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Abstract—A recent development in Lyapunov stability theory
allows for analysis of switched linear systems evolving on non-
uniform, discrete time domains. The analysis makes use of an
emerging mathematical framework termed dynamic equations on
time scales. We will present stability conditions for a general, arbi-
trarily switched system and then for system with a “constrained”
switching signal. The results take the form of a compute-able
inequality, which imposes conditions on the time domain itself.

I. INTRODUCTION

A number of methods have been developed to determine
stability of linear systems [1], [2], [3], which can be applied to
systems evolving on either continuous or discrete uniform time
domains (R or Z, respectively). While these are valuable tools,
there is an increasing interest in non-uniform time domains–
domains which contain non-uniformly spaced discrete points
or a mixture of discrete and continuous parts [4]. Applica-
tions include adaptive control [5], real-time communications
networks [6], [7], dynamic programming [8], switched systems
[9], control theory [10], [11], [12], [13], [14], [15], signal
analysis [16], [17], stochastic models [18], population models
[19], and economics [20], [21].

Our interest is a specific class of linear systems called
switched systems, where the overall dynamics are described
using a number of sub-systems (modeled by continuous-
or discrete-time equations) coupled with discrete switching
events. Because of this coupling, these (and other hybrid
systems) are ideal candidates for time scales analysis.

One of the primary methods for determining stability of
linear systems is the Second (Direct) Method of Lyapunov.
His method can also be applied to switched systems using a
common Lyapunov function [22]. The results presented in this
paper extend the well-known results to nonuniform discrete
time domains.

The rest of this paper will be structured as follows. In
the next section, we give a short introduction to time scales
calculus. We then present results for a general, arbitrary
switching case. These results are then applied to a constrained
switching case and some examples are presented. It is not

possible to include all of the details for the results presented
here, but the details and proofs are given elsewhere [23], [24],
[25].

II. TIME SCALES

This section gives a brief outline of portions of the time
scales theory which are particularly relevant to the following
discussion. Readers are referred to several other sources to find
a quick tutorial [26] or a more comprehensive introduction
[27], [28], [29].

Time scales are generalized time domains and are denoted,
in general, by the symbol T. As mentioned above, the bulk of
engineering systems theory to date rests on two time scales,
R and Z (or more generally hZ, meaning discrete points
separated by distance h). These time domains give rise to
the standard differential and difference equations, while the
mathematical representation of a system evolving on a general
time scale T is termed a dynamic equation.

The forward jump operator is given by σ(t) := infs∈T{s >
t}, while the backward jump operator is ρ(t) := sups∈T{s <
t}. The graininess function µ(t) is given by µ(t) := σ(t)− t.
Note that the graininess is analogous to the step size for a
discrete time scale and on hZ, µ(t) = h ∀ t. On R, µ = 0 ∀ t.

Let Tκ := T −m, where m is the right-most point in the
(finite) time scale T. This is necessary to avoid σ(t) (and
consequently µ(t)) being undefined at the end of the time
scale.

The ∆-differential operator is defined as

x∆(t) :=
x(σ(t))− x(t)

µ(t)
,

where t ∈ Tκ and the quotient is taken in the sense that µ(t)→
0+ when µ(t) = 0. This definition of the delta derivative (or
Hilger derivative) is equivalent to the more formal definition,
which can be found in [28].

We next define the Hilger complex numbers as

Cµ :=
{
z ∈ C : z 6= − 1

µ

}
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for µ ∈ R+ (positive real numbers). Along with this, the
Hilger circle is defined as

Hµ :=
{
z ∈ Cµ :

∣∣∣∣z +
1
µ

∣∣∣∣ =
1
µ

}
These are easiest to see graphically, as shown in Figure 1.

− 1
µ

Fig. 1. The Hilger complex plane (Cµ) and Hilger circle (Hµ).

The function p : T→ R is regressive if

1 + µ(t)p(t) 6= 0, ∀ t ∈ Tκ.

An n × n matrix-valued function A(t) on a time scale T is
regressive if

I + µ(t)A(t) is invertible ∀ t ∈ Tκ.

Note that A is regressive if and only if the eigenvalues, λi(t),
of A are regressive for all 1 ≤ i ≤ n.

III. ARBITRARY SWITCHING

Consider the time scales version of the typical switched
LTI system composed of the set of subsystem matrices
A1, A2, . . . , Am ∈ Rn×n and a switching signal s : T →
{1, 2, . . . ,m}, where

x∆(t) = As(t)x(t), t ∈ T, t ≥ 0 and x(0) = x0. (1)

We make the following assumptions about this system and the
underlying time scale:

A1 The switching signal s is arbitrary over T.
A2 The eigenvalues of all of the Ai are strictly within the

Hilger circle for all t ∈ T. (This means each Ai is stable
with respect to the time scale T.)

