FPGA IMPLEMENTATION OF PARTICLE SWARM OPTIMIZATION FOR INVERSION OF LARGE NEURAL
NETWORKS

Paul D. Reynolds Russell W. Duren
Department of Engineering
Baylor University
Waco, TX 76798
Paul Reynolds@baylor.edu

Baylor University
Waco, TX 76798

ABSTRACT

Particle swarm inversion of large neural networks is a can-
putationally intensive process. By the implementing a
modified particle swarm optimizer and neural network in
reconfigurable hardware, many of the computations can be
preformed simultaneously, significantly reducing comput-
tion time compared to a conventional computer.

1. INTRODUCTION

Reconfigurable hardware is capable of performing compu-
tations in parallel, allowing for the computation time of
algorithms to be significantly decreased. However, the
number of computations performed in parallel, and hence
the speedup, is limited by hardware constraints. In order to
maximize speedup, algorithms can be modified to use
minimal hardware for computations such as multiplications
and additions. Portions of an algorithm can also be
changed in order to decrease the number of computations
required. In this paper we demonstrate with a particle
swarm used for inversion of a neural network.

2. THE INVERSION PROBLEM

Given a set of sonar system parameters and environmental
parameters, the ensonification of an underwater environ-
ment can be predicted by computationally intensive com-
puter models. It is desirable to be able to perform an inve-
sion on the system: given the state of the underwater envi-
ronment (bottom type, bottom depth, wind speed, sound
speed profile, and others) determine other, controllable in-
put parameters (frequency, depth of transmitter, and depth
of receiver) to achieve optimal sonar performance.

Inversion was originally performed by comparison with
previously known response results. The controllable pa-
rameters from sets with similar condtions were run through
the computational model with the environment and uncon-
trollable parameters fixed. The “inverse” was selected by
choosing the set which mostly closely matched the desired
sonar performance.

This method is faulty in two aspects. First, is that it does
not find the actual optimum parameters for the scenario, but
is limited by the template of previously known optimal pa-

0-7803-8916-6/05/$20.00 ©2005 IEEE

Department of Engineering

Russell Duren@baylor.edu

Matthew L. Trumbo Robert J. Marks 11
Department of Engineering Department of Engineering
Baylor University Baylor University
Waco, TX 76798 Waco, TX 76798
Matt Trumbo@baylor.edu Robert Marks@baylor.edu

rameters. The second is that the method is too slow for real
time due to the time required to compute the acoustic
model.

In order to perform a more accurate inversion in real
time, a better method for testing unknown parameters must
be implemented and the computation time of the model
must be significantly decreased.

3. NEURAL NETWORK SOLUTION

In order to decrease the time of the acoustic model compu-
tation, an artificial neural network was trained with data
calculated by the model [1-3]. The network has a 27-40-
50-70-1200 architecture, with 27 inputs corresponding to
the sonar system and environmental parameters and 1200
outputs corresponding to the signal to interference ratio in
decibels at locations in an 80 by 15 pixel grid [4]. The for-
ward computation time run on a dedicated 1.3 GHz PC of
the neural network is approximately 1 millisecond, much
faster than the tens of seconds used by the acoustic model.

Pixel output is typically in the range of -80 to -500 dB.
The average error per pixel of the neural network outputs
from the acoustic model outputs is 4.58 dB. This gives a
typical error between 1% and 5%.

In order to perform a more accurate inversion, a particle
swarm optimization is used to generate the input sets tested.
The particle swarm uses multiple “agents” to search
through the input space. The standard velocity and position
update equations are used [5].

X[k +1] = X[k]+V[k]
VIk +1] = VIk]+ C,R (P - XTk]) + C,R,(G - X[k])

where X is the position vector, V is the velocity vector, P is
the personal best location, G is the global best location, C;
and C, are personal and global bias constants, and R, and R,
are uniform random variables between zero and one.

The swarm was tested on its ability to find a set of inputs
that produces a specified SIR on an 80 by 15 output grid.
The objective function used for verifying the particle
swarm’s accuracy is calculated by taking the average of
absolute difference between the desired outputs and the
found outputs. A lower average value is considered to be

better. Particle swarm, in such cases, keeps track of the
local and global ‘smallest’ values. A second inversion
problem is finding the inputs that maximize the SIR over a
specified region on the grid. The fitness function used to
find input sets for maximum output SIR is calculated by
taking the sum of outputs in the specified location. In this
case, a higher number is considered to be better.

