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Abstract

In this paper, we develop some important Fourier analysis tools in the context of time scales. In particular, we present a gen-
eralized Fourier transform in this context as well as a critical inversion result. This leads directly to a convolution for signals on
two (possibly distinct) time scales as well as several natural classes of time scales which arise in this setting: dilated, closed under
addition, and additively idempotent. We explore the properties of these time scales and demonstrate the utility of these concepts in
discrete convolution, Mellin convolution, and transformations of a random variable.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of time scales springs from the 1988 doctoral dissertation of Stefan Hilger [9] that resulted in his seminal
paper [7] in 1990. These works aimed to unify and generalize various mathematical concepts from the theories of dis-
crete and continuous dynamical systems. Afterwards, the body of knowledge concerning time scales advanced fairly
quickly, culminating in the excellent introductory text by Bohner and Peterson [3] and their more recent advanced
monograph [2]. A succinct survey on time scales can be found in [1].

Here, we explore time scales as a unification theory under which continuous and discrete time signals and systems
are subsumed. In particular, we

(1) establish that the time scale Fourier transformation introduced by Hilger [10] reduces to a form closely resembling
the conventional continuous and discrete time Fourier transforms,

(2) provide a method for inverting the Fourier transform on a time scale, and
(3) perform a convolutional filtering operation on a class of time scales said to be additively idempotent.

✩ This work was supported by NSF Grant EHS#0410685. For other papers from the Baylor Time Scales Research Group, please see http://www.
timescales.org/.
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The bulk of engineering systems theory to date rests on two time scales, R and Z corresponding, respectively,
to continuous and discrete signals and systems. Frequency analysis in R is handled by the continuous time Fourier
transform and, for Z, the discrete time Fourier transform. These are both special cases of the Fourier transform on
a time scale presented here. In the case of convolution, a signal in R convolved with an impulse response in R produces
a response in R. The same is true for Z. We will show there exist numerous other time scales with interesting properties
for which this is also true. Examples are given for transformations on a random variable and Mellin convolution.

2. Background

In this section, we quickly review the salient points of the theory needed to make this paper reasonably self-
contained, but our treatment is by no means exhaustive.

2.1. Relevant time scales

We will use some standard and nonstandard examples of time scales throughout this paper. We organize them here
for convenient reference. See Fig. 1 and Table 1. (We use the same ordering below.)

(a) R consists of the entire real line.
(b) hZ := {. . . ,−2h,−h,0, h,2h, . . .} for h > 0.
(c) hZn contains the origin and points separated by an interval h beginning at nh. The time scale shown here is Z3.
(d) Lk , for a specified k, consists of all points {tn: tn = log(k(n − 1) + 1), n ∈ N}. For example, L1 =

{log(1), log(2), log(3), . . .} is shown in Fig. 1. The log base is arbitrary but fixed.
(e) Pab consists of a union of closed intervals of length a each separated by a distance of b.
(f) Qab = ⋃

n∈N
{na � t � nb}∪{0}. There will be a time η where all t � η are in Qab , i.e. Qab becomes a continuous

interval for t � η. This occurs when the intervals begin to overlap. The nth and the (n + 1)st intervals overlap
when nb � (n + 1)a or n > a

b−a
. Then

η =
(

1 +
⌊

a

b − a

⌋)
a, (2.1)

Fig. 1. Relevant time scales.
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Table 1
Canonical time scales

N = {1,2,3, . . .} natural numbers
R = (−∞,∞) real numbers
R+ = [0,∞) nonnegative real numbers
T generic time scale
hT = {ht : t ∈ T} uniform discrete time scale
Z = {. . . ,−3,−2,−1,0,1,2,3, . . .} the integers
Z+ = {1,2,3, . . .} the positive integers
Lk = {log(k(n − 1) + 1): n ∈ N} log time scale
D = {tn} (nonuniform) discrete time scale
X time scale on which x(τ) is defined
H time scale on which h(ξ) is defined
Y time scale on which y(t) is defined

where �ψ� denotes the greatest integer not exceeding ψ . For example,

Q10,13 = {0} ∪ {t : 10 � t � 13 or 20 � t � 26 or 30 � t � 39 or t � 40}.
Thus, as required by (2.1), η = (1 + � 10

13−10�) × 10 = 40.

(g) Aξη := {0} ∪ {nξ + mη: n,m ∈ N}. Shown in Fig. 1 is

A2,5 = {0,2,4,5,7,8,9,10,11, . . .}.
(h) L− := L1 \ {logp: p prime}.

Definition 2.1. A causal time scale is a time scale that contains no values of t less than zero.

For example, R+ and Z+ are the causal time scales R and Z for t � 0. The time scales R and R+ are the time
scales used for continuous time signals and systems, while Z and Z+ are the time scales of discrete time signals and
systems. The time scales N and Lk are also causal.

