerful search techniques which have
been applied to many practical problems. However, the accuracy of
the final solution found by binary coded genetic algorithms is limited
by the number of bits used to code search parameters into strings.
The low resolution of binary coding does not seriously affect the
solution for many problems (e.g., integer and combinatorial searches).
Accuracy becomes a more important consideration when

1) the search space consists of floating point parameters;
2) the parameters have a large dynamic range;
3) a relatively small number of bits are used to code the param-

eters.

The standard genetic algorithm uses no problem specific informa-
tion except the relative fitness of the coded binary strings. Lack of
gradient information can cause slow progress in search regions where
the objective function has nearly zero gradient. The combination of
low slope areas and low resolution binary coding can cause slow
convergence on many practical problems.

The fuzzy genetic algorithm parameter (GAP) coding methodology
presented in this paper is specifically designed to improve the search
performance on a parameter identification problem. Conventional
genetic algorithm parameter coding is static, the coding is constant for
the entire search. This results in slow convergence. Greater accuracy
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in the final solution is obtained and convergence speed is increased by
dynamically controlling the coding of the search space. The addition
of fuzzy rules for control of coding changes provides more uniform
performance in genetic algorithm searches. Similar fuzzy control
of learning and optimization parameters based on implementation
heuristics have been applied to error back propagation training of
multilayered perceptrons [1], [2], [4], [5], random optimization [2],
[4], ART neural networks [2], [4], and Kohonen neural networks [12].

The following section describes previous work on improving the
performance of genetic searches by dynamically controlling the
representation of the search parameters in the coding. The use
of fuzzy rules to dynamically control GAP coding is described
in Section III. Section IV contains results of fuzzy GAP coding
experiments and compares the performance to the standard genetic
algorithm with static coding and the genetic algorithm parameter
coding method proposed by Schraudolph and Belew [10].

II. BACKGROUND

Several approaches, including parameter coding control, have been
proposed to improve the performance of genetic algorithm search. A
brief overview is appropriate.

A. Adaptive Representation Genetic Optimizer Technique (ARGOT)

Schaefer [9] proposed an algorithm for modifying the represen-
tation of search parameters by controlling coding. The coding is
adapted as the genetic algorithm searches by means of an intermediate
mapping. The intermediate mapping converts the genetic strings to
the search parameters. A standard genetic algorithm is used to provide
the search using numerous triggered operators to adapt the parameter
coding. These operators are applied to the coding transformation
when certain conditions are detected.

A variety of population measurements are used to trigger the
operators. Measurements such as the degree of convergence, the
position of the cluster of strings, and the variance of the cluster are
used. The measurements dictate the change in the number of bits in
the parameter coding as well as the shift, contraction, or expansion
of the search region.

Although effective, the algorithm requires the setting of many
algorithm parameters and thresholds. These algorithm parameters
can be difficult to define and make implementation rather difficult.
Schaefer’s heuristics for dynamic coding, roving search regions,
region centering, and expansion and contraction of the search region,
can be implemented using fuzzy GAP control.

B. Evolution Programs

Evolution programming is eloquently presented in the book by
Michalewicz [7]. These search algorithms are similar to genetic
algorithms but do not require the search parameters to be coded into
binary strings. The parameters, rather, are represented as arrays of
floating point numbers. The coding effects of binary strings such as
course resolution are thus not present.

The evolutionary operators are problem dependent. Many of the
proposed operators are geometrically intuitive. The ability to include
complex constraints in the search is a significant advantage. However,
the large search space and specialized operators required by these
algorithms can often make convergence very slow. If constraints are
required in the search, the use of an evolutionary program rather
than a genetic algorithm is warranted. However, experience indicates
that many problems can be solved to a satisfactory accuracy using
the faster convergence of genetic algorithms and specifically by the
fuzzy GAP coding methodology proposed in this paper.

C. Delta Coding

The delta coding algorithm proposed in [13] also motivates compo-
nents of the fuzzy GAP coding algorithm. The delta coding algorithm
begins by performing a standard genetic search until the population
of strings has converged.

