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Abstract—For LTI systems on a class of nonuniform discrete
domains, we establish a region in the complex plane for which
pole placement is a necessary and sufficient condition for ex-
ponential stability of solutions of the system. We study the
interesting geometry of this region, comparing and contrasting it
with the standard geometry of the regions of exponential stability
for ODE systems on R and finite difference/recursive equations
on Z. This work connects other results in the literature on the
topic and explains the connection geometrically using time scales
theory.

Index Terms—exponential stability, pole placement, time scales

I. EXPONENTIAL STABILITY ON R AND Z

Let A ∈ Rn×n. A basic result concerning the continuous,
linear time invariant (LTI) system

ẋ(t) = Ax(t), (I.1)

is that solutions are exponentially stable if and only if
spec(A) ⊂ C−.

A similar basic result for discrete LTI systems

xn+1 = Ãxn, (I.2)

is that solutions are exponentially stable if and only if
spec(A) ⊂ {z ∈ C : |z| < 1}. An equivalent reformulation is
that solutions of

∆x(tn) = Ax(tn), A := Ã− I, (I.3)

are exponentially stable if and only if spec(A) ⊂ {z ∈ C : |1+
z| < 1}. Here, ∆ denotes the forward difference operator. For
reasons that will soon become apparent, we will use (I.3) rather
than (I.2) as the canonical discrete LTI system throughout this
paper.

Thus, the regions of exponential stability for (I.1) and (I.3)
are quite straightforward. This simple geometry is exploited
frequently in pole placement arguments for exponential sta-
bility . In this paper, we explore the following question: What
is the geometry of the region of exponential stability for an
LTI system defined on a nonuniform discrete domain?

II. EXPONENTIAL STABILITY OF NONUNIFORM DISCRETE
SYSTEMS

This question can be efficiently handled using time scales
theory [5]; see the Appendix for a brief overview. Let T be a
nonuniform, discrete time scale that is unbounded above, and
consider the LTI system

x∆(t) = Ax(t), (II.1)

or its equivalent recursive form

xn+1 = (I +Aµn)xn. (II.2)

Definition II.1. [25] For t, t0 ∈ T and x0 ∈ Rn, the system

x∆(t) = Ax(t), x(t0) = x0, (II.3)

is exponentially stable if there exists a constant α > 0 such
that for every t0 ∈ T there exists a K ≥ 1 with

‖ΦA(t, t0)‖ ≤ Ke−α(t−t0) for t ≥ t0,

with K being chosen independently of t0. Here, ΦA(t, t0)
denotes the unique solution to (II.3), also called the transition
matrix for (II.3); see the Appendix.

The following theorem due to Pötzsche, Siegmund, and
Wirth [25] provides a spectral characterization of the region
of exponential stability of (II.2) for scalar problems.

Theorem II.1. [25] Let T be a time scale which is unbounded
above. Fix t0 ∈ T and let λ ∈ C. Then the scalar equation

x∆(t) = λx(t), x(t0) = x0,

is exponentially stable if and only if either of the following
holds:

(C1) lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0,

(C2) For every T ∈ T, there exists a t ∈ T with t > T such
that 1 + µ(t)λ = 0,

where we use the convention log 0 = −∞ in (C1).

Definition II.2. [25] Given a time scale T which is unbounded
above, for arbitrary t0 ∈ T, define the sets

SC(T) := {λ ∈ C : (C1) holds},
SR(T) := {λ ∈ R : (C2) holds}.
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Then the set of exponential stability for T is given by

S(T) := SC(T) ∪ SR(T).

Theorem II.1 extends to the time invariant matrix case as
follows.

Theorem II.2. [25] Let T be a time scale that is unbounded
above and let A ∈ Rn×n be regressive. Then the following
hold:
(i) If the system (II.1) is exponentially stable, then

spec(A) ⊂ SC(T).
(ii) If all eigenvalues λ of A are uniformly regressive, (i.e.,
∃K such that 0 < K ≤ |1 + µ(t)λ|, ∀t ∈ Tκ) and if
spec(A) ⊂ SC(T), then (II.1) is exponentially stable.

