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Abstract—Swarms are collections of loosely coupled distinct
agents each following simple rules. Swarms do not use central
coordination AND individual agents need not be aware of the
swarm’s overall function. As each agent performs its task, the
swarm collective can display unusual and unexpected emergent
behaviors. For those swarms defying analytic evaluation, simula-
tion remains as the only method to reveal emergent behavior. A
number of swarms are simulated each with no more than simple
rules to follow. Each simulation reveals an interesting and often
surprising emergent behavior. Termites clear areas and stack
wood chips, gnats naturally confine themselves to swarm inside
a circle of fixed area and sand piles develop instabilities and
avalanche. Possibly the most interesting simulation is predator
swarms pursuing swarms of prey in a game we dub bullies
and dweebs. Individual bullies can be ineffective in killing
dweebs, for example, whereas a mob of bullies can be highly
effective. Addition of stochastic component to dweeb motion in
a swarm is essential for prolonging dweeb life. The swarms
are illustrated using screen shots of the swarm dynamics. More
interesting and insightful videos of the swarming are available
on NeoSwarm.com.

Index Terms—swarm intelligence, emergent behavior, com-
putational intelligence, game theory

I. INTRODUCTION

Swarms [2] can be viewed from an engineering perspective
as a collection of loosely coupled agents. Individually, the
agents perform relatively simple tasks. The swarm’s function
is often characterized by an emergent behavior not apparent at
the agent level. The functioning of the swarm is not simply a
magnification of the agent’s function, but can be unexpected.
Legendary science fiction writer Michael Crichton centered
his novel Prey [5] around an experientially adaptive man
made swarm that went bad.

Termites are an example of a social insect swarm [11]. In
one model the termites randomly move about on a surface
covered by wood chips. When the termite bumps into a chip,
it picks it up and continues its random meandering until it
bumps into another wood chip whereupon it puts down the
chip it is carrying. Now empty handed, the termite continues
moving about until it bumps into another wood chip and the
process is repeated. Individually, each termite is only aware
of the immediate task at hand: walking around, bumping into
a wood chip, and either picking it up if empty handed or
dropping his load if carrying. At the level of the individual
termite, the overall function of the swarm is not apparent.

The collective emergent behavior of the swarm is clearing
the area and stacking wood chips. When the swarm function
is identified, one can often stand back, look at the actions of
the individual agents and see that stacking wood makes sense.
We will be looking at simulations of this termite swarm later
in the paper.

When teaching swarms to a class of students, a fun exercise
is to have the students stand and secretly choose two of
their colleagues in the class. For this swarm experiment,
each student is asked to move in such a manner as to
place themselves between the two students he has randomly
chosen. As the student begins moving to do so, each of the
students he has identified are themselves moving to place
himself between the two students he has chosen. Before the
experiment begins, the class is asked to identify the resulting
emergent behavior of their actions. Typically most of the
students have no idea. There is often one or more in the
class, however, who can play the swarm in their heads and
predict the outcome which is that all the students are attracted
into a single group in the middle of the room.1

A related class experiment is to have the students again
secretly choose two other students, A and B, and move in
such a manner that the student places B between himself
and A. On first exposure, the emergent behavior of the entire
swarm is not obvious. The result is that the students will
all scatter and eventually be standing next to a wall in the
room unable to move in such a way as to better their position.
Although we have never done so, this would be an interesting
exercise to perform outside where there are no walls. It would
be an entertaining way to dismiss the class.2

Swarming is often characterized by simple performance
rules imposed on each agent. In a somewhat similar vein,
Stephen Wolfram in his highly promoted book A New Kind
of Science [26] explores emergent behavior from simple

1There is the possibility that there will be two or groups in the case
where the students choose in such a manner that groups are not connected.
Imagine, for example, separating the students into two rooms there they
secretely choose two students who are in the same room with them. When
the two groups are placed back into one room and the swarming action
begins, there is no interaction between one group and the other. The steady
state result will be the forming of at least two individual clusters.