2.2. The Hilger complex plane

Definition 2.2. For h > 0, define the Hilger complex numbers, the Hilger real axis, the Hilger alternating axis, and
the Hilger imaginary circle by

Ch :=
{
z ∈ C: z �= − 1

h

}
, Rh :=

{
z ∈ R: z > − 1

h

}
,

Ah :=
{
z ∈ R: z < − 1

h

}
, Ih :=

{
z ∈ C:

∣∣∣∣z + 1

h

∣∣∣∣ = 1

h

}
,

respectively. For h = 0, let C0 := C, R0 := R, A0 := ∅, and I0 := iR. See Fig. 2.

The Hilger complex plane, pictured on the left in Fig. 2, is akin to the s plane of the one-sided Laplace transforms
and the z plane of the one-sided z transform. Stability is associated with the shaded interior of the Hilger circle [2]. The
circle, centered at −1/μ(t), opens to the entire left plane as μ → 0+, i.e. when the time scale becomes continuous.
We are, in essence, in the s domain. When μ = 1, the Hilger circle is the shifted unit circle in the z plane.1

Definition 2.3. For h > 0, define the strip Zh := {z ∈ C: −π
h

< Im(z) � π
h
}, and for h = 0, set Z0 := C. Then we can

define the cylinder transformation ξh : Ch → Zh by

ξh(z) = 1

h
Log(1 + zh), h > 0, (2.2)

1 The unit circle in the z plane is typically centered around the origin. The circle’s shift comes from our consideration of equations of the form
x�(t) = px(t) rather than of the form of the equivalent difference type equation of the form x(t + μ(t)) = (μ(t)p + 1)x(t).
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Fig. 2. (Left) The Hilger complex plane. (Right) The cylinder (2.2) and inverse cylinder (2.3) transformations map the familiar stability region in
the continuous case to the interior of the Hilger circle in the general time scale case.

where Log is the principal logarithm function. When h = 0, we define ξ0(z) = z, for all z ∈ C. The cylinder transfor-
mation maps the interior of the Hilger circle to the left half plane.

The inverse cylinder transformation ξ−1
h : Zh → Ch is given by

ξ−1
h (z) = ezh − 1

h
. (2.3)

Definition 2.4. The Hilger pure imaginary number [2], around the periphery of the Hilger circle, is2

o
ι 2πu = ξ−1

h (j2πu) = ej2πu − 1

h
,

where j = √−1. See Fig. 2.

Definition 2.5. The function p : T → R is regressive if 1 + μ(t)p(t) �= 0 for all t ∈ Tκ , and we denote

R = {
p : T → R: p ∈ Crd(T) and 1 + μ(t)p(t) �= 0 ∀t ∈ Tκ

}
.

Definition 2.6. If p ∈R, then we define the generalized time scale exponential function by

ep(t, s) = exp

( t∫
s

ξμ(τ)

(
p(τ)

)
�τ

)
, for all s, t ∈ T.

If p ∈ R, y(t) = ep(t, t0) is the unique solution to the first order equation y�(t) = p(t)y(t), t ∈ T. Finally, note
that ez(t, s) = 1/ez(t, s) where  is the operation from [2].

3. The Fourier transform on a time scale

Hilger [10] defines the Fourier transform on a time scale T as

X(u) :=
∫

t∈T

x(t)eo
ι2πu

(t,0)�t.

Evaluation of the kernel reduces this to a more familiar form:

eo
ι2πu

(t,0) = 1/eξ−1(j2πu)(t,0) = exp

(
−

t∫
0

ξ
(
ξ−1(j2πu)

)
�t

)
= e−j2πut .

2 We use 2πu in lieu of ω to maintain Fourier transform symmetry. See [11].
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Thus, the Fourier transform on a time scale T can be written [8]

X(u) = F {x}(u) :=
∫

t∈T

x(t)e−j2πut�t. (3.1)

There is an important distinction between the approach we choose to take here with the generalized Fourier trans-
form versus the ones in [2,4]. Unlike those papers, our goal is not the distillation of all transform tables on all times
scales to a single one. Instead, we want a transform that will result in an algebraically useful convolution and one
that arises naturally from the dilation of two time scales. However, there is a still a unification theme present in (3.1):
one does obtain the canonical discrete and continuous Fourier transforms simply by choosing T = Z and T = R

(respectively) in our definition.
We present some examples to illustrate this concept. Throughout, we have use the notation yμ(t) := y(t)μ(t), for

μ(t) > 0.