After convergence, the best solution found by the genetic algorithm
is saved. The genetic algorithm is restarted with the search parameters
being offsets from the previous best solution rather than the actual
parameter values. This has been shown to improve search since the
search space is advantageously altered in this step.

After each delta iteration, a specified number of bits are removed
from the delta representation. The delta values are reinitialized and
the genetic search is restarted if the delta values are not all zero.
If all delta values are zero after an iteration, the number of bits is
increased. This process is repeated until a suitable solution is found.

The use of delta values in this method is similar to both the ARGOT
technique and the fuzzy GAP coding adaptation method. However, an
intermediate mapping is used in the latter two techniques to change
the representation rather than merely changing the number of bits, the
strategy used in the delta coding method. Mathias and Whitley present
a thorough study of the algorithm in [6] and discuss the benefits of
using Gray coding in genetic algorithms.

D. Dynamic Parameter Encoding

The dynamic parameter encoding (DPE) algorithm proposed by
Schraudolph and Belew [10] has also provided significant inspiration
for fuzzy GAP coding. In the encoding procedure proposed by
Schraudolph and Belew, the search space for each parameter is
defined by an offset and a range. The genetic string can then be
thought to represent numbers in the interval [0.0, 1.0].

The DPE algorithm considers only a few of the most significant
bits of the search. When the population has converged, the search
space is reduced by half using a histogram filtering approach. The
convergence of each parameter is considered independently and no
initialization is performed between the genetic iterations. The search
regions are not moved and are only reduced in size.

The independent parameter convergence criteria causes difficulty
with some problems. The experiment on the eight dimensional
Rosenbrock’s function described in Section IV is a good example.
Due to the random initialization, some parameters will converge
before others. But the converged parameters may not be in the correct
region due to the shape of the objective function. The small number
of bits used in parameter coding also causes convergence problems.
If the true objective function minimum is not represented to sufficient
precision by the small number of bits, the region will potentially be
moved to the wrong location.

III. FUZZY GAP CODING

The fuzzy GAP coding proposed in this paper for controlling the
genetic algorithm parameter coding shares many of the characteristics
of the algorithms described in the previous section. The use of an
intermediate mapping between the genetic strings and the search
space parameters is also used in the fuzzy GAP coding—similar to
both the ARGOT and Dynamic Parameter Encoding schemes. The
genetic string contains parameters which represent delta values. Each
search space parameter is specified by the following equation:

ps =
pg

2l � 1
R+O (1)

whereps is the search space parameter,pg is the genetic parameter,
l is the number of bits in the genetic parameter,R is a specified
parameter range, andO is a specified offset. This coding is illustrated
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Fig. 1. Correspondence between a binary genetic string parameter and the
floating point search parameter. The range(R); offset (O); and number
of binary digits (l) are used to specified the floating point parameter. By
controlling the offset and range, more accurate solutions are obtained using
the same number of binary bits.

in Fig. 1. The search space parameter is controlled by specifying an
appropriate range and offset. The offset is the minimum search space
parameter value and the range specifies the interval to be searched.
By adjusting the offset and reducing the range, increasingly more
accurate solutions can be coded into the binary string.

A. Convergence Criteria

To investigate convergence of fuzzy GAP coding, the criteria used
by Whitleyet al. [13] is used. Convergence is measured by evaluating
the average number of bits which differ between all the genetic
strings. Each string is compared to every other string and the number
of different bits are counted. If the average number of differing bits
per string pair is less than a threshold, the genetic algorithm has
converged. This convergence criterion requires a large computational
effort for searches with many bits or strings.

B. Position Measurement

After the genetic strings have converged, the new range and offset
for the search parameters are determined by measuring the distance
between the center of the current range and the best solution found
in the search. The measurement is performed for each parameter
independently. The distance measure is relative to the range of the
parameter and thus lies in the interval [0.0, 1.0]

d(x; O;R) = 2
x�O

R
� 1 : (2)

This distance scaling function is shown in Fig. 2. A distance value
of 0.0 indicates that the best solution was exactly in the center of
the range. A value of 1.0 indicates the best solution was either at the
lower limit or upper limit of the range.