2The examples using students were originally suggested by Bonabeau and
Meyer [3] and analyzed by Gravagne and Marks [13]. Videos of simulations
of these swarms are available on NeoSwarm.com.
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rules applied to cellular automata. Swarming and Wolfram’s
cellular automata both obey simple rules, yet can generate
unexpected and complex emergent behavior. They also share
the property that the emergent property is often not apparent
from the rules.

Although swarms are typically associated with social in-
sects, the idea applies as a paradigm to numerous other
systems. Applications include economics [3], inverse prob-
lems [8], [14], [21], communications [1], [6], [7], [15], [18],
optimization [9], [19], warfare [4], image processing [23],
pattern recognition [27], [28], business [3], acoustics [25],
national security [16], [17] and search algorithms [1], [20].

Swarms need not move. The lung, for example, can
be modeled as a large number of disjunctive individually
functioning cells each unaware of the actions of nonadjacent
cells nor aware of the function or purpose of the collective.
A fundamental emergent property of the lung is, of course,
breathing.

Given the common disconnect between an agent’s indi-
vidual function and the swarm’s emergent behavior, two
approaches suggest themselves to develop deeper insight: an-
alytic modeling and simulation. There are, indeed, interesting
swarms whose behavior can be captured and described by
mathematics [13]. Formulating simple agent behaviors that
defy modeling is not difficult. Our aim is to explore the
simulation analysis of the manner that swarms behave to
hopefully sharpen through experience our ability to predict
the emergent behavior from simple agent functions. In this
print media, only screen captures of swarm dynamics can be
presented. The reader is encouraged to view the parent videos
to better appreciate and enjoy the swarm dynamics. They are
available on NeoSwarm.com.

II. TERMITES

A simple model of a swarm of termites stacking wood was
described in the INTRODUCTION. We consider two cases of
termite swarms.

A. Clearing & Stacking

Four snapshots of a termite swarm are shown in Figure 1.
The initialization takes place at time t0. Each small square
denotes a wood chip. Each dot is an agent. Initially, all the
agents are empty handed. The termites begin to move in
random Brownian motion. If an agent hits an edge of the
square playing field, it simply bounces off elastically.

At time t1 the diamonds denote termites carrying wood.
Clustering of wood chips into distinct piles is evident.

The wood is coded to be light blue initially. As time
passes, the color changes to brighter yellow. Yellow squares,
therefore, correspond to wood chips that have been there for
a long time.

An alternate view of this swarm process is the clearing
of wood chips. Consider the wood chip pile inside the box
at time t1. If the pile becomes destroyed, the creation of a
future pile in the same area becomes improbable. An isthmus
of sorts would need to stretch from another cluster into this
region in order for this to occur. The boxed pile, it turns out,

is ultimately dispersed to other piles. At time t2 the termites
have carried away all but one wood chip from the pile. At
time t3 this final wood chip has been removed and the region
now is free of wood chips. It is doubtful that wood chips will
ever again appear in this region.

B. A Termite Swarm With Drift

Another simulation of the termite algorithm is shown in
Figure 2. There are two changes that have been made.

1) The termite playground is modular in the sense that
termites exiting on the right appear at the same location
on the left and continue their movement. This would
be the case, for example, if the termites were oper-
ating around the cylindrical trunk of a tree. Likewise,
termites leaving the top edge of the termite playground
appear at the same horizontal coordinate at the bottom.

2) Termite motion, though still random, has a slight drift
that nudges each termite towards the upper right of the
playground.

As before, a termite and wood chip are not allowed to occupy
the same space at the same time. This constraint has more
importance here.

The initial stage of the swarm is shown at t0 in Figure 2.
The empty handed termite agents are shown as small white
dots. Wood chips are shown in red and the cleared area in
blue. Soon after initiation at time t2, some of the termites
are carrying wood chips. They are shown as white circles.
In the beginning, the wood particles are scattered randomly
and close together. The interval between picking up a wood
chip and laying it down is short.