Example 3.1. Although the support of a signal may prove useful in assessing a time scale, it is inappropriate to equate
the support of a signal to a corresponding time scale. The Fourier transform of a signal, for example, is a function of
the time scale. On R, consider the function

x(t) =

⎧⎪⎨
⎪⎩

0, t < 0,

1, t = 0,

0, 0 < t < 3,

et−3U(t − 3), t � 3.

Modeling this signal on the time scale T = {0} ∪ [3,∞) produces a Fourier transform in (3.1) of X(u) =
3 + e−j6πu(1 + j2πu)−1. For the time scale T = {0,1} ∪ [3,∞), the Fourier transform is

X(u) = 1 + e−j6πu(1 + j2πu)−1.

Example 3.2. The choice of the time scale changes the interpretation of xμ(t) and will generally alter its Fourier
transform significantly. To illustrate, let xμ(t) = e−αt with Reα > 1. On the time scale Z+, the Fourier transform
is X(u) = (1 − eα+j2πu)−1. For the time scale L1 = {tn: tn = log(n), n ∈ N}, we see X(u) = ∑∞

n=1 e−tne−j2πutn =
ζ(α + j2πu), where

ζ(z) =
∞∑

n=1

1

nz
, Re z > 1,

is the Riemann zeta function.

Example 3.3. In R and Z, the Fourier transform of a sinusoid is a Dirac delta functional centered at the frequency of the
sinusoid. If the sinusoid if of finite duration, the transform is a sharp peak centered at the sinusoid frequency. Consider
L1 using base log10. Figure 3 shows the Fourier transform of the signal corresponding to xμ(t) = cos(2πf t)Π20,000(t)

for f = 4, where

ΠK(t) :=
{

1, 1 � tn � tK,

0, otherwise.

Since xμ(t) is a sinusoid with frequency f = 4, we expect the transform to peak at u = f = 4 as shown. An analogous
example for x(t) = cos(2πf t)Π20,000(t) is shown in Fig. 4. In both figures, the real and imaginary portions of X(u)

are shown in the bottom right and bottom left.

Example 3.4. Figure 5 shows the magnitudes of the time scale Fourier transform for x(t) = cos(2πf t)ΠK(t) for
f = 10 on L1 for K = {100,1000,10000,100000}. All plots are on the same scale. A similar figure for xμ(t) =
cos(2πf t)ΠK(t) for f = 10 is shown in Fig. 6, but with a varying plot range.
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Fig. 3. (Top left) xμ(t) = cos(8πt)Π20,000(t) on the time scale L1. The dots denote the values of the function on the time scale and are linearly
connected for clarity of presentation. (Top right) The magnitude of the time scale Fourier transform. (Bottom) The real and imaginary parts of the
time scale Fourier transform.

Fig. 4. These plots are the same as in Fig. 3, except the transform is of x(t) = cos(8πt)Π20,000(t) rather than xμ. The magnitude of the time scale
Fourier transform, shown in the top right plot, peaks at the frequency u = 4.
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Fig. 5. The magnitudes of the time scale Fourier transform of a sinusoid x(t) = cos(2πf t)ΠK(t) with frequency f = 10 on L1 for various
durations K . The longer the duration, the sharper the peak centered around u = 10. Fourier transforms on R and Z exhibit similar behavior.

Fig. 6. Analogous to Fig. 5, except with xμ(t) = cos(2πf t)ΠK(t). As in Fig. 5, the longer the duration, the sharper the peak centered around
u = 10.

Hilger [10] studied the time scale Fourier transform for T = R and T = hZ. The purpose was to provide a seamless
time scale theory for R and hZ only. For T = hZ, inversion is obtained by integrating around the Hilger circle,

x(t) =
B∫

−B

X(u)ej2πut du, t ∈ hZ,

where 2B = 1
h

. We note, however, that for hZ, X(u) is periodic and for this inversion the integration is over a single
period.
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Consider the more general case when the time scale is a set of discrete points in time but not necessarily equidistant,
i.e. T = D = {tn}. The time scale Fourier transform in (3.1) is no longer periodic if the tn’s are not uniformly spaced.
The Hilger circle, with radius 2B(t) = 1/μ(t), now changes from point to point. Instead of integrating around the
Hilger circle once, we will show that inverse Fourier transformation on an arbitrary time scale can be achieved by
averaging repeated integrations.

Theorem 3.1 (Inversion of the time scale Fourier transform). Let T be a time scale and X(u) be the Fourier transform
of a signal on T. Then x(t) is given by

x(t) = F−1{X}(t) := lim
N→∞

1

2N + 1

N∑
n=−N

(2n+1)B(t)∫
(2n−1)B(t)

X(u)ej2πut du, t ∈ T. (3.2)

Proof. First, suppose t is right-dense. Then B(t) = ∞ and (3.2) becomes the conventional continuous inverse Fourier
transform:

lim
N→∞

1

2N + 1

N∑
n=−N

(2n+1)B(t)∫
(2n−1)B(t)

X(u)ej2πut du = lim
N→∞

1

2N + 1

N∑
n=−N

∞∫
−∞

X(u)ej2πut du

= lim
N→∞

1

2N + 1

N∑
n=−N

x(t)

= x(t).