There are situations where the regressivity assumption fails
on general time scales [23], but since here we are assuming
µ(t) > 0 on T, uniform regressivity of (II.1) is an easily
verifiable condition. As such, we assume that the LTI sys-
tems under discussion are uniformly regressive. In this case,
SR(T) = ∅ so we focus on condition (C1) used to define
SC(T) and understand its geometry.

For dynamical systems on these general time domains T,
understanding the structure of S plays a key role in various
aspects of both the control theory and control applications [2],
[3], [9], [21]. However, since S can be difficult to compute on
general time scales, other more tractable sufficient conditions
for the exponential stability of (II.1) have been explored [25],
[14], [10]. For each fixed t ∈ T, define the (open) Hilger
circle1 via

Hµ(t) :=

{
z ∈ Cµ :

∣∣∣∣z +
1

µ(t)

∣∣∣∣ < 1

µ(t)

}
. (II.4)

When µ1 < µ2, Hµ2
⊂ Hµ1

which leads to the following
alternative to Theorem II.2.

Theorem II.3. Let T be a time scale which is unbounded
above. If 0 ≤ µ(t) ≤ µmax for all t ∈ T, then there is a
region Hmin ⊂ C, corresponding to µmax and given by

Hmin :=

{
z ∈ Cµmax

:

∣∣∣∣z +
1

µmax

∣∣∣∣ < 1

µmax

}
, (II.5)

such that spec(A) ⊂ Hmin is a sufficient (but not necessary)
condition for the exponential stability of (II.1).

When T = R, then µ(t) ≡ 0 and Hµ(t) ≡ C−; when
T = Z, then µ(t) ≡ 1 and Hµ(t) ≡ {z ∈ C : |1 + z| <
1, z 6= −1}. Therefore, in these cases the region described
in Theorem II.3 is the familiar region of exponential stability
discussed in Section I. Of course, Theorem II.3 applies to
much more general LTI systems than just (I.1) or (I.3), but it
is important to notice that is subsumes the canonical cases.

Therefore, Theorem II.3 marks progress toward answering
the question posed at the end of Section I, because the

1More appropriately, the Hilger disk, but this abuse of language is estab-
lished in the literature now. As explained in the Appendix, Cµ is the punctured
complex plane (with the point z = −1/µ removed), and ensures uniform
regressivity under our assumptions on T.

geometry ofHmin is simple. On the other hand, it is admittedly
conservative and only provides a sufficient condition for expo-
nential stability. Furthermore, the region SC in Theorem II.2 is
a globally determined static region whereas the Hilger circle
regions in (II.4) and (II.5) are both local and either static
(but highly conservative) or dynamic (but insufficient for pole
placement argument). We will show that the complete answer
lies in the connection between the nice local geometry of the
Hilger circles in Theorem II.3 and the stronger global, static
characterization of SC in Theorem II.2.

Definition II.3. Let T be a discrete time scale. We say that m
is an asymptotic graininess of T if, for all t ∈ T there is a T ∈
T with t < T such that µ(T ) = m. Let M∞ = {m1, . . . ,mN}
be the set of all asymptotic graininesses of T. By the division
algorithm, each positive integer n can be written uniquely as
n = qN + r. Let

sn :=

{
mr, r 6= 0,

mN , r = 0,

and consider the N -periodic sequence {sn}∞n=1. We say mk ∈
M∞ has weight dk given by

dk := N∗ lim sup
n→∞

#{µ ∈ sn : µ = mk}
n

,

where N∗ := 1+2+ · · ·+N = 1
2N(N +1). Here, # denotes

the cardinality of a set.

Example II.1. The conditions given in the previous definition
are tractable in many cases.

1) When T = Z, the only asymptotic graininess is m = 1,
which has weight d = 1.

2) If T is the time scale with graininesses
{1, 1, 2, 1, 1, 2, . . . }, then the asymptotic graininesses
are m1 = 1 with weight d1 = 2 and m2 = 2 with
weight d2 = 1.

3) Let n be a fixed positive integer. If T is a N -periodic
time scale with a base period of graininesses given by

{1, 2, 2, 3, 3, 3, . . . , n, . . . , n︸ ︷︷ ︸
n times

},

then each mk = k, is an asymptotic graininess with
weight dk = k, k = 1, . . . , n. Here, N = 1

2n(n+ 1).
4) Suppose µ(tn) is determined by the toss of a fair six-

sided die. Then the set of asymptotic graininesses is
{1, 2, 3, 4, 5, 6} each with weight d = 1.