Due to the slight drift to the upper right, tunnels are
beginning to form at time t2. In the t3 snap shot, boxes are
drawn around two disabled termites. These disabled termites
are carrying wood but are surrounded by wood. They neither
have a place to put down their wood nor an open space to
which to move. They therefore simply remain frozen where
they are.

Two maverick termites are shown boxed at time t4 in
Figure 2. These termites are working their way through a
solid wall of wood by picking up a wood chip before them
and then placing it down behind. The effect is that the
maverick termite slowly works its way through the wall of
wood. As in the previous termite images, deposited wood
changes color after it is first deposited and, in steady state,
turns red. Monitoring the age of the wood in this manner
allows us to see a trajectory behind the mavericks that
indicate the path they have traversed. Maverick termites can
reverse roles with the disabled. When a maverick bumps into
a disabled termite, the disabled termite can steal the open
space available to the maverick and begin to move again
within the wood. The former maverick, robbed of its open
space, becomes disabled.

The overall interesting emergent swarm behavior of the
termites is evident at time t4 in Figure 2. As is the case in
Figure 1, the termites are clustering wood. But because of the
slight drift of the termites to the upper right, the clustering
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Fig. 1. Four snapshots of a termite swarm.

Fig. 2. Six snapshots of a termite swarm with drift.

is done in such a manner that roads are constructed. In the
transition from t2 to t5, the roads are seen to become wider.

The interesting behavior of the termite simulations result
only from two simple rules.

1) If a termite is empty handed and bumps into a wood
chip, it picks it up and moves on.

2) If a termite is carrying a wood chip and bump into
another wood chip, the termite drops the chip and
moves on.

III. GNATS

Here are simple rules that simulate what looks to be a
swarm of gnats.3 On a plane, choose a home point in the
middle of the playground.

1) A number of gnats initially roam randomly (Brownian
motion).

3No claim is made that this model relates to biology.

2) The gnat furthest from home point is given a drift
component toward the home point.

The drift is the same as described in the termites example. If
a gnat with drift is later again designated as the swarm agent
furthest from the home point, its drift direction is reset.

These two simple rules give rise to a gnat like swarm
shown in Figure 3(a) where the home point is shown by a
small blue dot in the center of each image. The agent farthest
from the home point on the right is circled in red.

A consequence of the rules is that the gnat swarm confines
itself to a circle with finite radius. Typical of a gnat swarm
is the snapshot shown in Figure 3(a). A plot of swarm radius
versus time as measured by the gnat furthest from the home
point is shown in Figure 4(a).

If the swarm agents are initialized in a more disperse
manner as shown in Figure 3(b), the swarm will reduce in size
to be commensurate to that in Figure 3(a). Likewise, if the
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Fig. 3. Illustration of a swarm of gnats.

swarm agents are initially closely clustered as in Figure 3(c),
the swarm radius will expand to a size similar to that in
Figure 3(a). The expansion of the swarm radius in this case
is plotted in Figure 4(b).

Fig. 4. Swarm radii for 200 gnats. Time, n, is not linear. Rather, each
time a new gnat wins the contest of being furthest from the home point, its
distance to the home point is recorded as the next point in the plot. These
occurrences do not happen at equal intervals of time.

As is the case with other swarms following simple rules,
unexpected behaviors emerge. In the case of the gnats, it is
a confining circle of fixed radius.

IV. AVALANCHES ON A PILE OF SAND

In his book Ubiquity [4], Mark Buchanan explains ap-
plication of the power law to earthquakes, market crashes,
hurricanes, wars, personal income, city sizes and avalanches.
Random variables obeying the power law are identified by
plotting their probability density functions on log-log axes.
If the plot is a straight line with negative slope, the underlying
random variable is said to obey the power law [4], [24].

Some of the power law phenomena described by Buchanan
fall within the swarm paradigm. One is piling sand. As sand
is piled, small avalanches occur regularly. The rare event of a
major avalanche is characteristic of phenomena obeying the
power law.