On the other hand, if t is right-scattered, then (3.2) becomes

lim
N→∞

1

2N + 1

N∑
n=−N

(2n+1)B(t)∫
(2n−1)B(t)

X(u)ej2πut du = lim
N→∞

1

2N + 1

(2N+1)B(t)∫
−(2N+1)B(t)

X(u)ej2πut du

= lim
N→∞

1

2N + 1

(2N+1)B(t)∫
−(2N+1)B(t)

[ ∫
τ∈T

x(τ)e−j2πuτ�τ

]
ej2πut du

=
∫

τ∈T

x(τ)

[
lim

N→∞
1

2N + 1

(2N+1)B(t)∫
−(2N+1)B(t)

ej2πu(t−τ) du

]
�τ

=
∫

τ∈T

x(τ)
[

lim
N→∞ 2B(t) sinc

(
2B(t)(2N + 1)(t − τ)

)]
�τ

= 2B(t)

∫
τ∈T

x(τ)δ[t − τ ]�τ

= x(t),

where

δ[w] :=
{

1, w = 0,

0, w �= 0,
sinc(t) := sin(πt)

(πt)
,

and we have used the property limW→∞ sinc(Wt) = δ[t]. �
Theorem 3.1 requires a priori knowledge of the time scale. However, for discrete time scales, it is possible to invert

Fourier transforms of signals on discrete time scales without such knowledge of the time scale. Except for points in D

where x(t) = 0, the time scale D can be determined from X(u).



R.J. Marks II et al. / J. Math. Anal. Appl. 340 (2008) 901–919 909

Theorem 3.2. Let D be a discrete time scale and X(u) be the time scale Fourier transform of a signal on D. Then

xμ(t) = lim
W→∞

1

2W

W∫
−W

X(u)ej2πut du.

Proof. Substitute W = B(t)(2N + 1) in the previous proof and let W → ∞. �
4. Convolution on time scales

The segue from a time scale Fourier transform to convolution on time scales is a natural one. Convolution of a
signal in Z with a signal in Z results in a signal in Z and convolution of a signal in R with a signal in R results in
a signal in R. For what other time scales does this property hold? In this section, we present such a class and outline
various results.

Definition 4.1. The dilation3 [6] of two time scales X and H, denoted X ⊕ H, is defined by

X ⊕ H := {x + h: x ∈ X, h ∈ H}.

Example 4.1. Consider the following.

(1) If X = {0,1} and H = {4,5,10}, then X ⊕ H = {4,5,6,10,11}.
(2) If X = {0,2} and H = {t : 0 � t � 1}, then X ⊕ H = {t : 0 � t � 1 and 2 � t � 3}.
(3) If X = 2Z and H = Z, then X ⊕ H = Z.
(4) If X = L− and H = L1, then X ⊕ H = L1.

Time scale dilation is commutative and associative. The time scale containing only the origin, I = {0}, is the identity
element for dilation since for any T, we have T ⊕ I = T. The time scale R has the property that T ⊕ R = R for all T.
Note that the dilation ⊕ is not to be mistaken for ⊕ from [2]. The context should make this clear.

Next, we propose a time scale convolution that results in the dilation of the component time scales. Our definition
differs from that in Bohner and Peterson [2], but this is not surprising. The choice of a defining convolution is always
dictated by the underlying transform. Bohner and Peterson’s convolution was developed in conjunction with the gen-
eralized Laplace transform which has a very different kernel than the generalized Fourier transform. Furthermore, we
will see that several important properties follow from our definition.

Let C ⊂ T denote all points in T that are right-dense and D ⊂ T be those that are not. Clearly T = C ∪ D. Then

∫
t∈T

y(t)�t =
∞∫

−∞
yR(t) dt,

where yR(t) = yC(t) ∪ yD(t),

yD(t) =
∑
τ∈D

yμ(t)δ(t − τ),

where δ(t) denotes the Dirac delta, and

yC(t) =
{

y(t), t ∈ C,

0, t /∈ C.

This enables us to define the following convolution product on the underlying dilated time scale.

3 Also called Minkowski addition in the literature [5].



910 R.J. Marks II et al. / J. Math. Anal. Appl. 340 (2008) 901–919

Definition 4.2. Let x : X → R and h : H → R. The convolution x ∗ h : Y → R is given by

(x ∗ h)(t) :=
∫

τ∈R

xR(τ )hR(t − τ) dτ,

where Y = X ⊕ H.