We are now in a position to connect Theorems II.2 and II.3.
This connection and its geometric explanation are the main
contributions of this work.

Theorem II.4. Suppose T is a discrete time scale with asymp-
totic graininesses µ1, . . . , µN each with respective weights
d1, . . . , dN . Suppose (II.1) (or its equivalent recursive form
(II.2)) is uniformly regressive on T. Then solutions of (II.1)
are exponentially stable (in the sense of Definition II.1) if and
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only if
N∏
k=1

|1 + µkλ|dk < 1, ∀λ ∈ spec(A). (II.6)

That is, SC is the locus of points in the complex plane
determined by (II.6).

Proof: Since we are assuming the system in question
in uniformly regressive, SR = ∅ so condition (C1) is both
necessary and sufficient for exponential stability of solutions
of (II.1). Thus,

0 > lim sup
T→∞

1

T − t1

∫ T

t1

lim
s↘µ(t)

log |1 + sλ|
s

∆t

= lim sup
n→∞

1

tn − t1

n−1∑
k=1

log |1 + µ(tk)λ|
µ(tk)

µ(tk)

= lim sup
n→∞

1

tn − t1
log

n−1∏
k=1

|1 + µ(tk)λ|

holds (under our assumptions on T) if and only if
N∏
k=1

|1 + µkλ|dk < 1

holds every λ ∈ spec(A).

Remark II.5. Several remarks are now in order regarding
Theorem II.4.

1) The locus of points in the complex plane determined
by (II.6) is in a sense the weighted geometric mean of
the individual asymptotic Hilger circle loci. This follows
from the observation that left-hand side of each factor
in (II.6) is precisely the left-hand side of the locus in
(II.4) (up to the weight dk). Note that |1 +mkz| < 1 is
equivalent to |z + 1

mk
| < 1

mk
.

2) This theorem provides a simple, static region of expo-
nential stability for solutions of (II.1) (and therefore fit
for traditional pole placement arguments), yet it is made
up global information about the time scale (the aggregate
of all asymptotic graininesses) that is an “average” of
local information about the time scale (the point by point
asymptotic Hilger circles).

3) This formulation leads naturally to the notion of asymp-
totic equivalence classes of time scales, that is, classes of
times scales which have equivalent regions of exponen-
tial stability. Two time scales are in the same asymptotic
equivalence class if they have the same set of asymp-
totic graininesses with the same respective weights.
For example, the periodic (or eventually periodic) time
scales with graininess sequence {1, 1, 2, 1, 1, 2, . . . }
or {1, 2, 1, 1, 2, 1, . . . } or {2, 1, 1, 1, 2, 1, 1, 1, 2, . . . }
would all be in the same asymptotic equivalence class.

4) As the weight of a particular asymptotic graininess
mk increases (without bound), SC(T) tends toward
SC(mkZ), i.e. a single Hilger circle centered at −1/mk

and passing through the origin.

5) When, for example, m1 is fixed and m2 varies (each
with weight 1), one can determine the critical value
m2 = m∗2 for which SC becomes disconnected. This
is simply the m2 value at which the saddle point of

f(x, y) =

2∏
k=1

[(1 +mkx)2 + (mky)2],

increases through a height of 1.
6) As noted in [25] and reconfirmed here, if µ → ∞,

then all solutions of (II.1) blow up and therefore no
exponentially stable solutions exist. This is not a defect
in the equation, but rather a pathology of the underlying
domain. Of course, this phenomenon never occurs in the
canonical ODE or finite difference equation cases.

7) Also noted in [25] and evident here, SC is symmetric
about the real axis.

8) The approach here is inherently limited by the structure
of the tail of the time scale (or our knowledge of
the structure). Naturally, some time scales may have
infinitely many asymptotic graininesses—or none. For
example, µ(tn) might be a random variable.

9) The technique here can be extended to time scales with
zero graininess, although the details of the analysis
are more complicated. We will treat this scenario in a
forthcoming paper. The geometry of SC in that case is
even more interesting.

Figures 1 and 2 demonstrate the geometry of Theorem II.4
and illustrate several of the remarks above.

