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Automatic environmentally adaptive sonar control in littoral regions characterized by
high spatial/temporal acoustic variability is an important operational need. An acoustic
model-based sonar conroller requires an accurate model of how the sonar would perform
in the current environment while in any of its possible configurations. Since high-fidelity
acoustic models are computationally intensive, and finding the optimal sonar mode may
require a large number of these model runs, such a controller may not be able to provide
optimal line-up solutions in tactically useful time frames. We have explored a method
of statistically characterizing a given operations area, generating a large ensemble of
acoustic model runs, and training specialized artificial neural networks to emulate acous-
tic model input/output relationships. The neural networks reproduce the acoustic model
outputs to a good degree of accuracy in a small fraction of the compute time needed
for one of the original model runs. In this paper, the neural network training method is
described, examples of neural network performance are given, and an example of con-
troller solutions in a variable environment are presented. (Approved for Public Release;
Distribution is Unlimited.)

1 Introduction

Naval sonar systems continue to evolve and become more capable, while at the same time
becoming more complex to operate. With the emergence of littoral areas as the prime re-
gions of interest, characterized by underwater acoustic environments that change quickly
in both the temporal and spatial domains, automatically optimizing sonar line-ups has be-
come a key operational need. The desire is for sonar operators to concentrate on the key
tasks of target detection and classification, while the sonar system automatically deter-
mines an optimal line-up based on the current goals of the operator and an estimate of the
current environment. Also, as autonomous systems are developed for operational use, the
need for automation of environmentally adaptive sonar control becomes paramount.

Sonar control schemes generally fall into two categories: rule-based, and acoustic
model-based. Rule-based systems are developed by acoustic and sonar system experts,
who first define generic sets of environmental conditions, and then apply acoustic model-
ing techniques and the sonar equation to determine the best line-up for the sonar in those
conditions. In practice, the environment in which the sonar is deployed must be assessed
as to which of the generic design environments is closest to the real environment, so that
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the proper sonar line-up can be set. Although relatively simple and with a low real-time
computational burden, rule-based controllers may not be able to take into account all of the
environmental variability that may confront the sonar system and its operators.

Model-based controllers embed an acoustic model in the real-time controller. Typi-
cally, the best available estimate of the current environment is fed into the controller which
makes acoustic performance predictions for the various possible line-ups of the sonar sys-
tem. The line-up that best satisfies some performance metric (which may change based on
the current employment of the sonar) is chosen. Although a model-based controller is more
readily able to adapt to finer scale environmental conditions than a rule-based controller,
high-fidelity acoustic models are computationally intensive. Assessing the performance of
the various modes of the sonar may take too much time to be useful in an environment with
high temporal/spatial variability, or may require excessive computing resources.

In this paper, we present a method of training artificial neural networks to emulate
the input/output relations of a computationally intensive acoustic model for use in a sonar
controller, either shipboard or aboard an autonomous vehicle. The advantage of using the
neural networks is that they generate these acoustic model emulations orders of magnitude
faster than it would take the original high-fidelity acoustic model to run, using modest com-
puting resources. We describe the basic neural network training methodology, along with
some special techniques developed specifically for this application. We also show some
examples of the training performance. Finally, we give an example of control solutions
obtained using a neural network.

2 Neural Network Training

2.1 Basic Idea

Neural networks are mathematical constructs loosely modeled on biological neural inter-
connections [1]. Figure 1 shows a schematic of how the neural network training is per-
formed in this application. In the figure, a multilayer perceptron neural network is estab-
lished with an input layer, one hidden layer, and an output layer. The number of hidden
layers and number of nodes in each layer are design parameters, and must be considered
carefully for each application. In Fig. 1, only some of the connections between layers are
shown for illustration purposes. In reality, each node in any given layer is connected to
every other node in the preceding and following layers.

The input layer contains parameters describing the sonar (e.g., center frequency, band-
width, vertical steering angle, etc.) and parameters describing the environment (e.g., wind
speed, bottom type, sound speed, etc.). These values on the input layer of the neural
network are also used as inputs to an acoustic model. In the case of Fig. 1, the model com-
puted signal-to-interference ratio for hypothetical locations of a target in a vertical slice of
the ocean. The outputs of the model are assigned to nodes of the output layer of the neu-
ral network. The network is then trained using error back-propagation [1], so that when
these inputs are presented to the neural network, a forward computation through the neural
network reproduces, to some level of fidelity, the outputs of the acoustic model. Neural
networks used in this fashion are sometimes referred to as ”regression machines,” or as
”associative memories.”