Theorem 4.1 (Convolution Theorem). Let x(t) : X → R have Fourier transform X(u) and h(t) : H → R have Fourier
transform H(u), where X and H are time scales. Let Y(u) := X(u)H(u) be the Fourier transform of y(t). Then

F {y} = F {x ∗ h} = X(u)H(u) = Y(u) =
∫

t∈Y

y(t)e−j2πut�t, (4.1)

where y(t) is defined on the dilated time scale Y = X ⊕ H.

Proof. Consider

Y(u) = X(u)H(u) =
∫

τ∈X

x(τ)e−j2πuτ�τ

∫
ξ∈H

h(ξ)e−j2πuξ�ξ

=
∫

τ∈R

xR(τ )e−j2πuτ dτ

∫
ξ∈R

hR(ξ)e−j2πuξ dξ

=
∫

ξ∈R

∫
τ∈R

xR(τ )hR(ξ)e−j2πu(τ+ξ) dτ dξ

=
∫

t∈R

[ ∫
τ∈R

xR(τ )hR(t − τ) dτ

]
e−j2πut dt

=
∫

t∈R

yR(t)e−j2πut dτ dt

=
∫

t∈Y

y(t)e−j2πut�t

= F {y},
where

yR(t) =
∫

τ∈R

xR(τ )hR(t − τ) dτ,

and t = τ + ξ . For every τ ∈ X and ξ ∈ H, there is a t = τ + ξ ∈ Y = X ⊕ H. �
Since yR(t) = 0 for t /∈ Y, a corresponding signal y(t) on a time scale Y can be constructed to satisfy (4.1). The

function y(t), however, can contain Dirac deltas at right dense locations even if neither x(t) or h(t) contains Dirac
deltas at right dense locations, e.g. there is a Dirac delta at the right dense location t = 10 in Fig. 7.

Corollary 4.1 (Convolution on discrete time scales). Let X, H be discrete time scales, and x : X → R, h : H → R.
Then the convolution product is given by

yμ(tp) =
∑
S

xμ(τn)h
μ(tp − τn), (4.2)

where tp ∈ Y = X ⊕ H, τn ∈ X, and S := {τn ∈ X: (tp − τn) ∈ H}.
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Fig. 7. Geometric interpretation of the dilation operation. The time scale X = {τ } = {0} ∪ [4,5] ∪ {6} and the time scale H = {ξ } = {0} ∪ {2} ∪
[5,7] ∪ {10}. We take the Cartesian product of the time scales on the (ξ, τ ) plane as shown. This Cartesian product, when multiplied by e−j2πut

and integrated, yields the Fourier transform, Y (u). The family of lines corresponding to t = τ + ξ are shown. The shadow of the Cartesian product
along these 45◦ lines contains the set of all t = τ + ξ . This is the time scale Y = X ⊕ H = {t} = {0,2} ∪ [4,8] ∪ [9,16] ∪ {17}.

Proof. Again, consider

Y(u) = X(u)H(u) =
∑
τn∈X

xμ(τn)e
−j2πuτn

∑
ξm∈H

hμ(ξm)e−j2πuξm

=
∑
ξm∈H

∑
τn∈X

xμ(τn)h
μ(ξm)e−j2πu(ξm+τn).

Now make the substitution tp = τn + ξm. Clearly, tp ∈ X ⊕ H = Y. Then

Y(u) =
∑
tp∈Y

[∑
S

xμ(τn)h
μ(tp − τn)

]
e−j2πut .

Since

Y(u) =
∑
tp∈Y

yμ(tp)e−j2πut ,

(4.2) follows immediately. �
5. Classes of time scales arising from convolution

5.1. Dilated and closed under addition

In developing the time scale convolution, the dilation of two time scales arises naturally. We now investigate further
consequences of the ⊕ operation.

Definition 5.1. A time scale T is closed under addition, if for every ξ ∈ T and τ ∈ T, the time t = ξ + τ ∈ T, i.e.
T ⊕ T ⊂ T.

The time scales hZ, hZ+, R, R+, hZn, Lk , Qab , N, and Aξη are closed under addition.

Example 5.1. Consider the following.

(1) If T = {−1,0,1}, then TC = Z.

(2) if T = {t : 0 � t � 1}, then TC = R+.

(3) if T = { 4
5 ,1}, then TC = { 4

5 ,1, 8
5 , 9

5 ,2, 12
5 , 13

5 , 14
5 ,3, 16

5 , 17
5 , 18

5 , 19
5 ,4, . . .}.
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A geometric interpretation of the dilation of two time scales is shown in Fig. 7. Here, X is on the τ axis and H is
on the ξ axis. The Cartesian product of these time scales shows all allowable combinations of (ξ, τ ). All allowable
points t = ξ + τ are shown as the shadow of the Cartesian product at 45◦ as shown. If a point t lies in the shadow of
the Cartesian product, then there exists a (ξ, τ ) such that t = ξ + τ .

