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detrended partitioned data training of 
a neuro-fuzzy regression machine 
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Load forecasting using neural networks can suffer from poor quality of data, non-stationary load patterns and poor forecasting accuracy. To address some 
of these problems, a neuro-fuzzy based forecasting model trained with detrended data is proposed. Feature extraction methods to provide better data par- 
titioning, capture important correlations, and detrend non-stationary data are developed. As a result, forecasting accuracy and robustness are enhanced. 
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1. INTRODUCTION 

Electric loacl forecasting is the art of predicting power system 
energy demand over a specilicd period of linic. It is an essen- 
tial tool for power systcm control centers and Energy Man- 
agc~iient Systems (EMS), Load forccasling is also used in 
state estimation and security analysis 11-51. Many major load 
forecasters are cilhcr using or experimenting with thc ncural 
ndworks (NN's) as a viable forecasting tool. Prediction accu- 
racy is the main reason for the popularity of the NN approach. 

Unli~rtunatcly, the NN, like other forecasting techniques 
trained from historical data typically deals with non-sta- 
tionary load pattern in the training data. This papcr 
addresses this problem through data massaging prior to 
training. The dala is first delrended. A ncuro fuzzy based 
forecasting model is developed to reduce the effect of data 
uncertainty, and errors in weather conditions. Feature 
extraction methods are applied to provide better data parti- 
tioning, and to capture important feature correlations. All 
these measures enhance the accuracy and the robustness of 
the forecasting results. 

2 NEURO-FUZZY FORECASTING MODEL, 

Energy customers buy comfort and utility rather than electric 

power directly. Comfort parameters are typically described as 
fi~zzy linguistic variables, e.g. "The room is a little too warm" 
or "The humidity in this office is much too high." Fuzzy logic 
allows linguistic descriptions to be quantilied. Similar linguis- 
tic descriptors in control led to control by ru7zy inference - lo 
clatc tlic most commercially successful applicalio~l of fuzzy 
logic. Thcsc linguistic similarity gives rise to our motivation 
fix using f u / ~ y  logic for electric load Ibrccasting. 

Figurc I shows a general procedure to develop a neuro- 
fuLl,y forccasl model. In the first step, thc input data are 
processed and the fcatures are extracted. Thcsc features are 
fuzzificd and then used for NN training. The output of the 
NN is a I'u~zy load [orecast which is converted into a crisp 
value by defuzzification. 

2.1 Fuzzification 

The fuzzification of a variable is determined by its linguis- 
tic membership functions. Fuzzification transforms a sin- 
gle numerical value into a membership value vector. The 
size of the vector is dependent on the number of member- 
ship functions. 

The fuzzification of the maximum temperature is shown 
in Figure 2. The temperature variable has three member- 
ship functions, S1 (less than normal), S2 (normal) and S3 



FLgure 4 The winning solution is presented to the opetator. It can be identified as it is drawn in white 

Figure 5 The table assuming that the lower bound of the load is supplied in each substation 

SERSE, as shown in Figure 4. In an additional window, 
SERSE can show the expected voltages in each substation 
after each step of the creation of the path, namely after that 
each substation is energized. Figure 5 shows the table assum- 
ing that the lower bound of the load is supplied in each sub- 
station. 

After that all substations in the path have been ener- 
gized, the voltage in ROSN is 402.8 kV which is still with- 
in the accepted operating limits. 

7. CONCLUSION 

pre-delined paths starting from black-start units for choosing 
the best. 

Current work concerns the improve~nent of thc Timc Esti- 
mation Module for taking into account all the allowcd configu- 
rations of the high voltage substations. Further work is required 
to include in the goals of the system the possibility to cnergize 
important loads as well as non-black-start units, when possible. 
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Peak Load vs. Tmin 
1 

Figure 3 Daily peak load and minimum temperature 

where k represents the time lag, and a, and oy are the sample 
variances 

Figure 4 shows the autocorrelation of the electric load of 
Puget Sound Energy for one normal week. In the figure, a 
peak occurs every 24 hours. The peak of the previous day is 
highly correlated with the current day's load. and the load 
of the previous day has the greatest impact on the current 
day's load. 

One can therefore conclude that the previous day's load 
and temperature have the greatest impact on the next day's 
load. When such features are selected, the correlation fac- 
tor can be used as a forecasting input We form the compos- 
ite correlation factor: 

corr = (previous day's load correlation factor 
+forecasted teniperature correlation factor)/;? 

where the previous day's load can be either the daily peak 
load or total load, and the forecasted temperature can be 
either the daily maximum, minimum or average lemperaturc. 