The model we use to simulate a pile of sand follows simple
rules.

1) Drop a grain of sand onto the middle of the sand pile.
2) Each grain of sand has an elevation above the sandbox

floor. The new grain looks at its adjacent neighbors. If
there is a lower position available, the grain moves to
that position. (If there are two or more lower locations,
one is chosen at random.) The new location of the

Fig. 6. Sand pile data.

grain might, itself, be higher in elevation than its
surroundings, in which case the grain of sand is again
moved to the lower position. This process is repeated
until no more sand moves.

3) Go to the first step and repeat.
The total number of displacements that result from the
dropping of a single grain of sand is a measure of the strength
of the avalanche. In most cases, the number is small. There
is a chance, however, the history of dropped sand has built
an instability in the pile that will be unleashed as a major
avalanche when the next grain of sand is dropped.

The pile of sand can be viewed as falling within the swarm
paradigm. There are individual agents following simple rules.
In addition each grain interacts only with its immediate
neighbors and the grains of sand have no oversight awareness
of the behavior of the larger system in which they function.

Screen shots of the simulation of the sand pile following
these sand pile rules are shown in Figure 5. The two images
on the left show the initiation and initial growth of the sand
pile. The image on the right is characteristic of the sand pile
in steady state. Any grain of sand near the edge of the table
can be nudged off of the table and be lost to the system. For
this reason the number of grains of sand in the pile in steady
state is approximately constant. This is shown in Figure 6(a)
where, after ramping up, the plot of the total number of grains
of sand in the sandbox flattens.

A log–log histogram of avalanche size is shown in Fig-
ure 6(b). The number of grains of sand in an avalanche does
not decrease as the frequency of occurrence increases. Small
avalanches of one or two displacements are rare. Indeed,
there is a maximum likelihood avalanche size located at
the maximum of the histogram curve. To the right of this
maximum, however, the downward almost linear behavior of
the histogram suggests that, in this region at least, the idea
of the power law may be in effect.

V. BULLIES & DWEEBS

Bullies and dweebs is a simple predator-prey swarm with
simple rules. The emergent behaviors in this game are the
most fascinating and richly diverse of the examples discussed
thus far.

Here are the rules. On a battleground, each predator bully
will identify the closest dweeb and take a step in the dweeb’s
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Fig. 5. Forming a sand pile. (The spike in the back corner is an artifact of the simulation software that keeps the scaling of the pile the same from frame
to frame. It has otherwise nothing to do with the problem.)

direction. Likewise, each dweeb detects the closest bully and
takes a step away from the bully. When a bully catches a
dweeb, the dweeb is removed from the game and the killing
bully immediately seeks the next closest dweeb. The walls of
the battleground are hard. Neither bully nor dweeb can pass
through walls.

Using these simple rules results in rich variations of
emergent properties.

A. Entrapment

Snapshots from a fundamental game of bullies and dweebs
are shown in Figure 7. Initialization time t0 begins with a
large number of randomly positions dweebs indicated by the
blue squares. Bullies are red diamonds.

At time t1 there are two lines of dweebs moving upwards
pursued by bullies on the bottom. The bullies are unaware
there is a line of dweebs before them. They are only interested
in the pursuance of the nearest dweeb. The dweebs in a line
running from the bully, on the other hand, are are aware of
the bully. The bully is the nearest to them and their job is to
run away. Two swarms of dweebs to the right of these two
bullies are likewise running away from the bullies.

Apparent cooperation between two bullies occurs at time
t2. As shown by the red arrows, one bully is chasing a line of
dweebs downwards while another is chasing a line of dweebs
upwards. The dweebs are trapped between the two bullies
and are eventually killed. Although the bullies appear to be
cooperating, neither bully is directly aware the other bully is
there. They are only aware of the nearest dweeb who they
are pursuing.