Heuristic rules are easily developed given this position measure-
ment. For example, if the best solution is near the center of the
range, it makes sense that the range should be reduced in size. The
best solution in the center of the range indicates that previous range
adjustments were correct and the true solution is near the center.
Range adjustments in previous generations center the range on the
best solution. So, if the best solution is near one of the limits, the
best solution is moving and the search space should be adjusted to
include more of the space about the best solution. Thus, increasing
the size and centering the range is reasonable. The use of fuzzy rules
allows easy and straightforward implementation of heuristic rules.

Fig. 2. Shape of the distance function. The distance measure is scaled
relative to the parameter range. A parameter in the center of the range will
have a distance measure of zero. A parameter value at the extremes of the
range will have a distance measure of one.

Fig. 3. Membership functions of the distance classes are constructed using
triangles. A parameter near the center of the search range will have a distance
measure which is near zero and thus will have membership in the “very near
center” and “near center” classes.

C. Fuzzy Rules

The distance measure is divided into four fuzzy classes:very near
center, near center, far from center, and very far from center. The
change in the range is also divided into four fuzzy classes:decrease
greatly, decrease slightly, increase slightly, andincrease greatly. The
membership functions used for the distance measure classes are
shown in Fig. 3. The membership functions are positioned such that
only two have a nonzero membership value at any value of the
distance measure. The “change in range” membership functions are
constructed in a similar manner and are shown in Fig. 4.

The fuzzy If-Then rules have the form

If (antecedent) then(consequent)

where the antecedent applies to the distance classes and the conse-
quent applies to the range change classes. The following fuzzy rules
describe the changes in the range of the search parameter using these
classes.

• If the distance is (very near center) then the range change is
(decreased greatly).

• If the distance is (near center) then the range change is (de-
creased slightly).

• If the distance is (far from center) then the range change is
(increased slightly).
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Fig. 4. Range multiplier class membership functions are constructed using
triangles. The lower and upper limits are vertical to control the minimum and
maximum values of the range multiplier result.

• If the distance is (very far from center) then the range change
is (increased greatly).

Each of the search space parameters may have absolute limits on
allowable values. The range of allowable values is often known for
many practical search problems. However, difficulty results if only the
above rules are used when the true solution is close to the absolute
range limits. If the best solution is near the range limit, the range
will be increased and will typically result in a new range which
exceeds the hard limits of the search. The range will then be reset to
the original value and no progress will be made. To over come this
difficulty, an additional (crisp) rule is used.

• If (hard limit is exceeded) then (center range on best solution
with maximum range).

Application of this rule will result in a much smaller search region
than determined by the fuzzy rules. Since the range is allowed to
shift and grow as better solutions are found, the reduction in range
is not a problem. An incorrect range reduction will result only if the
problem is not sufficiently smooth and the reduced range does not
include the global minimum. Since the genetic algorithm is allowed
to converge before changing the range, the static coding algorithm
would not find a better solution.

The result of evaluating the fuzzy rules is a set of membership
values in the output fuzzy classes. Since the range multiplier must
be crisp (a single value), the fuzzy decision must be defuzzified.
First, each output class membership function is multiplied by the
corresponding rule consequent membership value. For example, let
the distance class membership be {06, 0.4, 0.0, 0.0}, where the
set of numbers represents the membership of a parameter in the
distance classesfvery near center, near center, far from center, very
far from centerg: The consequent membership values would then
be f0:6; 0:4; 0:0; 0:0g, where the set represents membership in the
range change classesfdecrease greatly, decrease slightly, increase
slightly, increase greatlyg: Thedecrease greatlymembership function
is multiplied by 0.6 and thedecrease slightlymembership function is
multiplied by 0.4. The other output membership functions are set to
zero. The defuzzification is then performed by computing the center
of mass of the weighted and aggregated output membership functions.