III. SUMMARY AND CONCLUSIONS

To recapitulate, for LTI systems on a class of nonuniform
discrete domains, Theorem II.4 establishes a locus of points
in the complex plane for which pole placement is both a
necessary and sufficient condition for exponential stability of
solutions of the associated system. Moreover, the analytic form
of (II.6) yields important geometric insight about the region:
it is in a sense the weighted geometric mean of the relevant
asymptotic Hilger circles. This not only unifies the analogous
concepts on R and Z, but extends them to more general time
domains as well.

APPENDIX

A. What Are Time Scales?

The theory of time scales springs from the 1988 doctoral
dissertation of Stefan Hilger [19] that resulted in his seminal
paper [18]. These works aimed to unify various overarching
concepts from the (sometimes disparate) theories of discrete
and continuous dynamical systems [24], but also to extend
these theories to more general classes of dynamical systems.
From there, time scales theory advanced fairly quickly, cul-
minating in the excellent introductory text by Bohner and
Peterson [4] and the more advanced monograph [5]. A succinct
survey on time scales can be found in [1].

A time scale T is any nonempty, (topologically) closed
subset of the real numbers R. Thus time scales can be (but are
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Fig. 1. (Read from left to right, starting from the top row) T has asymptotic graininesses m1 = 1 and m2 (which varies), each with weight 1. The two
corresponding asymptotic Hilger circles are dashed. The region of exponential stability SC given by (II.6) is shaded. The vertical line is the arithmetic mean
m of the centers of the Hilger circles and is an axis of symmetry for SC when it lies to the left −2 (i.e. outside the smallest asymptotic Hilger circle).
Geometrically, the region of exponential stability can be interpreted as the weighted geometric mean of the asymptotic Hilger circles.

Fig. 2. (Read from left to right, starting from the top row) T has asymptotic graininesses m1 = 1, m2 = 0.35, and m3 (which varies), each with weight
1. The three corresponding asymptotic Hilger circles are dashed. The region of exponential stability SC given by (II.6) is shaded. Geometrically, the region
of exponential stability can be interpreted as the weighted geometric mean of the asymptotic Hilger circles.
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TABLE I
CANONICAL TIME SCALES COMPARED TO THE GENERAL CASE.

continuous (uniform) discrete time scale

domain R Z T

forward jump σ(t) ≡ t σ(t) ≡ t+ 1 σ(t) varies

step size µ(t) ≡ 0 µ(t) ≡ 1 µ(t) varies

differential
operator

ẋ(t) := lim
h→0

x(t+ h)− x(t)

h
∆x(t) := x(t+ 1)− x(t) x∆(t) := lim

µ∗(t)↘µ(t)

x(σ(t))− x(t)

µ∗(t)

canonical
equation ẋ(t) = Ax(t) ∆x(t) = Ax(t) x∆(t) = Ax(t)

LTI stability
region in C

Note: This paper improves on this.

not limited to) any of the usual integer subsets (e.g. Z or N),
the entire real line R, or any combination of discrete points
unioned with closed intervals. For example, if q > 1 is fixed,
the quantum time scale qZ is defined as

qZ := {qk : k ∈ Z} ∪ {0}.

The quantum time scale appears throughout the mathematical
physics literature, where the dynamical systems of interest are
the q-difference equations [6], [7], [8]. Another interesting
example is the pulse time scale Pa,b formed by a union of
closed intervals each of length a and gap b:

Pa,b :=
⋃
k

[k(a+ b), k(a+ b) + a] .

This time scale is used to study duty cycles of various
waveforms. Other examples of interesting time scales include
any collection of discrete points sampled from a probability
distribution, any sequence of partial sums from a series with
positive terms, or even the famous Cantor set.

The bulk of engineering systems theory to date rests on
two time scales, R and Z (or more generally hZ, meaning
discrete points separated by distance h). However, there are
occasions when necessity or convenience dictates the use of an
alternate time scale. The question of how to approach the study
of dynamical systems on time scales then becomes relevant,
and in fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of tools
available to the differential and difference equation theorist.
We now briefly outline the portions of the time scales theory
that are needed for this paper to be as self-contained as is
practically possible.