Figure 5 shows an example of the composite correlation 
factor. Thc electric load and ternperature data are tor a nor- 
mal weekdays of the 1985-86 winter seasons. Thc correla- 
tion factor can also be used in a simple regression and time 
series load forecast model 
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Figure 4 Autoconelation of one week's eletric load 

3.3 Trend Analysis 

Electric load variation contains trend components such as 
growth and seasonal oscillations. Although electric load 
forecasting, in general, is modeled as a stationary process, 
trending adds a non-stationary component. This reduces 
the accuracy of load forecasting over extended periods. It 
is therefore desirable to identify trend components and 
adjust the historical data accordingly. The trend compo- 
nents can be modeled separate1 y by data partitioning. The 
trend can be later added to the forecasting model. The two 
major trend components are: 

Seasonal, monthly andlor weekly trends 
Load growth trend 

Generally, electric loads are classified into two categories: 
base load and weather dependent load. The trend simply 
reflects the long-term movement of the electric load from 
year to year, or from season to season. Figure 6 shows 
winter daily peak load from 1985 to 1990 i n  the Puget 
Sound area. 

The electric load grows at a certain rate every year. The 
base load trend can be modeled by various functions, such 
as linear or exponential growth. Herein a simple linear 
model is used. The coefficients are estimated by the least 
squares method. Figure 7 shows the base load growth trend 
of the winter daily peak load from 1985 to 1990. 
After the base load growth is removed from the data, only 
the weather dependent load component remains. This is 
shown in Figure 8. 

3.4 Day Type Partitioning 

Similar load patterns among subsets of days in a week 
allows splitting of the week into several components. A 
different model forecasts each component. This partition- 
ing scheme makes the forecast model simpler and easier to 
develop. Figure 9 shows a normal week load profile of Puget 
Sound Et~ergy. From this figure, Tuesday through Thursday 
have similar load patterns and Friday through Sunday are 
similar. The load pattern of Monday is different than any oth- 

Simple Correlabon Factor 
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Figure 5 Correlation factor of load and temperature 



Input Feanlre Ertraction 
Dtla 

I 

Figure 1 A neuro-fuzzy forecasting model 

(larger than normal). Suppose the normalized value of the 
maximum temperature is 0.2, then the membership vaIue 
vector is [0.6 0.4 0.01 which is used in training the NN 
instead of crisp value of G.2. 

2.2 Defuzzification 

Defuzzification transforms a fuzzy membership vector into 
a crisp value. The commonly used centroid method 1131, 
defuzzifies in accordance to the formula 

where y denotes the final forecast result, output-~nem(i) is 
the grade of the ith membership function, A; is the area 
under the ith membership function, Ii is the centroid of 
inertia of A,, and L is the number of membership functions. 

3. FEATURE EXTRACTION FOR 
LOAD FORECASTING 

The accuracy of load forecasting depends on the selection 
of the essential variables that strongly correlate with the 

t 

0 D 

! 0 8  

g o 7  

1 0 8  
U 

io5 
2 O 4  

$ 0 3  

I02 

0 1  I \ k I\  /I 
I 

0 2  0 4  0 1  0 8  
Fons*rhd m u  Temp 

Figure 2 An example of fuuification 

electric load. These forecast features can be obtained 
heuristicically or through numerical analysis. Importable 
features include regional features dependent on the charac- 
teristics of the providing utility. Some forecast features, 
such as calendar variation and climate factors, are portable 
from one forecasting model to another. 

The feature extraction in this paper is performed using 
four techniques: data preprocessing, data partitioning, lin- 
ear correlation, and trend analysis. 

3.1 Data Preprocessing 

Data preprocessing can remove detracting artifacts and 
redundant information from raw data. Regression machines 
generally train more accurately using the refined data. 

The original temperature and electric load are often 
transformed by operations such as max(.), rnin(.), aver- 
age(.), sum(.), difference(.) and delay(.) operators, e.g. last 
week's averaged temperaturelelectric load and the mini- 
mum and maximum values of yesterday's electric load. A 
general method to normalize a data is: 

where xi is the normalized data, xmi, is the minimum and x,,,, 
is the maximum of the data set, subscript i is the index of the 
data, and k is a constant normalization factor. The benefit of 
using the factor k = 0.8 is to keep the normalized data away 
from the saturation region of the NN sigmoid. If a NN is sat- 
urated, it loses its sensitivity to variations in the input. 

Singleton calendar features such as the day of week and 
the day of year can be transforming to a cyclic doublet as 
follows [ 5 ] :  

week-day = {sin(2Jrd17), cos (23ul/7)),  d = [ l ,  ..., 71 (4) 

day-of jear  = ( sin(21zn-d 1 365), 
cos ( 2 n d  1365)), i = [I ,..., 3651 ( 5 )  

Doing so enforces data continuity. 