IV. EXPERIMENTS

The performance of the algorithm described above is now il-
lustrated. The performance is compared to the standard genetic
algorithm with static coding and to the related Dynamic Parameter
Encoding (DPE) method proposed by Schraudolph and Belew [10].

TABLE I
GENETIC ALGORITHM PARAMETERS FOR SOLUTION

OF THE TEN DIMENSIONAL OPTIMIZATION PROBLEM

The standard genetic algorithm is designed for large parameter
identification problems (for example, the hydraulic brake simulation
problem below) and seems to function quite well. Good solutions
were obtained in a small number of generations. The basic algorithm
is derived from the simple genetic algorithm described by Goldberg
[3].

A. Quadratic

The ten-dimensional quadratic function is a simplistic toy opti-
mization problem. However, the problem illustrates the advantage
of dynamic coding of genetic parameters and provides a convenient
comparison of algorithm performance. The objective function to be
minimized is given by

E(~x) =

10

i=1

x
2

i : (3)

The minimum error occurs when all elements of the vector~x are
zero. The minimum value of the error is also zero.

The parameters of the algorithms used for comparison are listed
in Table I. The basic genetic algorithm parameters were common
to all the algorithms. The convergence parameters for the fuzzy
controlled coding algorithm and the DPE method were selected to
produce good results. The effect of the convergence parameter on
the fuzzy controlled coding algorithm is discussed below. Since the
static coding algorithm does not adjust the parameter coding, a high
degree of convergence was required to achieve good results. The
same convergence algorithm was used for the static algorithm as for
the fuzzy GAP coding algorithm.

The search with each algorithm was repeated 20 times and the
error of the best solution at each generation was averaged to produce
the curves shown in Fig. 5. The solid line shows the performance of
the static genetic algorithm. The search converges well before 500
generations and typically finds the best possible solution given the
precision of the parameter coding. The DPE algorithm does slightly
better than the static algorithm on average. However, the best solution
found by the DPE is significantly better than the static algorithm.
The fuzzy algorithm makes continuous improvement on average. The
performance of the fuzzy GAP coding algorithm is superior to the
other algorithms in terms of the average final solution. The DPE
method found solutions which were closer to the optimal values but
convergence to incorrect regions caused less reliable convergence on
average.

Additional experiments were also performed to determine the effect
of the number of bits used to encode the parameters. The reader
should refer to Section IV-F for details.

The additional time required by the fuzzy control of the genetic
algorithm over the conventional algorithm is very small. The param-
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Fig. 5. Comparison of the three algorithms on the ten-dimensional quadratic
function. Note that the average error is displayed on a decibel (20log10
ERROR) scale. The average error of 100 trials is given in decibels.

TABLE II
GENETIC ALGORITHM PARAMETERS USED FOR

OPTIMIZATION OF N = 8 ROSENBROCK FUNCTION

eter adjustment is only performed after the convergence has been
detected. The parameters were set such that convergence was rarely
detected and it was found that both the fuzzy gap coding algorithm
and the conventional algorithm took the same time to complete.
When the parameters shown in Table I were used, the fuzzy gap
coding algorithm required approximately 454.2 s and the conventional
algorithm required 453.4 s, an increase of 0.2%. The problem is very
easily computed in this case. The percent increase in execution time
will be far less as the complexity of the objective function increases.

B. Rosenbrock’s Function

To provide a more difficult test of the coding algorithm, Rosen-
brock’s function [8] is used. This function provides a shallow slope
toward the minimum in some regions and a steep slope in others.
This problem is badly conditioned and has significant curvature
variation. The problem is a challenging optimization problem even for
gradient techniques. Several gradient techniques have been developed
to solved this problem. However, the function provides a convenient
comparison of algorithm performance. The function is

E(~x) = 100

N�2

i=0

(xi+1 � x
2

i )
2 + (1� xi)

2 (4)

whereN = 8 was used. The error function is minimum when all
elements of the vector have a value of 1.0.