B. The Time Scales Calculus

The forward jump operator is given by σ(t) := infs∈T{s >
t} and the graininess function µ(t) by µ(t) := σ(t) − t. If
f : T → R is a function, then the composition f(σ(t)) is
often denoted by fσ(t).

A point t ∈ T is right-scattered if σ(t) > t and right dense
if σ(t) = t. A point t ∈ T is left-scattered if ρ(t) < t and left
dense if ρ(t) = t. If t is both left-scattered and right-scattered,
we say t is isolated or discrete. If t is both left-dense and right-
dense, we say t is dense. The set Tκ is defined as follows:
if T has a left-scattered maximum m, then Tκ = T − {m};
otherwise, Tκ = T.

For f : T → R and t ∈ Tκ, define f∆(t) as the number
(when it exists), with the property that, for any ε > 0, there
exists a neighborhood U of t such that for all s ∈ U ,∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣ ≤ ε|σ(t)− s|. (A.1)

The function f∆ : Tκ → R is called the delta derivative or
the Hilger derivative of f on Tκ. Equivalently, (A.1) defines
the ∆-differential operator via

x∆(t) := lim
µ∗(t)↘µ(t)

x(σ(t))− x(t)

µ∗(t)
.

Since the graininess function induces a measure on T, if we
consider the Lebesgue integral over T with respect to the µ-
induced measure,

∫
T f(t) dµ(t), then all of the standard results

from measure theory are available [17].
A benefit of this general approach is that the realms of

differential equations and difference equations can now be
viewed as special cases of more general dynamic equations on
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TABLE II
DIFFERENTIAL AND INTEGRAL OPERATORS ON TIME SCALES.

time scale differential operator notes integral operator notes

T x∆(t) := lim
µ∗(t)↘µ(t)

x(σ(t))− x(t)

µ∗(t)
generalized derivative

∫ b
a f(t) ∆t generalized integral

R x∆(t) = lim
h→0

x(t+ h)− x(t)

h
standard derivative

∫ b
a f(t)∆t =

∫ b
a f(t) dt standard Lebesgue integral

Z x∆(t) = ∆x(t) := x(t+ 1)− x(t) forward difference
∫ b
a f(t)∆t =

∑b−1
t=a f(t) summation operator

hZ x∆(t) = ∆hx(t) :=
x(t+h)−x(t)

h
h-forward difference

∫ b
a f(t)∆t =

∑b−h
t=a f(t)h h-summation

qZ x∆(t) = ∆qx(t) :=
x(qt)−x(t)

(q−1)t
q-difference

∫ b
a f(t)∆t =

∑b/q
t=a

f(t)
(q−1)t

q-summation

Pa,b x∆(t) =

{
dx
dt
, σ(t) = t,

x(t+b)−x(t)
b

, σ(t) > t
pulse derivative

∫
I f(t) ∆t =

{∫
I f(t) dt, σ(t) = t,

f(t)µ(t), σ(t) > t
pulse integral

time scales, i.e. equations involving the delta derivative(s) of
some unknown function. The upshot here is that the concepts
in Tables I and II apply just as readily to any closed subset
of the real line as they do on R or Z. Our goal is to leverage
this general framework against wide classes of dynamical and
control systems. Progress in this direction has been made in
transforms theory [11], [12], [13], [22], control [10], [15], [16],
dynamic programming [26], and biological models [20].

The function p : T → R is regressive if 1 + µ(t)p(t) 6= 0
for all t ∈ Tκ. We define the related sets R := {p : T →
R : p ∈ Crd(T) and 1 + µ(t)p(t) 6= 0 for all t ∈ Tκ} and
R+ := {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ Tκ}.

For p(t) ∈ R, we define the generalized time scale expo-
nential function ep(t, t0) as the unique solution to the initial
value problem x∆(t) = p(t)x(t), x(t0) = 1, which exists
when p ∈ R. See [5].

Similarly, the unique solution to the matrix initial value
problem X∆(t) = A(t)X(t), X(t0) = I is called the
transition matrix associated with this system. This solution
is denoted by ΦA(t, t0) and exists when A ∈ R. A matrix
is regressive if and only if all of its eigenvalues are in R.
Equivalently, the matrix A(t) is regressive if and only if
I + µ(t)A(t) is invertible for all t ∈ Tκ.
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