3.2 Linear Correlation 

Some forecasting features exhibit strong correlation with 
electric loads. These features prove to be the most impor- 
tant for forecasting. An example is given in Figure 3 where 
the relation between the peak load and the minimum tem- 
perature for winter in the northwestern United States is 
shown. One would expect these variables to be positively 
correlated and therefore rise and fall with each other. 
Clearly, from Figure 3, this is not the case. Other features 
such as the maximum and the average temperature have a 
similar relation with peak loads. Such features are weight- 
ed heavily in the forecasting model. To evaluate the correla- 
tion between two variables, the correlation is computed by 
first subtracted the average value. 

The correlation index follows as: 
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Table 1 Test data sets 
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Figure 10 Christmas and New Year (1985-90, weekdays only) 
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Figure 11 Load patterns of a normal winter season 
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Figure 12 Load palferns of a norlnal summer season 

Maximurn Temperature of day k 
Minimuni Temperature of day k 
Average Temperature of previous two days 
Detrended peak load of the previous day 
Day of year 
Day of week 

NN Output: 
Detrended peak load at day k 

The index k represents the forecast day. In the fuzzificaiton 
process, each input temperature is represented by three 
membership functions: high, low, and medium. The fore- 
cast of the detrend peak load has five membership func- 
tions, which are for positive large (PL), positive small 
(PS), zero (ZE), negative small (NS), and negative large 
(NL) and shown in Figure 13. 

I s e l s  I T e s t  d a t a  from 

S e t  1 ~ 1 0 1 0 1 1 8 9  - I 0 1 3 1 1 8 9  

I S e t  2 11  110 1 1 8 9  - 1 1 1 3 0 1 8 9  

S e t  3 1 1 2 1 0 1 1 8 9  - 1 2 1 3 1 1 8 9  

4.2 Test Results 

Figure 14 shows the forecast and the actual peak load of 
each day. Figure 15 shows the MAPE of each day in the 
test sets. The MAPE for all six sets i s  1.32%. 

The neuro-fuzzy forecasting is also compared with oth- 
e r  forecast models - a hybrid model of regression and time 
series, and multi-layer perceptron models. The test results 
are shown in Table 2. Intially, all NNs are trained using the 
same structure and number of epochs. The training is refined 
to ensure that each NN has the best slructure and is trained 
without memorization or saturation problems. The regression 
technique is also developed using various models. 

The table shows the best among all these variations. As  
seen in the table, the neuro-fuzzy model can achieve more 
accurate forecast than the other models, especially with 
noisy forecasted temperature data. The noisy temperature 

DeQend Load 

Figure 13 Membership functions of detrend load varaible 
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Figure 14 Actual and forecast peak load 
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Peak Load via Days 
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Ftgure 6 Winter daily peak load o f  PSE (1985-90) 
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Figure 7 Trend of base load growth OF PSE 

er day. Therefore, one week can be divided into three groups: 
1 )  Monday, 2) Tuesday through Thursday, and 3) Friday 
through Sunday. Figure 10 shows Puget Sound Energy load 
patterns of Christmas and New Year's. Clearly, specialized 
models need to be developed to forecast these unique loads. 

3.5 Season Type Partitioning 

The load pattern changes with the season. In the northwest 
of the United States, the electric load is used primarily for 
cooling in the summer and heating in winter. Figure' 1 I 
shows the Ioad patters of a normal summer season of 
Plcget Sound Etiergy, and Figure 12 shows the pattern of a 
normal winter season. In this paper, a year is divided into 
three groups: 1) winter, 2) summer, and 3) transition. 

4. TEST RESULTS 

The performance of the proposed neuro-fuzzy forecast 
model is evaluated using the hourly temperature and load 
data for Seattlemacoma area for Jan. 1, 1985 through Mar. 
31, 1990. The Puget Sound Energy Company collected the 

Detrend Peak Load via Day3 

Figure 8 Detrended winter daily peak load (1985-90) 
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Figure 9 Weekly load patterns of PSE, weekdays only 

data. The focus of lhis forecast is on a normal weekday in the 
winter season. Table 1 shows six data sets used for the lest. 
Each set contains a month of normal weekday data (Tuesday 
through Thursday). The test data is not used in the training 
process of the forecast model. The neuro-fuzzy regression 
machine was trained to forecast the next day's peak load. The 
accuracy of the neuro-fuzzy model is evaluated by the mean 
absolute percentage error (MAPE), as defined by: 

where yIi is the output of the forecast model and y i  is the 
actual load, and N is the total number of the testing data. 