The parameters required to achieve good search results are dif-
ferent from those used for the quadratic function. The convergence
parameters need adjustment to prevent the search from converging on
an incorrect region. The parameters used are listed in Table II. The
parameters were not tuned but merely adjusted slightly to improve
the performance of the static and GPE algorithms.

The performance of the three searches are shown in Fig. 6. The
fuzzy controlled coding shows the best average performance with a

Fig. 6. Performance of the three searches on the Rosenbrock function. The
objective function value is plotted in a decibel scale. The solid line shows
the average performance of the static genetic algorithm over 100 trials and
5000 generations. The dotted line shows the performance of the fuzzy GAP
controlled coding and the dashed line shows the performance of the DPE
method. The static method and the DPE method produce equivalent results
and the results are graphically indistinguishable. The difference between the
fuzzy controlled coding algorithm and the static genetic algorithm is about 6
dB corresponding to a factor of about 4.

6 dB improvement over the static algorithm. The DPE performance
is similar to the static algorithm. The DPE algorithm converges on
solutions one parameter at a time. Since the DPE coding adjustments
do not allow widening the search region once it has been reduced,
errors made in the early part of the search are not corrected later
when other parameters allow location of better solutions. Unlike the
quadratic function, the DPE algorithm did not find the best solution of
the three methods. The poor performance of the three search methods
demonstrates the difficulty of this problem.

C. Bessel Function

One of the greatest advantages of genetic algorithm search is the
ability to avoid local minima. Any change in the algorithm should not
interfere with the location of global minima. To test both the ability
to find global minima and improve performance, the following error
function was used:

E(~x) =
1

2
2� J0

x0 � 1

4
� J0

x1 � 1

8
(5)

where J0 is a zero order Bessel function of the first kind. This
two dimensional error function has a large number of local minima
and a global minimum at the coordinates (1.0, 1.0). The search
space extended from�65.536–65.536. This large range prevents the
location of adequate solutions using a static genetic algorithm when
only eight bits are used for each parameter.

The plot in Fig. 7 shows the performance of the three algorithms
for the multimodal Bessel function. The parameters used were the
same as the parameters used for the quadratic function solution. The
DPE method and the static method had essentially equal performance.
Both methods failed to find adequate solutions due to the course
quantization but reached the best solution very quickly. The dotted
line shows the performance of the fuzzy controlled coding. This
performance plot was clipped at�200 dB and actually exceeded
that level on average. The fuzzy control of parameter coding proved
to be vastly superior in this case.

D. Hydraulic Brake Simulation

The fuzzy GAP coding algorithm was initially developed to solve a
difficult applied parameter identification problem. The objective was
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Fig. 7. Performance of the three genetic algorithm coding algorithms on
the multimodal Bessel function. The error is the average of 20 independent
trials. The DPE method and the static method exhibit essentially equal
performance and are graphically indistinguishable. Both methods failed to
find adequate solutions due to the course quantization. The dotted line shows
the performance of the fuzzy GAP coding algorithm.

to develop an emulation model of the Boeing Commercial Airplane
Group hydraulic brake system to replace hardware with simulation
software. The use of hydraulic hardware in a simulation system loop
can be prohibitively expensive and time consuming. Replacement of
the hardware with a computer model allows faster studies in systems
using the hydraulic system as a component.

A rough model of the brake system was developed with the help
of a brake system engineer. The model is nonlinear, dynamic, and
required optimization over both continuous and discrete parameters.
The discrete parameters were removed from the search since the same
values were always found. In order to facilitate optimization of the
model, the hydraulic hardware output was acquired corresponding
to numerous inputs under exhaustive conditions. The fitness function
used for the genetic algorithm was derived directly from the rms error
between the model and hardware output.

The parameters of the model were found using the static genetic
and fuzzy GAP coding algorithms described above. The model
consists of 33 floating point parameters coded into 16 bits each.
Detailed discussion of the details of the model are beyond the scope
of this paper and are described in [11].