The swarm at time t3 in Figure 7 illustrates a common
property of predictor–prey games. Two bullies are moving
in the direction of the red arrows in the pursuance of the
dweebs. The dweebs will eventually be trapped on the walls
where they will be killed by the bullies.

1) Alexander the Great’s Defense Against Swarms:
Entrapment, an emergent behavior in the bullies and dweebs
game, is as an effective countermeasure to swarm attacks in
warfare. In his book about swarms on the battlefield, author
Sean Edwards writes [10]

“Alexander the Great was one of the first Western
military commanders to encounter an enemy who used
swarming tactics. The Scythians, a nomadic people who

generally fought with horse archers and used swarming
tactics, turned out to be the first army to defeat the
Macedonian phalanx after it crossed the Hellespont.
However, Alexander improvised new tactics to counter
the swarming tactics of the Scythian horse archers and
eventually defeated them.”

As the bullies trapped the dweebs against the wall, so
Alexander trapped the Scythians. Edwards writes

“Alexander realized that the best way to come to grips
with the more mobile Scythians was to pin the swarmer
against an obstacle, such as a river or a fort. Since a geo-
graphic obstacle was not at hand, Alexander used his own
men as bait by sending a cavalry force forward before
his main army to provoke the hostile horse archers into
attacking ... Once the Scythians had swarmed and circled
around Alexanders cavalry bait as expected, Alexander
brought forward his light infantry to screen the advance
of his main cavalry force. Fuller logically assumes that
the subsequent cavalry charge was aimed at the Scythians
trapped between the light infantry and the bait force.
Over 1,000 Scythians were killed and 150 captured in this
battle, although the main part of the horse archer army
escaped. The Scythians sued for peace shortly thereafter.”

Note there were massive killings after entrapment. We will
see this occurs repeatedly as the bullies pin dweebs against
walls or in corners.

2) Limitations: The deterministic nature of the bullies
and dweebs in this example has limiting attributes.
• A swarming appearance is discouraged. Bullies, for

example, chase dweebs that are constrained to be in
a line.

• Bullies stack. If two bullies coincidentally land on top
of each other, they will stay that way for the remainder
of the contest. Both bullies see the same nearest dweeb
and will both move towards it in exactly the same way.

• Dweebs stack. Similarly, if two dweebs occupy the same
coordinate, they will stay that way for the remainder
of the game. Both see the nearest bully and both react
identically in their defensive motion.

Bully stacking inhibits the attacking capability of the bully
collective. Dweeb stacking limits the overall ability of
dweebs to evade a bully. And when there is a kill of a stacked
dweeb, a large number of dweebs die at the same time.
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Fig. 7. Snapshots of a fundamental bullies & dweeb game. The blue squares are dweebs and the red diamonds are bullies. Initially there are 5000 dweebs
and three bullies.

B. Adding Dweeb Twiddle

The swarm limitations observed in the previous section
can be addressed by adding a small random component to
the movement of the agents. We call this random component
twiddle. First, we will add twiddle to the dweebs. As before,
the dweeb moves away from the bully but now a small
random direction added to each retreating step. Otherwise
the rules remain as before. (Since twiddle has not yet been
applied to the bullies, bully stacking can still occur.) As is
illustrated in Figure 8, simple addition of twiddle changes
the swarm dramatically.The dweeb swarm4 moves more as a
cloud rather than a structured group like dweebs-in-a-row.
Twiddle allows the dweebs to more effectively avoid the
bullies by forcing the bullies to concentrate on a single dweeb
while the other dweebs scatter.

Some of the dynamic changes resulting from dweeb twid-
dle are illustrated in Figure 8. At time t1, Bully B is chasing
a swarm of dweebs down the battleground. The twiddle
allows the dweebs to swarm and escape the strict straight line
structure characteristic when the dweebs had no twiddle.

At time t1, Bully A is about to hit the right wall. Like
trapped Scythians, a number of dweebs are lined up against
the right wall to get as far away from the bully as possible.
There is a slight downward drift of the walled dweebs as
Bully A approaches from the left. When Bully A hits the
right wall, two interesting thing happen.