For neural networks with three hidden layers and roughly 50 nodes per layer, one of
these forward computations takes about 5 milliseconds on a standard (circa 2002) desktop
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Figure 1. Neural network training on acoustic model output.

workstation. High-fidelity acoustic models may take on the order of 60 seconds for the
original computation. In practice, the training data generation and neural network training
would take place in laboratories with high-performance computing facilities, and the neural
network subroutines would be installed on the sonar platform for use in the real-time sonar
controller.

2.2 Training Data

The neural networks are actually trained on an ensemble of acoustic model runs. In order
to generate this ensemble, we define a geographic region in which the sonar system will be
operating, and statistically characterize both the environmental parameters in this region
and the possible settings of the sonar parameters. For example, we may allow wind speed
to be a uniform random variable between 0 and 12 m/s, while volume scattering strength
is Gaussian with mean -75 dB/m

�
and variance of 5 dB/m

�
.

For training the neural network, a standard set of depths at which sound speed in the
water column will be specified must be defined. Care must be taken with variables where
correlation is important, such as sound speed profile. Simply allowing the various points
to vary independently as a function of depth might produce unrealistic sound speed pro-
files. A technique has been developed [2] for generating realistic sound speed profiles by
collecting sets of historical sound speed profiles for an area, computing the covariance ma-
trix, and multiplying the Cholesky factors of the covariance matrix by a set of independent
random numbers. The first and second order statistics of the data are thereby maintained
in the randomly generated sound speed profile data.

In our development of this technology, we have limited the geographic region being
characterized to boxes

�������
square, and generated sets of acoustic models with 20,000-

40,000 members. As the geographic area grows and encompasses more environmental
variability, the training set would need to grow and the structure of the neural network may
also need to be modified.
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Figure 2. Example of two-way transmission loss used for neural network training.

2.3 Training for variable bathymetry

Figure 2 shows a typical transmission loss plot (two-way) used in neural network training.
The dark portion at the bottom of the figure corresponds to the sea bottom, in which we
assume the acoustic field levels are very low and are not part of our modelling process.
We have made a bilinear approximation to the bottom bathymetry for our current devel-
opment, meaning that the input layer to the neural network has four nodes corresponding
to a description of bathymetry (depth at source, range of breakpoint, depth of breakpoint,
and depth at final range). This approximation could be expanded at the cost of more nodes
on the input layer, although the bilinear approximation has shown to be fairly robust in our
testing [2].

An important issue with the neural network training has to do with the bathymetry. As
with the other parameters, the bathymetry is generated randomly for the different members
of the ensemble input sets, meaning that certain range-depth pixels would be in the water
column for some cases and in the sea bottom for others. Early training efforts simply
considered all output pixels in a uniform manner, but the transition from water column to
below the seabed was difficult for the networks to learn, resulting in unacceptably high
errors. A novel technique for avoiding this problem was developed [3,4], dubbed ”don’t
care training.” Here, during error backpropagation training, weights connected to output
nodes associated with pixels in the sea bottom are not updated. See references [3,4] for a
more complete description of the technique.

3 Neural network results

3.1 Training data

Figure 3 shows some examples from a neural network trained on modelled two-way tran-
mission loss for an active sonar. The first column contains four samples from a training
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Figure 3. Examples of neural network performance on two-way transmission loss: training data.

set of 40,000 model runs, generated as described in the previous section. The second col-
umn contains the corresponding neural network outputs when the model parameters used
to generate the results in the first column are placed on the input nodes of the neural net-
work. The third column containes the absolute values of the difference between the first
and second column.

The example in the first row is for a case of a downward refracting sound speed profile
and a low-loss bottom, resulting in the arching pattern seen in the first plot. The neural
network reproduces the pattern early in range, but tends to smear the arch energy in range
and depth at longer ranges. The error plot shows the residual of the arching pattern at the
longer ranges. One reason for this behavior is the sensivity of the acoustic model to small
changes in input values. For example, a small change in sound speed profile can change
the exact location in the range/depth plane of the arching patterns, and this sensitivity is
difficult to train for. For use in a controller, it may be enough to know that there are
significant amounts of energy propagating out to a particular range withough knowing the
detailed structure of the acoustic field. Even if the actual acoustic model were embedded
in the controller, imprecise knowledge of model input parameters would lead to imprecise
location of these types of structures.