Using static genetic algorithms, the model error decreases rapidly
during the early portion of the search but progress slows considerably
later. The slow progress later in the search indicates that reducing the
search space will provide additional improvements in the hydraulic
system model. The parameters have a rather large range of allowable
values and some have a much larger effect on the error than others.
Early attempts to reduce the search space were performed manually.
A new search space was specified around the best solution found
by previous trials. This method improved the results in the genetic
search but was much too time consuming for practical applications.
The use of fuzzy rules to control the coding is a natural means of
automating manual tuning.

Since the processing time is extensive for this problem, a modified
convergence criterion is used to provide more updates for the dynamic
coding algorithm. The genetic search continues until all the strings
are similar as before and, additionally, if a specified number of
generations have been performed without reduction in the error, the
algorithm is considered to have converged. Typically, a maximum of
5000 generations are performed and if no improvement is made in
2500 generations, the search is terminated.

TABLE III
PERFORMANCE COMPARISON OF THEHYDRAULIC BRAKE

EMULATION OPTIMIZATION USING GENETIC ALGORITHMS

Fig. 8. Effect of the average number of different bits on the average final
error. The minimum error achieved for each trial is averaged over 100 trials
and the final value is plotted as a function of the convergence criterion
parameter. The average final error is plotted on a decibel scale.

Table III shows the results of the static coding and the fuzzy GAP
coding control. The first row shows the final scaled sum of squared
errors using the initial full range for all parameters. The fuzzy control
of coding algorithm produced a final error which was reduced by
more than 77%. The fuzzy GAP control algorithm was still making
improvements when the program terminated but the accuracy at the
stopping point was judged sufficient. The second line shows the
performance of both algorithms using the reduced limits. Even though
the limits were reduced by hand over the span of many different
trials, the fuzzy controlled coding algorithm still reduced the error
by approximately 25%. The fuzzy GAP control algorithm achieved
approximately the same performance level using the initial parameter
ranges in a single trial. Further processing further reduces the error but
the performance of the model was considered adequate for emulation
of the brake hardware and processing was halted.

E. Convergence Criteria Experiment

The only variable parameter available in the fuzzy GAP control
algorithm is the convergence criterion. If fewer than a specified
average number of bits are different between the genetic strings, the
genetic algorithm is considered to have converged. The effect of the
convergence criterion is now examined.

The ten-dimensional quadratic problem is used for this study. The
final average error achieved by the genetic search is plotted in Fig. 8
as a function of the convergence parameter, the average number of
different bits. Each search is executed 100 times using the same
parameters as used for the fuzzy controlled genetic search in Section
IV-A. The average error is seen to have a minimum at a value of
20. Using a value of 20 for other problems, however, did not result
in accurate search results. The same study was performed on the
Rosenbrock function but the final average error was very flat through
the lower region and large values of the criterion resulted in incorrect
solutions. It is reasonable to assume that a relatively small value is
appropriate for most search problems. At very small values of the
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Fig. 9. Plot of the average final error achieved by genetic search as a function
of the number of bits used to code the search parameters. Each point in the
plot represents the average of 100 independent trials. The minimum possible
error using a static coding genetic algorithm is shown for comparison. The
final average error for the static algorithm, the fuzzy GAP coding algorithm
with a constant convergence parameter of 20, and the fuzzy GAP coding
algorithm with a variable convergence parameter is shown.

convergence criterion, little adjustment of the parameter coding will
be allowed and therefore little advantage will be gained by using the
fuzzy controlled coding. If the convergence parameter is too large,
the coding will be changed before proper convergence is reached.
The premature coding changes will result in searches in the wrong
areas and thus poor search performance. A moderate value is always
suggested unless multiple searches can be performed.