Ten agents were found to work well with these fitness
functions. The swarm was allowed to run for one hundred
thousand fitness evaluations for each test.

4. TEST RESULTS

For one hundred tests, the average error per pixel between
the best input set found by the particle swarm and the de-
sired output set was approximately 1.94 dB. This was
deemed to be an acceptable level of error in the inversion,
with typical error between 0.5% and 2.5%. The neural
network error from 1% to 5% is more significant than that
introduced by the particle swarm. The low error suggests
that a particle swarm inversion is a good method for the
maximization problem.

However, performing one hundred thousand fitness
evaluations and position and velocity updates takes ap-
proximately two minutes to complete on a dedicated 1.2
GHz PC. Though an improvement over the more cumber-
some template matching method of inversion, this is too
slow to be considered real time. In order to achieve results
closer to real time, the inversion method has to be modified
and implemented into hardware.

5. HARDWARE LIMITATIONS

The main goal for a hardware implementation is to decrease
computation time by performing as many calculations si-
multaneously as possible. For many complex algorithms
this is limited by hardware space.

To solve the sonar inversion problem using a trained na-
ral network, the SRC-6e reconfigurable computer was used.
It contains two Xilinx XC2V6000 field programmable gate
arrays (FPGAs). These FPGAs each contain 144 multipli-
ers and 144 eighteen-kilobit random access memory blocks
as well the equivalent of 6 million logic gates. The
XC2V6000s run at 100 megahertz. One FPGA is used for
fitness function calculations while the other is used for the
particle swarm update equations.

Having only 144 multipliers on an FPGA greatly limits
the neural network implementation speed, which requires
approximately 92,000 multiplications. The data represent-
tion and sigmoid function of the neural network also had to
be modified to better fit the hardware. The neural network
modifications and implementation structure are the topic of
another paper [7].

Knowledge of some of the neural network structure is
needed for the particle swarm implementation. The net-
work implementation uses a sixteen-bit fixed-point repre-

sentation for both the inputs and outputs. The input data
has a two’s complement representation with the fixed point
after the most significant bit. The output data also has a
two’s complement representation with the fixed point after
the eleventh most significant bit. Also, one forward
evaluation of the modified network can be calculated in
1465 clock cycles. At one hundred megahertz, this is just
under fifteen microseconds. This allows over sixty thou-
sand fitness evaluations to occur every second, about sixty
times faster than the conventional computer implementa-
tion.

6. PARTICLE SWARM MODIFICATIONS

In order to save area on the FPGA and avoid using pre-
defined components, some particle swarm modifiations are
necessitated. .

The simplest modification of the update equations is to
use powers of two for the bias constants. This way, instead
of using a slower and larger multiplier, a simple right shift
is used. This saves one clock cycle in the update equations.
For this particle swarm implementation the personal best
bias constant is set to one eighth and the global best bias
constant is set to one sixteenth. This is a right shift of three
and four bits respectively.

Generating high-quality random numbers in hardware can
be difficult. For one hundred thousand fitness evaluations
in the swarm algorithm, 5,400,000 random numbers are
needed.

The first option examined was simply removing the ran-
dom components from the update equations. Randomness
was previously removed to prove the stability of the particle
swarm algorithm [6]. In the computer simulation, a paticle
swarm was run thirty times both with and without random
contributions. The same desired output was used for all
runs. Figure 1 shows the results from the simulations.

5

45

4
3.8

&

3

258}

Glohal Best Fitness

L L L L L L L L L '
a 1000 2000 3000 4000 S000 6000 7000 8000 9000 10300
Iteration

Figure 1. The global fitness over time for particle
swarms with and without randomness.

The x’s show the global best fitness over time for the
swarms without randomness. The top line is the average
fitness value for these deterministic swarms. The o’s show
the global best fitness over time for the stochastic swarms.
The lower line is the average fitness of these swarms.