5.2. Additively idempotent time scales

If we strengthen the containment criterion in the definition of a time scale closed under addition, we introduce a
class of time scales with a rich structure.

Definition 5.2. T is additively idempotent (with respect to ⊕) if T ⊕ T = T.

We adopt the acronym AITS for additively idempotent time scale. Examples of AITS include Z, Z+, R, R+, Zn,
Qab , Aξη, Lk , and L−. N is closed under addition but is not AITS. We now outline various properties and criteria for
T to be AITS.

Theorem 5.1 (Characterization of AITS).

(a) A causal AITS must contain the origin.
(b) If T is closed under addition and contains the origin, then T is AITS.
(c) If T is AITS, then hT is AITS.
(d) All AITS other than I are unbounded.
(e) If T1 and T2 are both AITS, then T3 = T1 ⊕ T2 is AITS.

Proof. (a) For T ∈ R+: Let τ0 = inf{tn ∈ T}. If t0 > 0, then t0 /∈ T ⊕ T, a contradiction.
(b) Since T is closed under addition, (T ⊕ T) ⊂ T. Since I ⊂ T, we know I ⊕ T = T ⊂ (T ⊕ T). Therefore

T = T ⊕ T.
(c) hT ⊕ hT = {hα + hβ: α,β ∈ T} = h{α + β: α,β ∈ T} = hT.
(d) Without loss of generality, consider the case when t > 0. Let a ∈ T and a > 0. Since T is an AITS, na ∈ T and

na → ∞ as n → ∞.
(e) T3 ⊕ T3 = (T1 ⊕ T2) ⊕ (T1 ⊕ T2) = (T1 ⊕ T1) ⊕ (T2 ⊕ T2) = T1 ⊕ T2 = T3. �

Definition 5.3. Let T be given. The AITS hull of T, is the smallest (in the sense of inclusion) AITS, TA, such that
T ⊂ TA.

An AITS is illustrated in Fig. 8. The time scales for τ , ξ , and t are identical.

Example 5.2. We illustrate several of these concepts with the following examples:

(1) N ⊕ N = {2,3,4, . . .} ⊂ N and hence is closed under addition but, since N ⊕ N �= N, we see that N is not AITS.
(2) I, R, R+, hZ and hZ+ are AITS.
(3) The log time scale Lk where k ∈ N is arbitrary but fixed, is AITS.
(4) The time scale L− = {tn = log(n): n is composite} is AITS. This follows from the observation that since {0} ∈

L−, we know L− ⊕ L− contains L−. No logs of primes are in L− ⊕ L− because tn + tm = log(nm) and nm

cannot be prime.
(5) Assuming Goldbach’s conjecture, the closure of the set of {0} and the set of all primes numbers is the AITS

Z2 = {t : t = 0, n � 2}. To see this, note that Goldbach’s conjecture states that all even numbers exceeding two
can be expressed as the sum of two prime numbers. Thus, all even integers greater than three are in TA. Since
they are prime, the numbers 2 and 3 are also in TA. All odd numbers, o > 5, are in TA as the sum of three and
the even number o − 3. More generally, ZN = {n ∈ Z: n � N} ∪ {0} is an AITS.
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Fig. 8. Example of a discrete AITS. The time scales X = D and H = D on τ and ξ are identical. The 45◦ lines through all rectangular grid of points
on the (ξ, τ ) plane pass through points in D on both the ξ and τ axes. The time scale D is thus an AITS. The points generated by the 45◦ lines
form, on the t axis, the same time scale D = D ⊕ D.

(6) (Piecewise accelerating time scales.) Consider the causal AITS Z+
10,5 = {0,10,20,30,35,40,45,50, . . .}. This

time scale is 10Z until t = 30 and then becomes 5Z. In general, let N be expressed as the product of M integers
N = n1n2n3 · · ·nM . Then the following piecewise constant causal time scale is AITS:

Z+
n1,n2,...,nM

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NZ+, 0 � t < p1,
N
n1

Z+, p1 � t < p2,

N
n1n2

Z+, p2 � t < p3,

N
n1n2n3

Z+, p3 � t < p4,

...
...

nM−1nMZ+, pM−2 � t < pM−1,

nMZ+, t � pM−1,

where 0 < p1 < p2 < · · · < pM−1 < pM .
This relation extends to any AITS contained in R+. If T ∈ R+ is AITS, then

Tn1,n2,...,nM
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NT, 0 � t < p1,
N
n1

T, p1 � t < p2,

N
n1n2

T, p2 � t < p3,

N
n1n2n3

T, p3 � t < p4,

...
...

nM−1nMT, pM−2 � t < pM−1,

nMT, pM−1 � t < pM,

R, t � pM,

is also AITS. Note we have allowed the time scale to become R for t � pM . This can be omitted by setting
pm = ∞.