F. Parameter Size Experiment

Another variable not considered in the studies above is the effect
of the number of bits used to code each parameter in the search. Eight
bits were used for each parameter in all of the experiments described
above. If genetic algorithm search performance were not a function
of the number of bits used to code the parameters, arbitrary accuracy
could be achieved by increasing the number of bits used to code each
floating point search parameter. However, increasing the number of
bits for each parameter results in an increase in the dimension of the
search space and thus effects the search.

The quadratic problem is again used for comparison. Fig. 9 shows
the average final error obtained for 100 trials. The algorithm param-
eters are the same as used in Section IV-A and are shown in Table I.
Due to the effects of quantization, the static algorithm may obtain a
minimum error determined by the number of bits used to code the
parameters. The minimum possible error is shown for comparison.
The static algorithm search achieves the minimum possible error
when the number of bits is less than 10. As the number of bits is
increased, the static algorithm does not improve the search accuracy.
The search is slowed due to the increase in the dimension of the
problem but only 1000 generations were allowed before termination
of the search. The fuzzy GAP coding algorithm shows that when a
constant convergence parameter is used (indicated by the line labeled
“Fuzzy (20)”), the smaller the number of bits, the more accurate
the final solution. The fuzzy GAP coding algorithm dynamically
adjusts the resolution to locate more accurate solutions. However,
as the number of bits increases, the dimension also increases and
convergence is more difficult to obtain. Thus, the search is much
slower and performance approaches that of the static algorithm.

The convergence parameter has been shown in the previous section
to have an impact on the search performance. Constraining the
convergence parameter to a constant does not seem reasonable as the

number of bits is changed. The original problem allowed an average
of 20 different bits in each string before convergence was declared.
Eight bits were used for each of the ten parameters. Therefore, 25% of
the total number of bits in a string were allowed to be different. The
above experiment was repeated but the convergence parameter was
constrained to represent a fixed fraction of 0.25 rather than a constant
number of different bits. For example, a convergence parameter of
10 was used when only four bits were used for each parameter and
a convergence parameter of 45 was used when each parameter was
coded with 18 bits. The performance identified with “Fuzzy (0.25)”
in Fig. 9 indicates that a small number of bits provides more accurate
solutions with less work. The fuzzy GAP coding algorithm exceeds
the performance of the static algorithm even when as many as 24
bits are used to code each parameter.

V. CONCLUSIONS AND FUTURE WORK

The fuzzy GAP control of genetic algorithm parameter coding
is shown to be an effective method for improving the resolution
of genetic searches. The algorithm has also been shown to be
more reliable than other dynamic coding algorithms providing more
accurate solutions in fewer generations. This occurred despite the
use of many of the concepts of these other algorithms in fuzzy
GAP coding. The algorithm was shown to converge even when the
objective function had numerous local minima.

The fuzzy rules used to control the genetic search in this paper
were derived heuristically. Though the rule performed very well,
techniques for automatic generation of fuzzy rules could be used
to provide more robust rules. The rules used in this work were devel-
oped, coded, and applied to the test problems without modification.
Since the performance of the genetic algorithm under control of the
rules was significantly better than without the fuzzy control, no effort
was made to improve the rules.

The parameter coding is modified after the genetic algorithm has
converged and thus improvements (using the same number of bits for
each parameter) are only available after an additional genetic search.
Search time is increased to provide the increase in solution accuracy.
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Genetic K-Means Algorithm

K. Krishna and M. Narasimha Murty

Abstract—In this paper, we propose a novel hybrid genetic algorithm
(GA) that finds a globally optimal partition of a given data into a specified
number of clusters. GA’s used earlier in clustering employ either an
expensive crossover operator to generate valid child chromosomes from
parent chromosomes or a costly fitness function or both. To circumvent
these expensive operations, we hybridize GA with a classical gradient
descent algorithm used in clustering viz., K-means algorithm. Hence, the
name genetic K-means algorithm (GKA). We define K-means operator,
one-step of K-means algorithm, and use it in GKA as a search operator
instead of crossover. We also define a biased mutation operator specific
to clustering called distance-based-mutation. Using finite Markov chain
theory, we prove that the GKA converges to the global optimum. It is ob-
served in the simulations that GKA converges to the best known optimum
corresponding to the given data in concurrence with the convergence
result. It is also observed that GKA searches faster than some of the
other evolutionary algorithms used for clustering.