The second row is a case of a shallow surface duct and a low-loss bottom resulting in
significant sub-duct propagation. The surface duct is fairly well reproduced by the neural
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Figure 4. Examples of neural network performance on two-way transmission loss: testing data.

network, with increasing errors at long range. Again, for use in a controller, the most
important piece of information may be the existence of the duct, not the exact level of the
acoustic field in the duct.

The third row is a case of a downward refracting sound speed profile and a high loss
bottom. Note that the neural network correctly reproduced the differences in the general
trends between the low loss bottom in the first example and the high loss bottom here. Note
that an arching pattern also exists here, although it is only evidenced by the residual seen
in the error plot. Since it is occurring in an area of very high transmission loss, it would
probably not be an issue for a controller.

The fourth row shows an example of down-slope propagation. The neural network
reproduces fairly well the general trends of the propagation, with the exception of some
high errors at the furthest ranges.

3.2 Testing data

As with any neural network application, assessment of the performance must be made
using testing data, i.e., data that was not used during the training process. Figure 4 is
formatted similar to Fig. 3, but has examples of testing data. The input parameters were
generated similarly to the training data.

Note that similar characteristics are evident in the training examples: general acoustic
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Figure 5. Examples of controller results.

trends are represented fairly well, and some details (i.e., arching patterns) are smeared (or
averaged) in range and depth. This gives us confidence that the neural network has not
over-trained on the data (referred to as ”memorizing”).

4 Controller results

Figure 5 shows the results of using a neural network trained using the above-described
method in a sonar controller. In this case, the data used in the training was signal-to-
interference ratio (SIR) for an active sonar, assuming a hypothetical target with a fixed low
target strength at all possible locations in the water column.

The environment was held constant except for the bottom type, which was varied from
very soft (high loss) to very hard (low loss). The bottom is characterized by the parameter�

, where
���������
	���
����

, where
�

is the grain size in mm. The parameter
���

(note the
sign change) was used as an input to the acoustic model used for neural network training,
and subsequently to the neural network itself on one of the nodes in the input layer. The
variation of grain size is shown in the bottom right plot of Fig. 5.

The left two plots of Fig. 5 show range-depth maps of SIR, with a target search area
outlined in a white box. This is the region over which the controller was required to obtain
the maximum average SIR. The controller was allowed to control the vertical steering angle
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of the sonar. The top plot shows the SIR obtained for the final
��� � �

with a nominal
sonar steering angle of 3 degrees, and the bottom plot shows the SIR obtained using the
controller-optimized steering angle of approximately 12 degrees. The optimal steering
angles for all bottom types is plotted in the upper right, and the average gain per pixel
obtained by using the optimal steering angle vice the nominal is plotted in the middle axis
on the right.

In this example, it is shown that even for softer bottoms, steeper vertical steering angles
around 7 degrees are more advantageous, with a sharp increase for harder bottoms, accom-
panied by higher gains in performance. The key point here, however, is not the specific
results for this example, but that the results can be generated in a very short period of time
compared to what would be necessary if the actual acoustic model were used. This allows
rapid investigation of how sonar systems should be employed in particular environments.

5 Discussion

It is important to keep in mind that the technique described in this paper for emulating
acoustic model input/output relations is intended for use in a sonar controller. In other
words, the emulation must be ”good enough” to put the sonar in the correct configuration.
The emulation is not intended to be used for detailed acoustic analysis. As mentioned be-
fore, the main benefit of this technique is the reduced computational complexity it brings
for real-time applications. The primary thrust of our continuing work is assessing trained
neural networks in actual controller scenarios, and comparing the controller solution per-
formance against controllers with embedded acoustic models.

Also of note is that the training and testing examples presented in Section 3 are the
result of fairly straightforward data set generation and neural network training with the
”don’t care” technique for range-depth pixels below the sea bottom. We have also devel-
oped several techniques whose details are beyond the scope of this paper for improving the
performance of the neural networks. One of these involves detailed examination of the in-
put/output sensitivities of the underlying acoustic model (from the generated data set), and
insertion of additional data (model runs) where the sensitivities are high. These techniques
are also important aspects of our continuing work.
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