The stochastic swarms out perform the deterministic
swarms by about 0.5 dB per pixel on average. However,
there is much overlap between the results of the two meth-
ods. Many of the deterministic swarms perform better than
several of the stochastic swarms. It was decided that ex-
ploring implementation of stochastic updates in hardware
would be useful, though actual implementation of stochastic
updates might not be necessary.

7. RANDOMNESS

The particle swarm was implemented in hardware using
three different methods, one deterministic, and two con-
taining different implementations of random number gen-
erators.

The two methods of generating pseudorandom numbers
used were a linear feedback shift register (LFSR) and a
simple squaring technique. The LFSR is typically used for
generating data to test digital logic. It is made of XOR
gates and a shift register. For the squaring technique, a
simple equation is implemented where the fractional por-
tion of a square is used as the random value. The equation
is

R[k +1] = dec[(C + R[k])*]

where C is a constant greater than one with a random frac-
tional portion. For this implementation, the binary value of
Cis setto a1 followed by 17 randomly selected fractional
bits.

Both methods are modeled in computer simulations.
Figure 2 and Figure 3 show comparisons between these
methods and a computer generated random variable. From
the figures, the LFSR has a histogram more similar to a
uniform random variable, while the squared fractional im-
plementation is closer in frequency spectrum.

In the hardware implementation, the average pixel error
for the deterministic swarm over one hundred trials is
2.36dB. The particle swarm with a LFSR generating ran-
dom numbers has an average pixel error of 2.35dB. The
particle swarm using the squared fractional implematation
had an average pixel error of 2.37dB.

When searching for known achievable sets, all three im-
plementations produce approximately the same level of
output error. Due to its simplicity, this makes the determi-
nistic method most desirable. The deterministic method
introduces a small amount of randomness due to truncation
caused by the fixed-point calculations.

8. RESULTS

None of the hardware implementations are as accurate as
the conventional computer average error of 1.94 dB per
pixel. In order to account for this increase, note that the
hardware implementation uses fixed-point math, while the
conventional computer uses floating-point math. An

LSFR Histogram Uniform Random Histogram

014 o1z
@ @
g 012 % 04
2 o1 &
= . 008
§ 008 §
= = 006
= 008 =
s s
= = 004
€ 004 H
2 2
& oo g 0oz
o o
0z 0.4 0.6 08 1 a 02 04 0.6 08 1
Data Range Data Range
LFSR Frequency Analysis Uniform Random Frequency Analysis
05 0a
o @
3 z
20 20
€ £
& H
05 05
a0 100 150 200 250 300 50 100 150 200 250 300
sample sample
150 100
o @
E 100 =
g E 0
g% £

i 0 08 45 0 05
frequency frequency

Figure 2. A comparison between the LFSR randomness
implementation and a uniform random variable.

Sguared Decirmal Histograrm Unifarr Randorm Histogram

014 012
g 012 & o
£ 04 S
= c 008
2 008 3
3 = 008
> 006 >
5 5
2 Zom
T 004 =
2 2
& oo & om
0 0
02 04 06 08 1 0 02 04 0B 08

Data Range
Squared Decimal Frequency Analysis

Data Range
Uniform Random Frequency Analysis

amplitude
=
amplitude
=

&0 100 1850 200 250 300 a0 o0 150 200 250 300
sample sample

magnitude
o
5]
5]
magnitude

-05 a 05 - 1) 0s
frequency frequency

Figure 3. A comparison between the squared fractional
randomness implementation and a uniform random vari-
able.

analysis was performed to determine the components of the
error in the hardware implementation. The error compo-
nent from the deterministic hardware implementation of the
swarm calculation was 1.81dB, which is actually better than
the conventional swarm. The error component resulting
from the hardware implementation of the neural network
was 1.42dB. These two components combined in an RMS
manner to produce an overall error of 2.30dB which agrees
with the experimental results.

The average pixel error between the computer network
outputs and the acoustic model outputs it mimics is 4.58dB.
With this level of error already in the system, the RMS er-
ror added by the network and particle swarm translation to
hardware is less than 0.22dB, which is insignificant.

9. CONCLUSIONS

The output from the hardware particle swarm inversion
has an average pixel difference of 2.54dB from a known
achievable desired output or an average difference of
1.53%. This low error implies that the particle swarm in-
version will be able to find a set of inputs that produces
outputs closest or near the closest to a desired output set.