• First, only a single dweeb is killed. This is the single
dweeb on which Bully A has had his eye.5 Dweeb
twiddle separates the dweebs from each other and makes
this possible.

• Second, all of the dweeb wall flowers on the right flee
from the wall. This is shown at time t2. Twiddle allows
them to separate from the wall and realize there is an
option other than staying glued to the wall. Without
twiddle, a walled dweeb can only step away from a
walled bully by moving up or down the wall. Twiddle
allows a small step away from the wall and allows
the dweeb to run in the open field. The dweeb swarm
is running from Bully A. While Bully A pursues the

4Cattle comes in herds, fish in schools and beer in six packs. A collection
of dweebs will be henceforth be referred to as a swarm. A group of bullies
will be called a mob.

5Yes. All bullies are male.

Fig. 9. A plot of the number of surviving dweebs as a function of time
for three different scenarios.

closest dweeb and moves down the right wall, the other
dweebs scatter from Bully A in a swarming fashion.
This retreating direction will continue until dweebs de-
tect Bully B as being the closest whereupon a different
retreat strategy will be adopted.

The role of twiddle in allowing dweeb survival is also
illustrated at time t3 in Figure 8. Bully A is chasing what
appears to be a single dweeb into the lower right corner. The
apparent single dweeb is, in fact, a large number of dweebs
that, despite twiddle, are spaced closely together. As shown
at time t4, when Bully A hits near to the lower right corner,
all of the dweebs in the boxed region explode away from the
corner to run from Bully A.

The location on the battleground where dweebs were
previously killed are marked by small subtle white +’s in
Figures 7- 8. In Figure 7 where no dweeb twiddle is used,
there are few mid field kills. The few shown happened
primarily at the initialization of the game. Without twiddle,
most of the kills occur at the boundaries. This can be seen in
Figure 9(a) where a plot of surviving dweebs as a function
of time is shown. The plot has numerous rapid drops each
corresponding to the death of many dweebs at one time. All
occur at the boundaries of the battlefield. Dweeb stacking
is responsible for these drops since a kill of a single stack
corresponds to the death of all of the dweebs in the stack.
When dweeb twiddle is added, stacking only occurs by
collocation coincidence. As seen in Figure 8, there are many
more mid field kills although most of the kills still occur
at the battleground boundaries. The surviving dweeb versus
time plot is shown in Figure 9(b). Because only one dweeb
is killed at a time, the curve is smoother. Some fast drops are
still present corresponding to mass killings at the battleground
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Fig. 8. Snapshots of a fundamental bullies & dweeb game where the dweebs have twiddle. The initial distribution of bullies and dweebs was similar to
that shown at time t0 in Figure 7. The swarm starts with 2000 dweebs and 25 bullies. During the warming, some of the bullies stack.

boundaries.
1) One Bully : Figure 10 uses the same scenario except

we use only one bully.6 Kills typically occur at the walls of
the battleground. After each kill, the bully detects the nearest
dweeb, chases the dweeb to another wall where the next kill
occurs. There is typically one kill each time the bully crosses
the battleground and hits another wall. The dweeb twiddle
impedes greater slaughter by dispersing the dweebs into a
swarm.

At time t1 in Figure 10, the bully is close to a kill in
the upper left of the top boundary. After the kill, the bully
chases another dweeb to the right to the next kill that occurs
on the top of the right hand boundary. Times t3 and t4 show
the bully’s pursuit of the next dweeb towards the bottom
boundary of the battleground. Notice the dweeb swarming in
these two pictures. At t3, the dweebs are beginning to run
from the right hand wall to escape the bully. At time t4, they
are all on the bottom boundary as far south as they can get
from the bully.

