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Abstract—We present a novel mapping whereby a classical
fuzzy system, based on an intersection rule configuration (IRC),
is converted to a union rule configuration (URC) system.
Previous work has demonstrated that URC fuzzy systems avoid
rule explosion, where a linear increase in the number of
antecedents gives rise to an exponential increase in the number
of fuzzy rules. However, there has been some doubt as to the
validity of URC systems and previous findings. We resolve
lingering questions and prove that any arbitrary IRC system
can be converted to a URC system with identical performance.
Further, we show that URC systems do aveid rule explosion for
many problems. Finally, we note that a URC system is a
universal approximator.
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1. INTRODUCTION

CURRENTLY, most fuzzy logic systems are based on an
intersection rule configuration (TRC} where rules map
antccedent subsets, connected with the intersection operator,
to a consequent subset. These multi-antecedent rules
incorporate an expert’s perceived correlation between
antecedents. However, as antecedents are added to an IRC
system, the number of fuzzy rules increases exponentially,
giving rise to rule explosion.

Combs and Andrews suggest an alternative rule
configuration that avoids rule explosion [1]. Their method is
inspired by the propositional logic expression

[(pmq):r]@[(p:r)u(q:r)], 1)
where p and g are antecedents, r is a consequent, M
represents intersection, \J) represents union, and =
represents the implication operator. In this alternative rule
configuration, multi-antecedent rules are transformed into
single-antecedent rules. Single antecedent rules that have
the same antecedent are combined. Thus a linear increase in
the number of antecedents results in a linear increase in the
number of rules hence rule explosion is averted. Combs and
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Andrews refer to this single antecedent architecture as a
union rule configuration (URC).

Some have questioned the validity of the URC since it was
inspired by the propositional relation in (1) which is not true
in general for fuzzy logic [2-5]. There is also some question
as to whether single antecedent questions can really replace
multi-antecedent questions while still retaining an expert’s
perceived correlation between antecedents. Further, since a
URC fuzzy system contains fewer degrees of freedom' than
an IRC fuzzy system, how is it possible to find equality
between the two? In this paper we address the above-
mentioned issues as we prove that equality does exist
between IRC and URC systems. Further, we demonstrate
how to convert any arbitrary IRC system into a URC system.
As a consequence of the equality between IRC and URC
systems, we will note that URC systems must be universal
approximators.

In Section II a class of additively separable IRC rule tables
are defined that allow for a direct mapping from the IRC to
the URC architecture. Section I closes with a discussion on
how to map inseparable IRC rule tables to URC rule tables.
In Section HI an example is presented where a traditional
IRC rule table is mapped to a URC rule table. Finally, a few
concluding remarks are offered in Section IV,

II. A MaPPING FROM THE IRC TO THE URC

First, 2 mapping from IRC to URC fuzzy systems is
presented for a special class of IRC rule tables. Many IRC
rule tables used in the industry fit into this class. IRC rule
tables that are not strictly contained within this class require
an additional step in the conversion process and are the topic
of Subsection B.

' By this term we refer to the extent of control a system has over the
problem space. The IRC grants control over all possible combinations of
antecedent subset intersections, while the URC grants control over individual
antecedent subsets.
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A. A Mapping for Additively Separable IRC Rule Tables

Consider an IRC rule table that relates P antecedents to a
single consequent where cach antecedent contains a distinct
number of fuzzy subsets.’ Let the system utilize centroid
defuzzification where consequent subsets may take on any
desired shape. It is useful to think of a consequent subset in
terms of its center of mass. Thus, an IRC rule table simply
maps weights, determined by an intersection of antecedent
subsets, to locations specified by the centers of mass of the
consequent subsets.

Let v, be a projection vector corresponding to the ith

antecedent of a multi-dimensional TRC rule table ¥ such that
F=7®7,0 07, )

where @ is the outer sum operator’. We denote any IRC

rule table that satisfies (2) additively separable. A
consequence of additive separability is
P

F(a,,a,,,a,)= Y v(a,), 3)
i=l

where the @;’s index F. In other words, any element in the
rule table is expressible as a sum of projection elements with
each projection vector contributing one element. The set of

projection vectors [V|,V,,-++,V,] is not unique, however,
as the set [V, +¢,V, +¢,, -,V +C,p] will yield the
same rule table provided that constants ¢,,c,, --,C, sumto

Zero.