Figure 6 show two sets of outputs from inputs found for
the maximization of a specific area as well as the specified
area. All other areas were ignored for calcudtion of fitness.
Localized maximization is equivalent to attempting to find
infinite signal to interference ratio, which, of course, is ou-
side the achievable set. It is evident from the figures that
the particle swarm optimization found a set of inputs which
maximizes the local area and ignores the rest of the figure.

The time to complete the same one hundred thousand it-
eration particle swarm optimization on a conventional cen-
puter is nearly two minutes. At one hundred megahertz, the
two-chip hardware implementation takes under 1.8 seconds
to complete, approximately sixty-five times faster.

2 q 6] 10

Figure 6. Particle swarm inversion results maximizing
the specified area. The white areas in the images on the
right show the desired maximization areas. The images
on the left show the outputs from the solution found by
the particle swarm, where lighter areas represent higher
signal to interference ratios.

10. FUTURE IMPLEMENTATIONS

The calculation time of evaluating the fitness function, as
with this problem, is typically much longer than the posi-
tion and velocity updates for one agent. Therefore, inver-
sion time is determined solely by the fitness function im-
plementation.

The current particle swarm implementation uses two
identical FPGAs operating at one hundred megahertz and
with 144 multipliers. For specially designed inversion
hardware, chips of different sizes could be used. The parti-
cle swarm implementation would be implemented in a

much smaller chip without multipliers. The fitness function
would use the newer generation of Xilinx Virtex 4 FPGAs
operating at a five hundred megahertz and containing 512
multipliers. The speed increase alone would allow the in-
version time to decrease from 1.8 seconds to .36 seconds.
The additional multipliers could be used to perform fitness
evaluations of several agents at the same time or to improve
the speed of a single fitness evaluation. Predicted speedup
based on the increase in multipliers is about seven. This
combined with the faster chip speed would allow nearly
twenty network inversions to be performed every second.

11. REFERENCES

[1] W. Fox, R. Marks II, M. Hazen, C. Eggen, and M. El-
Sharkawi, "Environmentally Adaptive Sonar Control in a
Tactical Setting.", in Impact of Environmental Variability

on Acoustic Predictions and Sonar Performance, pp. 595-
602, Sept. 2002.

[2] M. Hazen, R. Marks II, W. Fox, M. El-Sharkawi, and C.
Eggen, "Sonar Sensitivity Analysis Using a Neural Net-
work Acoustic Model Emulator," Oceans '02 MTS/IEEFE,
vol. 3, pp. 1430-1433, Oct. 2002.

[3] C. Jensen, R. Reed, R. Marks II, M. El-Sharkawi, Jae-
Byung Jung, R. Miyamoto, G. Anderson, and C. Eggen,
"Inversion of Feedforward Neural Networks: Algrithms
and Applications," Proceedings of the IEEE, vol. 87, pp.
1536 -1549, Sept. 1999.

[4] B. Thompson, R. Marks II, M. El-Sharkawi, W. Fox,
and R. Miyamoto, "Inversion of Neural Network Under-
water Acoustic Model for Estimation of Bottom Parame-
ters Using Modified Particle Swarm Optimizers," 2003
International Joint Conference on Neural Networks, pp.
1301-1306, July 2003.

[5] R. Eberhart, and Y. Shi, “A Modified Particle Swarm
Optimizer,” Evolutionary Computation Proceedings,
1998. IEEE World Congress on Computational Intelli-
gence, pp. 69 -73, May 1998.

[6] M. Clerc and J. Kennedy, “The Particle Swarm — Expd-
sion, Stability and Convergence in a Multidimensional
Complex Space,” IEEE Transactions on Evolutionary
Computation, vol. 6, pp. 58-73, Feb. 2002.

[7] P. Reynolds, “Algorithm Implementation in FPGAs
Demonstrated through Neural Network Inversion on the
SRC-6e,” M.S. thesis, Baylor University, Waco, TX,
2005.

	footer: 0-7803-8916-6/05/$20.00 ©2005 IEEE
	01: 389
	02: 390
	03: 391
	04: 392