Although most kills occur at the boundaries of the bat-
tleground, there are exceptions. One is shown at time t5 in
Figure 10 where the bully is shown to be directly on top of
a dweeb. After the kill, the bully proceeds to the left wall
where another dweeb is killed. Then as shown at time t6,
the bully then turns around and pursues the next dweeb for
a kill on the right hand wall. In the mean time at times t5
and t6, the dweebs not being pursued continually position
themselves to be as far away from the bully as possible.

As is seen by comparing Figure 9(b) with Figure 9(c), one
bully takes a significantly longer time to totally eliminate the
dweebs. And because there is typically only one killing for
each time the bully crosses the battleground, the plot of the
surviving dweebs reduces almost linearly after about time
t = 200. Before t = 200 there were still transients in effect.

2) Paralyzed Bullies and Voronoi Partitioning : When
the bullies are frozen in position, dweebs will position
themselves on the Voronoi partition boundary [12], [22].
These boundaries are a function of the positioning of the
bullies. The Voronoi partition is illustrated in Figure 11. On
the left are eleven designated points on a plane. Every other
point on the plane is assigned to the designated point to which

6Actually, there are two bullies who soon became stacked into the
equivalent of one bully. All of the snapshots in Figure 10 are for the stacked
bully.

Fig. 11. A positioning of bullies is shown on the left. On the right is the
Voronoi partition of these points.

Fig. 12. Voronoi partitioning performed in the bullies and dweebs swarm.

it is nearest. This results in the Voronoi partition shown on
the right.7

As illustrated by the screen shots in Figure 12, Voronoi
partitioning occurs in the bullies and dweebs game when
the bullies are frozen in position. On the left is the swarm
initialization and on the right is the Voronoi partition that
occurs soon after the swarm is started. In hindsight, this
behavior makes sense. Each dweeb positions itself to retreat
from the nearest bully. At the Voronoi boundary, the dweeb is
equally distant from the two bullies who define the boundary.

C. Bullies With Twiddle

We continue with the bullies and dweebs example using
the same two basic rules: Each dweeb steps away from the
nearest bully. Each bully steps towards the nearest dweeb.
(The variations and richness of the emergent behaviors be-
hooves us to occasionally remind ourselves of the simplicity
of the rules that define the contest.) Adding twiddle to the

7This figure is derived from a public domain image from Wikimedia
Commons.
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Fig. 10. Snapshots of the actions of one bully on dweebs with twiddle. Usually, but not often, kills are at a wall.

dweeb motion allows the dweebs to survive longer. What
happens when the we add twiddle to the bullies?

Dependent on the number of bullies in the pursuit, using
bully twiddle can either be highly detrimental to the bully’s
effectiveness or highly beneficial. It depends on the number
of bullies participating in the pursuit. Isolated bullies with
twiddle appear disoriented. Their drunken swagger still al-
lows them to get close to a dweeb, but inhibits their ability
to make the final kill. A large collection of drunk bullies on
the other hand becomes a destructive mob who collectively
are highly effective in killing dweebs.

1) When Twiddle Makes Bullies Tipsy : In the video
available at NeoSwarm.com, the actions of the isolated tipsy
bully is almost comical. The behavior illustrated in the screen
captures in Figure 13, although instructive, does not capture
the fun. The snapshots in Figure 13 are looking at section
next to the lower right wall of the battleground where a bully
with twiddle pursues a single dweeb with twiddle. Times t1
through t3 show the bully pushing the dweeb towards the
right wall. Normally this would be sufficient for a kill. Frames
t4 through t6 show the dweeb escaping. The twiddle in the
bully makes it too unsteady to deal the death blow. At times
t7 through t9, the pursuance of the bully and avoidance of
the dweeb has broken away from the wall into open field
which is advantageous to the dweeb. The randomness of the
twiddle of both agents, however, moves the pursuit back to
the right hand wall of the battleground at times t10 and t11.
The inebriated bully, it turns out, is still unable to make
the kill and the dweeb breaks away from the wall to a less
dangerous open field pursuit.