A3 Each Ai is regressive. (Meaning that (I + µ(t)Ai)−1

exists ∀ t ∈ T.)
A4 The family {Ai} is pairwise commutative, i.e. AiAj =

AjAi ∀ i 6= j.
A5 T has the following properties: (i) 0 ∈ T, (ii) T is

unbounded above, (iii) T has graininess 0 < µmin ≤
µ(t) ≤ µmax for all t ∈ T.

We choose to investigate the stability of (1) by defining a
Lyapunov candidate

V = xTPx

where P = PT > 0. According to Lyapunov’s Second
Method, we need

V ∆ < 0

⇒ ATi P + PAi + µATi PAi + (I + µATi )P∆(I + µAi) < 0
(2)

to ensure stability. For reasons given in [23], we set

ATi P + PAi + µATi PAi = −Mi, (3)

where Mi = MT
i > 0. Substituting (3) into (2) yields

(I + µAi)TP∆(I + µAi)−Mi < 0, for t ∈ T (4)

For simplicity, we define

Li(µ) := 2 Re Λi + µΛ∗iΛi

where Λi is a diagonal matrix of the eigenvalues of the Ai.
Note that (4) depends indirectly on t through µ and µσ . This
gives rise to a Temporal Region of Stability (TRoS) defined
by Theorem 2.1 from [25], which is repeated here.

Theorem III.1 (General TRoS). Under assumptions A1-A5,
given a set of matrices Ai = S−1JiS for 1 ≤ i ≤ m where
the Ji are Jordan epsilon form matrices with Ji = Λi + N
and S is a simultaneous similarity transform, there exists a
region R ∈ R2 consisting of pairs (µ, µσ) such that

m∏
k=1

L−1
k (µ)Lk(µσ) > (I + µΛ∗i )(I + µΛi), (5)

for i = 1, . . . ,m and 0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T.

IV. CONSTRAINED SWITCHING

A. Motivation

While the previous section focused on the general problem
of system stability, this section will focus on a specific
application of those results. We begin by noting that many
industrial and automotive systems use discrete controllers,
which communicate with various sensors and actuators via
a single real time network. One common protocol is the
Controller Area Network (CAN). We will use this as our
motivation; although, the ideas presented here are not limited
to CAN systems or real-time networks.

A real-time network is typically comprised of three types
of nodes connected by a single bus: controllers, sensors, and
actuators. A control loop can be implemented on the network,
which at its most basic, involves a control node polling one
or more sensors, the sensors responding, and the controller
calculating new actuator values and transmitting these to
one or more actuators. While this is a typical closed-loop
feedback system with a specified sampling period, there are
also sporadic high-speed, high-priority messages that need to
be handled. These come from (often random) events which
trigger a sensor, such as depressing the brake pedal in a car or
a robot hand making contact with an object. They are termed
high-speed because they have (possibly very tight) deadlines
and must be processed within those deadlines.
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One method of handling these sporadic messages is to
allow more time (i.e. increase the sampling period) between
the periodic messages. This deceases the robustness of the
control-loop, however. An alternative tactic is to use adaptive
sampling, meaning we can adjust the sampling period “on-
the-fly.” This allows for short periods of high-speed sporadic
traffic but maintains system integrity. This type of adaptive
control is the focus of [6].

We begin by describing (mathematically) the system using
the same discretization method as [6]. We then present the
main theorem, which is very similar (as should be expected)
to Theorem III.1. We conclude with some examples of systems
and their corresponding TRoS’s. While the results presented
give sufficient conditions on the sampling periods in order
to maintain system stabiltiy, we do not present a particular
adaptive sampling techinique/scheme/law here.

B. Problem Setup
Consider the linear system of the form

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×p

u = Kx, K ∈ Rp×n.

We can discretize this system (as was done in [6]) by

x∆(t) = A(µ(t))x(t)

where

A(µ(t)) := expc(µ(t)A)(A+BK).

Designating a finite number of choices of µ yields the set
{µ1, µ2, . . . , µm} ∈ R+ and a corresponding set of matrices
{A1,A2, . . . ,Am} ∈ Rn×n with switching signal c : {µi} →
{1, 2, . . . ,m}. The switched system is then

x∆(t) = Ac(t)x(t), t ∈ T, t ≥ 0 and x(0) = x0.

We make the following modifications to the assumptions given
in the arbitrary case:
• The switching signal in A1 now chooses from a finite set

(of µi), and, in that sense, is constrained.
• All references to Ai now refer to Ai.