(7) The AITS hull of {0,7,11} is

A7,11 = {0,7,11,14,18,21,22,25,28,29,32,33,35, . . .}.
More generally, the AITS hull of T = {0, ξ, η} is TA = Aξη.
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Consider m = 33. Clearly, ((33))7 = 5 and ((33))4 = 1. Since, from (5.3), ((12))7 = 5 and ((21))4 = 1, we obtain
12 + 21 = 33, the desired answer.

The time scale for this example is

KTAITS = {0,4,7,8,11,12,14,15,16,18,19,20,21,22,23,24,25,26,27,28, . . .}.
The theorem states unit graininess will begin no later than t = LK = 28. It clearly begins earlier at t = 18.

Theorem 5.3 (Asymptotic graininess for rational time scales). The AITS hull of T = {0,1, L
K

} where L,K ∈ N are
relatively prime and L > K achieves additively idempotent hull of TAITS with asymptotic graininess μ = 1

K
. Further-

more, this graininess is achieved at or before the time

tμ = L + 1

L
(L − 1). (5.4)

Proof. Since T is a scaled version of kT, the theorem follows immediately from Theorem 5.1(c). �
On the other hand, we can handle the nonrelatively prime case as follows.

Lemma 5.1. If K̂ and L̂ are not relatively prime, then the AITS hull of {0, K̂, L̂} has an asymptotic graininess of G

where G is the greatest common factor of K̂ and L̂.

Proof. Since {0,K,L} has a hull with asymptotic graininess of one, {0, K̂, L̂} = G{0,K,L} has a hull with an
asymptotic graininess of G. �
Lemma 5.2. Let T = {0,1, x} where x is irrational. Then the asymptotic graininess of TAITS is zero.

Proof. As x is approximated more and more closely by the rational p/10q with p, 10q relatively prime, then q → ∞
and μ → 0 by the previous theorem. Moreover, the time that this is achieved is tμ = ∞ by (5.4). �

The previous lemmas yield the proof for the following result.

Theorem 5.4 (Asymptotic graininess of AITS hull). All time scales hulls of the points {0, a, b} where 0 < a < b form
a causal time scale with constant asymptotic graininess.

6. Examples of discrete convolution on AITS

Let D be a discrete AITS, x : D → R, and h : D → R. Then y, the inverse Fourier transform of Y(u) = X(u)H(u),
also has time scale D. The time scale convolution in (4.2) becomes

yμ(tp) =
∑

tp−τn∈D

xμ(τn)h
μ(tp − τn), tp ∈ D, (6.1)

which we will write as

yμ(t) = xμ(t)
D∗ hμ(t). (6.2)

We now outline some examples of AITS convolution.

6.1. L1 convolution

For L1, the time scale convolution in (6.1) is

yμ(tp) =
∑

p/n∈N

xμ(tn)h
μ(tp/n) (6.3)
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Fig. 9. The top left plot illustrates the time scale convolution on the time scale L1 of x
μ
1 (t) = cos(8πt)Π100(t), shown with the dashed line, with

h
μ
1 (t) = Π10(t) shown with the dotted line. Both functions are on the time scale L1. The result, yμ

1 (t) is shown in the top left plot with the solid line.
The convolution of the functions, y1(t), is shown in the top right hand plot. The bottom plots illustrates the convolution of x2(t) = cos(8πt)Π100(t)

with h2(t) = Π10(t). Note that x2(t) = x1(t)/μ(t) and h2(t) = h1(t)/μ(t). The bottom left plot shows x
μ
2 (t) with a dashed line, h

μ
2 (t) with a

dotted line, and y
μ
2 with a solid line. The bottom right plot is the of the same convolution, except x2(t), h2(t) and y2(t) are plotted in lieu of x

μ
2 (t),

h
μ
2 (t) and y

μ
2 (t). Note that y2(t) �= y1(t)/μ(t).

or, using the notation in (6.2),

yμ(t) = xμ(t)
L1∗ hμ(t). (6.4)

For the following examples, we use log10 for L1.
Examples of the time scale convolution in (6.4) are shown in Figs. 9 and 10. The top row in Fig. 9 shows convolution

corresponding to x
μ
1 (t) = cos(8πt)Π100(t) with h

μ
1 (t) = Π10(t) on L1. The result is y

μ
1 (t). The bottom row shows

y2(t), the convolution when x2(t) = cos(8πt)Π100(t) and h2(t) = Π10(t)

The top row in Fig. 10 is convolution corresponding to x
μ
1 (t) = h

μ
1 (t) = Π6(t) on L1. The result is y

μ
1 (t). The

bottom row shows y2(t), the convolution when x2(t) = h2(t) = Π6(t).