2) Drunken Mobs of Bullies : When there are a large
number of bullies with twiddle, the collective can act together
as an effective dweeb killing mob. An illustration is shown
in the screen shots in Figure 14. Initially the bullies are
randomly placed and, acting individually, are ineffective in
their killing mission. As the game plays, the bullies self
organize into mob clusters. Since the dweebs are already

traveling in swarms, the bullies each tracking the same or
different dweebs within the dweeb swarm themselves form
a cluster which, in the case of bullies, we will call a mob.
Bully mobs are evident at time t1 in Figure 14. Red arrows
adjacent to bully mobs indicate the general direction in which
the mob is moving. At time t2 the two mobs labeled with
arrows are pursuing different dweeb targets. At times t3 and
t4, the bully mob labeled by the leftmost arrow is chasing
a dweeb into the left wall. Once this dweeb is killed, the
bully mob’s attention is refocused on another dweeb cluster
as seen at time t5. At times t6 and t7, all bully mobs begin to
move towards the upper left corner where the target dweeb
swarm is trapped. Once the dweeb swarm is killed, the bully
mob moves to its new dweeb swarm target at time t8. Note
that the disjoint bully mobs at the beginning at time t1 have
now joined into a single large mob. Generally, bully mobs
both conglomerate and bifurcate during their pursuit of the
dweebs.

3) A Dweeb Massacre : Another illustration of the power
of the bully mob is illustrated in Figure 15. The contest begins
at time t0 with all of the bullies located in the upper left hand
corner. The dweebs are likewise all clumped in the same
location. At time t1, the bully mob begins pursuit of the
dweeb swarm towards the lower right corner. Due to twiddle,
both the bully mob and the dweeb swarm begin to spread.
At time t2, the fate of the dweebs becomes evident. They
are doomed to be trapped and massacred in the lower right
corner of the battleground as shown at time t3. But something
interesting now happens at time t4. A lone dweeb escapes the
massacre and begins to run from the bully mob. The bully
mob begins to pursue as is seen at time t5. Ultimately, the
bully mob catches the lone dweeb at the top edge of the
battleground.

D. Drive fast. Turn left

NASCAR drivers, like swarm agents, are said to follow
two simple rules:
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Fig. 13. Behavior of a bully and dweeb along the right wall of the battleground. Two dweebs in the lower right corner stay where they are at and are
seen in each snapshot.

Fig. 14. Mobs of bullies pursuing swarms of dweebs.

Fig. 15. A massacre of dweebs with a lone survivor.
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1) Drive fast.
2) Turn left.

All of the emergent behaviors illustrated in Figures 7 through
15 result from two rules: each bully steps toward the nearest
dweeb and each dweeb steps away from the nearest bully.
None of the agents is aware of the behavior of the swarm as
a whole. They are aware only of their own individual actions.
The wide variation in emergent behaviors is due to

1) the presence or absence of twiddle,
2) the number of participating agents,
3) the boundary conditions of the battleground, and
4) the initial placement of the agents.

VI. CONCLUSIONS

Swarms obeying simple rules can display interesting and
unexpected emergent behaviors.

Involvement with swarm simulations can be mildly addic-
tive. We have found ourselves rooting for a lone brave dweeb
running from a bully mob like we would root for a favorite
sports team. The lone drunken bully trying unsuccessfully to
capture a wile dweeb is truly amusing. This fascination with
swarms springs from the unknowable and often surprising
emergent behaviors.

When presenting these results in a lecture, there are
invariably questions of the form “Did you try such and such?”
or comments such as “It looks like you could have done
such and such this way to achieve better or more interesting
results.” Viewing swarm activity invariably invokes ideas
for variations. For those so inclined, feel free to tweak the
MATLAB code used to generate these swarms. Most are
available at NeoSwarm.com.

All of the examples given in this paper are from simulation
analysis. The more difficult design or inverse problem is to
generate desired emergent behavior by choosing appropriate
swarm rules. We are looking into this problem. The interested
reader is referred to our recent paper for some preliminary
results [11].
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