Additive separability, while a strong constraint, is not
necessarily inconvenient in many design problems. Many
rule tables monotonically increase from one corner to the
opposite comer. These tables are often additively separable.
In some cases, the corners of these rule tables exhibit an
artificial, ‘saturated’ behavior due a designer’s effort to
reduce the number of consequent subsets. These saturated
regions often ruin the additive separability of the rule table in
exchange for a greater dependence on tuning®. Of course
rule tables need not be monotonic in all of the antecedents to

* This discussion easily generalizes to multiple consequent systems, but in
the interest of simplifying the explanation we restrict ourselves to single
consequent systems.

7 An outer sum is similar in nature to an outer product in that the outer
sum of a set of P vectors results in a P dimensional matrix. The key
difference is that an outer sum forms the P dimensional matrix via sums of
elements whereas the cuter product uses multiplication as the constructor.

* It is our experience that fuzzy systems based on saturated rule tables
often require significant tuning. In general, additively separable rule tables
seem to rely less on tuning.

be additively separable. .

Equality between IRC and URC systems is first established
for additively separable IRC fuzzy systems. The output
formula for a URC system with sum-product logic and
centroid defuzzification is given by

4)

where the centers of mass of the consequent subsets are
specified by V. the value of membership of the input x; to
1.4

the jth subset of the ith antecedent is He (x,.) , and N, is the

number of subsets of the ith antecedent. This expression
differs only slightly from that found in [6] (1) and [7] (30) in

‘that it allows each antecedent to have a distinct number of
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‘X, in the notation for the

membership functions will be dropped.

In contrast, the output formula for an IRC fuzzy system
with sum product logic and multidimensicnal rule table F is
given as

subsets. From this point on,

N N, N P
ZZ"'iF(aisaz""’aP)Hﬂj,a,
2 e (X) = a-l ay=1 :},1,=1N1 — J=t o)
2.2 2L 1H,
a=lay=l  ap=h j=I

where once again N, is the number of subsets of the ith
antecedent and the @'s index F. If the IRC rule table is
additively separabie, substitution of (3) resuits in

where the denominator of (5), a summation over an outer
product of vectors of antecedent membership wvalues, is
factored into a product of sums.

In (6), numerator absorbs the denominator to yield
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PN

N, N P
ZIRC(X)“ZZZ ZV (a; )H P (M
i=l aj=ta;=1 ap=l j=1 ijk

Next, the term corresponding to f =1 in the product of (7)
is pulled out to achieve

£ & vi (az )Jui 4,

Zpc(X) = ZZ_N'__‘C ) 8
i=l a;=1 kzﬂi‘k
-l

where C is a constant given by

) Ny N Ne £ W
J.a;
-3 3 S o
J
a= a_=la, =1 ap=l j=1
) s 2 H
k=]

(10)

since the sum over a set of normalized membership values is
unity. Thus, (8) is multiplied by unity to achieve

PN,
: M,
22PN 5

(11

Upon comparing (11) to (4), some interesting relationships
become apparent. First, the consequent centers of mass of
the URC fuzzy system are related to the projection vectors of
the IRC rule table such that

Yoy =Pvi() V@) (12)
Thus, the consequent centers of mass of the URC system are
scaled versions of the IRC projection vector elements.
Therefore, in general, the mapping will hold for ary method
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of defuzzification provided the consequent subsets are
constrained to have the same shape and are multiplied by an
appropriate scale factor.  Of course, the consequent
membership functions need not have identical shape if
centroid defuzzification is employed {(or any other
defuzzification technique that depends only on the center of
mass). No restrictions are placed on the shape of the
antecedent membership functions.

Secondly, for equality between IRC and URC systems to
hold, the URC system must be supplied with a set of
normalized membership values for each antecedent, such that
the membership values for a given antecedent sum to unity.
Examination of (5) reveals that normalization of the
membership values does not affect the output formula of the
IRC, however, normalization of the membership values does
affect the behavior of the URC system. URC systems, unlike
the IRC systems, give greater weight to these antecedents
whose vector of membership values has a large magnitude.
Thus, if a fuzzified input were to drop out or be reduced to
low magnitude noise, a URC system reacts robustly by
discounting that antecedent, whereas the TRC system will
weight all antecedents equally and perform poorly.
Therefore although membership values must be normalized
to obtain equality between the IRC and URC systems, it may
worthwhile to skip this normalization step.