6.2. Transforms on a random variable

The time scale L1 can be used in evaluating the probability mass function of the product of two statistical indepen-
dent discrete random variables. Let X and H be independent discrete random variables of the lattice type [13]. Let
all of the probability mass lie on integers on {1,2, . . .}. Let Y = XH so that logY = logX + logH . If the probabil-
ity mass function for X is pn at n = {1,2,3, . . .}, then the corresponding probability mass function for the random
variable X is

pX(t) =
∞∑

n=1

pnδ[t − n].
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Fig. 10. The top left plot illustrates the L1 time scale convolution of x
μ
1 (t) = Π6(t) with h

μ
1 (t) = x

μ
1 (t) shown with the broken line. The result of

the time scale convolution, y
μ
1 (t), is plotted with a solid line. It is also plotted in Fig. 11. The top plots are of x1(t) = x

μ
1 (t)/μ(t), h1(t) = x1(t) and

y1(t) = y
μ
1 (t)/μ(t). The two bottom plots are of x2(t) = Π6(t), h2(t) = x2(t) and their time scale convolution, y2(t). Note that x2(t) = x1(t)/μ(t)

and h2(t) = h1(t)/μ(t). The result of the convolution is y2(t) �= y1(t)/μ(t). The bottom plots are the component functions with the subscripts and
the right without.

The probability mass function for logX is then

xμ(t) =
∞∑

n=1

xμ
n δ[t − logn], xμ

n = pn.

The probability mass function, hμ(t) on L1, is similarly defined. Since logX is independent of logH , the probability
mass function, yμ(t), of their sum, logY , is given by the time scale convolution on L1 of xμ(t) with hμ(t):

yμ(t) = xμ(t)
L1∗ hμ(t) =

∞∑
n=1

yμ
n δ[t − logn], where yμ

n =
∑

p/n∈N

xμ
n h

μ
p/n. (6.5)

The probability mass function for Y is then

pY (t) =
∞∑

n=1

yμ
n δ[t − n]. (6.6)

Example 6.1. Two fair die are rolled. The random variable assigned to a showing of n dots on a die is log(n). The
probability mass function for one die is one sixth for points 1 � n � 6 on the AITS corresponding to log10(n). Thus,
xμ(t) = hμ(t) = 1

6Π6(t). The sum of the logs of the two dice, yμ(t), is given by the time scale convolution of xμ(t)

and hμ(t) and is shown in the top left corner in Fig. 10. The corresponding probability mass function, pY (t), is shown
in Fig. 11. The mass at n = 12 has four realizations, {(3,4), (4,3), (2,6), (6,2)}, and therefore has four times the
mass at n = 25 which only has one realization: {(5,5)}.
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Fig. 11. (Left) An L1 time scale convolution result, yμ(t), in (6.5) using xμ(t) = hμ(t) = 1
6 Π6(t). (Right) The probability mass function, pY (t),

in (6.6) corresponding to the time scale convolution illustrated in (a). The probability mass is the product of the values showing on the two dice.

6.3. Mellin convolution

The Mellin convolution of discrete sequences x[n] and h[n] is defined by

y[n] :=
∑

(k∈N)∩( n
k
∈N)

x[n]h
[

n

k

]
.

For the discrete Mellin transform [12],

YM(ω) =
∞∑

n=1

y[n]nω,

it is straightforward to show that

YM(ω) = XM(−ω)HM(ω).

Mellin convolution is performed when using the AITS L1. Since tp = log(n), the discrete time convolution in (6.1)
becomes

yμ
(
log(p)

) =
∑

(log(p)−log(n)∈L1)∩(log(n)∈L1)

xμ
(
log(n)

)
hμ

(
log(p) − log(n)

)

=
∑

(
p
n
∈N)∩(n∈N)

xμ
(
log(n)

)
hμ

(
log

(
p

n

))
.

This is a Mellin convolution for y[p] = yμ(tp), x[n] = xμ(tn), and h[m] = hμ(m) where tq = τq = ξq = log(q).

7. Conclusions

In this paper, we developed several tools from Fourier analysis tools in the context of time scales: a generalized
Fourier transform, and inversion result, and a convolution for signals on two (possibly distinct) time scales. This brand
of convolution leads to several natural classes of time scales which arise in this setting: dilated, closed under addition,
and additively idempotent. Finally, we explore a range of problems that can be approached advantageously from this
vantage point, e.g. discrete convolution and transformations of a random variable.
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