4.1 Structure of the Neuro-Fuzzy Forecast 
Model 

The topology of the neuro-fuzzy forecast model is 
described as follows: 

NN Input: 
Average Temperature of day k 
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Mean Error percentage 
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Figure 15 MAPE of peak load forcasting 

Table 2 Error (%) of peak load Forecast 

data represents the forecast of the temperature. 

5. CONCLUSIONS 

In this paper, we have presented the neuro-fuzzy model f o r  
load forecast with feature extraction techniques. The forecast 
accuracy can be greatly improved when forecast feature 
extraction techniques and data detrending procedures are used. 

The neuro-fuzzy forecast model produces more accurate 
forecast results than tested traditional forecasting tech- 
niques. Also, the neuro-fuzzy model is more robust a n d  
more tolerant to noisy data. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge Pliget Soitnd Ener- 
g y  for providing the test data. The extensive help by Mr.  
Casey Brace from PSE is greatly appreciated. 

REFERENCES 

1 Park, Dong Chul, Identification of stationary/nonstationnry 
systems using artificial neural networks, Dissertation (Ph. 
D.) University of Washington, 1990. 

2 Antonio Piras, A Multiresponse Structural Connectionist 
Model for Short Term Electrical Load Forecasting, Disserta- 
tion (Ph. D.), 1996. 

3 D. C. Park, M. A. El-Sharkawi, R. J. Marks, L. E. Atlas and 
M. J. Damborg, "Electric load Forecasting Using An Artifi- 
cial Neural Network", IEEE Transactions on Power Systems, 
pp.442-9, May 1992. 

4 M. A. El-Sharkawi, S. Oh, R. J. Marks, M. J. Damborg, 
"Short Term Electric Load Forecasting Using An Adaptively 
Trained Layered Perceptron", Ptoceeding of the First Inter- 
national Foru~n on Applications of Neural Networks to Power 
Systems, pp. 1-6, July 1991. 

5 Alex D. Papalexopoulos, Timothy C. H, "A Regression- 
Based Approach to Short Term System Load Forecasting", 
IEEE Transactions on Power Systems, Vol. 5, No. 4, Novem- 
ber 1990. 

6 K. Liu, S. Subbarayan, R. R. Shoults, "Comparison of Very 
Short-Term Load Forecasting Techniques", IEEE Transac- 
tions on Power Systems, Vol. 11, No. 2, pp.877-82, May 
1996. 

7 T. M. Peng, N. F. Hubele, G. G. Karady, "Advancement in 
The Application of Neural Networks for Short-Term Load 
Forecasting", IEEE Transactions on Power Systems, Vol. 7, 
No. 1 ,  pp.250-7, February 1992. 

8 Alex D. Papalexopoulos, S. Y. Hao, T. M. Peng, "An Imple- 
mentation of A Neural Network Based Load Forecasting 
Model for the EMS." IEEE Transactions on Power Systenls, 
Vol. 9, No. 4, pp.1956-62, November 1994. 

9 Kun-Long Ho, Y. Y. Hsu, "Short Term Load Forecasting 
Using A Multilayer Neural Network with An Adaptive Learn- 
ing Algorithm", IEEE Transactions on Power Systents, Vol. 7 ,  
No. 1, pp.141-9, February 1992. 

10 Lee, K.Y., Cha,Y. T., and Ku, C. C. "A Study on Neural Net- 
works for Short-term Load Forecasting." IEEE Trarisactio~ls 
on Power Systerns, Vol. 7 ,  1992, pp. 598-605. 

11 A. G. Bakirtzis, J. B. Thecharis, S. J .  Kiartzis, K. J. Satsios, 
"Short Term Load Forecasting Using Fuzzy Neural Net- 
works", IEEE Transactions on Power Systerns, Vol. 10, No. 3, 
pp. 151 8-23, August 1995 

12 Kwang-Ho Kim, J. K. Park, K. J. Hwang, S. H. Kim, 'lmple- 
mentation of Hybrid Short-term Load Forecasting System 
Using Artificial Neural Networks and Fuzzy Expert Sys- 
tems", IEEE Trarrsactions on Power Sysrerns, Val. 10, No. 3. 
pp.1534-9, August 1995 

13 D. K. Ranaweera, N. F. Hubele and G. G. Karady, "Fuzzy 
Logic for Short Term Lond Forecasting", Internatior~al Jocrr- 
rral of Electrical Power & Energy Systenls, Vol., 18, No. 4, 
pp.215-22, May 1996 