Index Terms— Clustering, genetic algorithms, global optimization,
K-means algorithm, unsupervised learning.

I. INTRODUCTION

Evolutionary algorithms are stochastic optimization algorithms
based on the mechanism of natural selection and natural genetics [1].
They perform parallel search in complex search spaces. Evolutionary
algorithms include genetic algorithms, evolution strategies and evolu-
tionary programming. We deal with genetic algorithms in this paper.
Genetic algorithms (GA’s) were originally proposed by Holland [2].
GA’s have been applied to many function optimization problems and
are shown to be good in finding optimal and near optimal solutions.
Their robustness of search in large search spaces and their domain
independent nature motivated their applications in various fields like
pattern recognition, machine learning, VLSI design, etc. In this paper,
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we propose an algorithm, that is a modification of GA, for clustering
application.

Clustering has been effectively applied in a variety of engineering
and scientific disciplines such as psychology, biology, medicine, com-
puter vision, communications, and remote sensing. Cluster analysis
organizes data (a set of patterns, each pattern could be a vector
measurements) by abstracting underlying structure. The grouping is
done such that patterns within a group (cluster) are more similar
to each other than patterns belonging to different groups. Thus,
organization of data using cluster analysis employs some dissimilarity
measure among the set of patterns. The dissimilarity measure is
defined based on the data under analysis and the purpose of the
analysis. Various types of clustering algorithms have been proposed
to suit different requirements. Clustering algorithms can be broadly
classified into hierarchical and partitional algorithms based on the
structure of abstraction. Hierarchical clustering algorithms construct
a hierarchy of partitions, represented as adendrogram in which
each partition is nested within the partition at the next level in the
hierarchy. Partitional clustering algorithms generate a single partition,
with a specified or estimated number of nonoverlapping clusters, of
the data in an attempt to recover natural groups present in the data. In
this paper, we confine our attention to partitional clustering of a given
set of real-valued vectors, where the dissimilarity measure between
two vectors is the Euclidean distance between them.

One of the important problems in partitional clustering is to find a
partition of the given data, with a specified number of clusters, that
minimizes the total within cluster variation (TWCV) (which is defined
below). We address this problem, viz., minimization of TWCV, in the
present paper. In general, partitional clustering algorithms are iterative
and hill climbing and usually they converge to a local minimum.
Further, the associated objective functions are highly nonlinear and
multimodal. As a consequence, it is very difficult to find an optimal
partition of the data using hill climbing techniques. The algorithms
based on combinatorial optimization such as integer programming,
dynamic programming and, branch and bound methods are expensive
ever for moderate number of data points and moderate number of
clusters. A detailed discussion on clustering algorithms can be found
in [3].

The simplest and most popular among iterative and hill climbing
clustering algorithms is the K-means algorithm (KMA). As mentioned
above, this algorithm may converge to a suboptimal partition. Since
stochastic optimization approaches are good at avoiding convergence
to a locally optimal solution, these approaches could be used to
find a globally optimal solution. The stochastic approaches used in
clustering include those based on simulated annealing, genetic algo-
rithms, evolution strategies and evolutionary programming [4]–[11].
Typically, these stochastic approaches take a large amount of time to
converge to a globally optimal partition. In this paper, we propose an
algorithm based on GA, prove that it converges to the global optimum
with probability one and compare its performance with that of some
of these algorithms.

Genetic algorithms (GA’s) work on a coding of the parameter
set over which the search has to be performed, rather than the
parameters themselves. These encoded parameters are calledsolutions
or chromosomesand the objective function value at a solution
is the objective function value at the corresponding parameters.
GA’s solve optimization problems using a population of a fixed
number, called thepopulation size, of solutions. A solution consists
of a string of symbols, typically binary symbols. GA’s evolve
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