This mapping is an exciting result, as the IRC architecture
requires

(13)

»
Fie = I-[N
i=1

rules while the URC architecture accomplishes the same task
with

(14)

P
Fure = ZNI
=

rules.’” Hence rule explosion is eliminated for cases where
the IRC rule table is additively separable. If an IRC rule
table is not additively separable it is necessary to take an
additional step to ensure that equality is attained. However,
many IRC rule tables found in the literature are additively
separable or are nearly additively separable in that only a
minor number of IRC rules violate (3).

B. Inseparable IRC Rule Tables

When the IRC rule table is inseparable, additional steps are
* By tule, we refer to a statement of implication.

The |[EEE International Conference on Fuzzy Systems



necessary to ensure that equality exists between IRC and
URC systems. First, vector projections are selected that
accurately represent a maximal number of the IRC rule table
elements. For each element in the IRC rule table
inaccurately represented by (3), it is necessary to add a
corrective term to (11) that essentially relocates the
corresponding consequent center of mass on the output axis.
The corrective term is expressed as

(F(E) - Zvi-(ai')]l—[ Au‘j,aj

8(a)= (15)

N N Np P *
2.2 ullm.,
a=la;=1 ap=1 j=1

for a vector of indices &, that specify the location of the
consequent subset in the original P dimensional IRC rule
table F. The corrective term undergoes steps similar to those
required to progress from (5) to (11) to become

P lu.,aj
A 1=
g Z‘uj,k

k=1

F(E) - Zvi (ai)

i=t

d(a) =

(16)

Notice that this corrective term corresponds to a multi-
antecedent rule where a product of normalized membership
values yield a weight that gets applied at two locations on the
output axis. The first term represents the correct location for
the weight and the second term effectively removes the
incorrectly positioned weight that is initially applied by (11).

Use of corrective terms allow for any arbitrary IRC rule
table to be mapped to a URC system with the caveat that each
corrective term adds one multi-antecedent rule. Therefore, it
is important to consider the worst case, where a maximal
number of corrective terms are required. The number of
rules required in the worst case is given by

P
rURC=(P—1)+HNj.

i=1

(17}

Notice that the second term is the total number of rules in the
original TRC rule table. The first term is the number of
antecedents minus one. Thus, in the worst case, the URC
system will actually contain more rules than the IRC system
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due to a conversion penalty of P-1 rules. In a future paper
we address this issue and provide a method for, obtaining a
layered URC system that avoids rule explosion for
inseparable rule tables [8].

Further, some have wondered if the URC system can
incorporate an expert’s perceived correlation between
antecedents. It should be fairly obvious that this correlation
does appear in the URC as a corrective term, Therefore, an
expert’s perceived correlation does appear in the URC
system, but not without an increase in the computational
burden. Finally, since any arbitrary IRC system can be
converted to a URC system (which possibly contains
corrective terms) and IRC fuzzy systems are proven universal
approximators, URC fuzzy systems must be universal
approximators as well [9-11]. :

III. MAPPING AN IRC TO A URC: AN EXAMPLE

Consider a two antecedent, single consequent fuzzy
system, where each antecedent has three subsets. Let the first
antecedent be the quality of a student’s Graduate Record
Examination (GRE) with subsets of ‘High’, ‘Medium’, and
‘Low’. Let the second antecedent be the quality of a
student’s undergraduate grade point average (GPA). In order
to avoid confusion, different (albeit quirky) names are given
to the subsets of GPA: ‘Big’, ‘Average’, and ‘Small’. The
consequent for this system shall represent the quality of an
applicant to a graduate program and has subsets of
‘Excellent’, ‘Very Good’, ‘Good’, *Fair’, ‘Poor’, and ‘Very
Poor’. AnIRC fuzzy inference engine that assigns a measure
of goodness to graduate school applicants based on GPA and
GRE scores is shown in Fig. 1. The consequent membership
functions for this inference engine are shown in Fig 2. The
antecedent membership functions are not shown, as they have
no bearing on the mapping process provided that they are
normalized as discussed previously.