C. Stability Under Constrained Switching
Before presenting Theorem IV.1, we note that each (µi, µj)

pair is associated with a specific (Ai,Aj) pair. This follows
from the problem setup (A1) and yields a system which
switches coefficients depending on the current graininess. This
means we can change the behavior of the system (and the
region of stability) based on both our choice (or what is given
to us) of A, B, and K as well as our choice of the µi’s.

Theorem IV.1 (Constrained TRoS). Under assumptions A1-
A5, given a set of matricesAi = S−1JiS for 1 ≤ i ≤ m where
the Ji are Jordan-epsilon form matrices with Ji = Λi + N
and S is a simultaneous similarity transform, there exists a
region Rc ∈ R2 consisting of pairs (µi, µj) such that

m∏
k=1

L−1
k (µi)Lk(µj) > (I + µiΛ∗i )(I + µiΛi), (6)

for all i, j = 1, . . . ,m and 0 < µmin ≤ µi ≤ µmax for all
t ∈ T.

V. EXAMPLES

Whereas in Theorem III.1 we can calculate continuous
TRoS’s with upper bounds defined by the equality of (5), in
this case, continuous regions do not have any meaning, only
discrete points corresponding to values for µi. The following
figures have black (or dark) +’s where the inequality of (6) is
satisfied (i.e. “valid” points), and red (or light) o’s where it is
not. Similar to the general case, the upper limits on the TRoS
plots are equal to µmax.

We use MATLAB to generate random, commuting, non-
diagonal A,B ∈ R3×3 pairs, and then calculate K (also
in R3×3) according to the method given in [25] and a user
specified (but arbitrarily chosen) set of desired eigenvalues of
A + BK. Each example has three distinct eigenvalues. The
eigenvalues of A have a positive real part, while the desired
(and actual) eigenvalues of A+BK have a negative real part.
Note that all of the following figures are most easily viewed
in color.

A. Example 1

Figure 2 is a plot of the eigenvalues of A and A + BK
and the Hilger circle corresponding to µmax for A+BK. The
desired eigenvalues were [−1.9,−1.2±0.3i]. Figures 4, 5, and
6 show that the region changes based on choices of µi, both
the number of choices and the values of those choices. For
example, (0.3, 0.45) (approximately) is not a valid point in
either of the first two plots, but is valid in the third. Figure 3
shows the eigenvalues of the Ai’s and corresponds to Figure
4. The smallest Hilger circle Hmin (corresponding to µmax

for the system) is also plotted in Figure 3 and encompasses
all of the eigenvalues of the subsystems.

It is important to note that valid points above the µi = µj
line allow for more flexibility in the system. These points
mean that the graininess can “upshift,” or increase. With no
valid points above the diagonal, the system is “trapped” and
cannot increase the graininess. For example, if the system
described in Figure 4 started with µ1 ≈ 0.15, it could
only decrease the graininess (i.e. “downshift”) or stay at
approximately 0.15. If it decreased, it could never return to
0.15. The systems described by Figures 5 and 6, however,
have complete freedom. Intermediate steps may be required,
but they can upshift or downshift to reach every allowable
graininess.

B. Example 2

Figures 7-11 are very similar to Example 1, but with a
different A, B, and K. Note that the algorithm for calculating
K put the eigenvalues of A + BK as close to the desired
values [−1.9,−1.2± 0.3i] as possible.

VI. CONCLUSION

We have demonstrated a common Lyapunov function ap-
proach to stability of switched systems on a non-uniform,
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Fig. 2. Ex 1: Eigenvalues of A and A+BK.
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Fig. 3. Ex 1: Eigenvalues of Ai for µi < µmax and i = {1, . . . , 10}.
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Fig. 4. Ex 1: Rc for µi < µmax and i = {1, . . . , 10}.
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Fig. 5. Ex 1: Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}.
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Fig. 6. Ex 1: Rc for µi < µmax and i = {3, . . . , 8}.
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Fig. 7. Ex 2: Eigenvalues of A and A+BK for Example 2.
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Fig. 8. Ex 2: Eigenvalues of Ai for µi < µmax and i = {1, . . . , 10}.
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Fig. 9. Ex 2: Rc for µi < µmax and i = {1, . . . , 10}.
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Fig. 10. Ex 2: Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}.
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Fig. 11. Ex 2: Rc for µi < µmax and i = {3, . . . , 8}.

discrete time domain, or time scale. The results show that
stability of the system depends on both the system and the
underlying time scale, and conditions (in the form of a two di-
mensional region) were given to determine if a particular time
scale yeilds stability. When talking about real-time networks,
these conditions also give a framework for implementing
adaptive sampling by giving the system designer bounds on
the sampling periods.

Further research in this area could include application to
other specific constrained switching problems, mixed time
scales (with continuous and discerete parts), and time-varying
linear systems (which might build on [30]), as well as using
a multiple Lyapunov function method.
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