Notice that the IRC rule table of Fig. 1 is additively
separable. Therefore the IRC rule table can be directly
transformed into a URC rule table via {12). Projection
vectors are chosen to be the first row and column of the rule
table minus an offset corresponding to one half of the
element {1,1). As a result, the output axis is scaled by a
factor of 2 and advanced by 10 units relative to the original
consequent subsets (the advance is due to the choice of
projection vectors). The rule table of the resulting URC is
given in Fig. 3 and the consequent membership functions for
the URC system are shown in Fig. 4.
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Fig. 1. The IRC rule table for the fuzzy inference engine

VP
1.0

P F G VG E

0 2 4 6 8 10

Fig. 2. Consequent membership functions for the IRC fuzzy inference
engine,

GRE H—E M—-G L—F
GPA B—E A—-VG 5—=6G

Fig. 3. The URC formulation of the IRC system given in Fig. 1. Notice that
the number of rules has been reduced by 30%.

F G VG E
1 ] T T L
-2 2 6 10

Fig. 4. The consequent membership functions for the URC fuzzy inference
engine. Notice that the output axis has been subjected to an affine
transformation.

The transformation from an IRC rule table to a URC rule
table becomes slightly more involved when the IRC rule
table is not additively separable. Consider the modified IRC
rule table shown in Fig. 5. The IRC rules in this table are
most accurately represented by the projection vectors from
the previous example. However, the rule ‘GRE is medium
and GPA is average implies applicant quality is good,” does
not obey (3). Therefore, it is necessary to add an extra multi-
antecedent rule to the URC rule table. The additional rule
removes the weight that is incorrectly applied to the
consequent subset ‘Fair® and instead applies the weight to the
correct consequent subset ‘Good’. However, as far as
defuzzification is concerned, applying a negative weight at
‘Fair’ and a positive weight at *‘Good’ is the same as applying

a single, positive weight at a new consequent subset ‘X’
which is found by subtracting the centers of mass of
consequent subsets ‘Good’ and ‘Fair’. Thus the URC system
will contain a corrective rule and is shown in Fig. 6. The
corresponding consequent membership functions are shown
in Fig. 7.

GPA
B | A] S
wI[A |l EIVG| G
e Ml e [P
°FrT TP

Fig. 5. An inseparable IRC rule table. The rule ‘GRE is medium and GPA is
average implies applicant quality is Good,’ is not accurately represented by

(3).

GRE H—E M—>G L>F
GPA B—E A-> VG So5G
Corrective Rule MnA - X

Fig. 6. A URC rule table that implements the same fuzzy system as the
inseparable IRC rule table given in Fig. 5. Note that an extre rule is required
to handle the dependency between GRE and GPA.

Y T + T 1
-2 2 4 6 10
Fig. 7. The consequent membership functions for the URC rule table of Fig.

6. Notice the new consequent subset “X* which is implied by the corrective
rule.

IV. CONCLUSION’

In conclusion, the mapping presented here is applicable
for (potentially) non-square IRC rule tables with arbitrary
antecedent membership functions, consequent membership
functions with arbitrary (but identical} shape, and arbitrary
defuzzification. Corrective terms are required for each rule
in the IRC rule table that is not accurately represented by (2).
As a matter of consequence, the URC must be a universal
approximator due to the equality that exists between IRC and
URC architectures.

Many fuzzy systems have additively separable IRC rule
tables, and many more have nearly separable IRC rule tables.
It is possible to dream up a fuzzy system with an IRC rule
table that would require a large number of corrective terms.
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One such example would be a table with XOR behavior. In
this instance, the corresponding URC system actually
requires more rules! In a future paper, we outline a method
for circumventing rule explosion for inseparable rule tables
[8] . .

If rule reduction is the primary goal, the IRC system
should be examined carefully before it is converted to the
URC architecture. For instance, one could design an IRC
system where a maximum nulmber of elements do not obey
(3) do to a small difference in each instance. Thus, the
analogous URC system actually contains more rules, yet a
nearly identical URC system could perform the same task,
with an exponential decrease in the number of rules if the
consequent membership functions are placed along the output
axis in a more efficient manner. Further, many IRC rule
tables are inseparable only because designers intentionally
limit the number of consequent subsets. In these cases, a
single subset is repeated multiple times in the same row or
column of the rule table (typically near the corners).
Therefore, if an IRC rule table exhibits either of the two
behaviors described above, it may be wise to modify the
original IRC system before transforming it to a URC
architecture or redesign the system directly as a URC fuzzy
system.

Finally, we want to underscore the most important point of
this paper. The mapping presented here is not as important
as what the existence of the mapping means—URC systems
can accomplish the same tasks as IRC systems, and most of
the time URC systems can accomplish the tasks with fewer
rules. Therefore we invite the reader to design a URC system
and find out first hand how rule explosion is avoided.
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