
1

b1567  Biological Information — New Perspectives b1567_Sec1 8 May 2013 2:35 PM

Section One — Information Theory & Biology: 
Introductory Comments

Robert J. Marks II — Section Chairman

All agree there is information in biological structure and function. Although the 
term information is commonly used in science, its precise definition and nature 
can be illusive, as illustrated by the following questions:

• When a paper document is shredded, is information being destroyed? Does it 
matter whether the shredded document is a copy of an un-shredded document 
and can be replaced?

• Likewise, when a digital picture is taken, is digital information being created 
or merely captured?

• The information on a DVD can be measured in bits. Does the amount of infor-
mation differ if the DVD contains the movie Braveheart or a collection of 
randomly generated digital noise?

• When a human dies, is experiential information lost? If so, can birth and expe-
rience create information?

• If you are shown a document written in Japanese, does the document contain 
information whether or not you know Japanese? What if instead, the docu-
ment is written in an alien language unknowable to man?

The answers to these questions vary in accordance to the information model used. 
However, there are properties of information common to all models. As noted by 
Norbert Weiner [1, 2], the father of cybernetics:

“Information is information, neither matter nor energy.”

Information can be written on energy. Examples include wireless electromag-
netic waves and audio waves that carry the content of conversations. As is the case 
with books and DVD’s, information can also be etched onto matter. But energy 
and matter serve only as transcription media for information. Information can also 
reside in structure or phenomena. Varying degrees of information are available in 
nature. A bacterium obviously contains more information than a grain of sand. 
Information can be extracted from inspection of information-rich sources. The 
idea for Velcro came from close examination of burrs stuck to the clothes of a 
Swiss engineer after a hunting trip [3]. The function of the human eyelid was the 
inspiration for invention of the intermittent windshield wiper [4]. The IEEE 
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Computational Intelligence Society [5], a professional electrical and computer 
engineering organization,1 has as its motto, “Nature inspired problem solving.” 
The implication is that structure in nature, when examined, can be a rich source of 
information applied to engineering. Unlike mass and energy in physics, a single 
model or definition of information does not exist. Claude Shannon recognized his 
theory was not the last word in the mathematical modeling of information [6]:

“It seems to me that we all define ‘information’ as we choose; and, depending 

upon what field we are working in, we will choose different definitions. My own 

model of  information theory... was framed precisely to work with the problem of 

communication.”

Shannon Information

Because of its widespread application and depth of mathematical rigor, the most 
celebrated information model is  Shannon information theory. In an astonishing 
1948 paper [7], Claude Shannon single-handedly founded a discipline still cele-
brated today by professional organizations such as the IEEE Information Theory 
Society who has published The IEEE TRANSACTIONS ON INFORMATION THEORY since 
the mid-1950’s. Shannon’s original paper is remarkable. The word bit, a contrac-
tion of binary digit, was first used in this paper.2 To show that continuous time 
signals could be represented by discrete time samples, Shannon discussed the 
sampling theorem3 that is today a universal staple of undergraduate electrical engi-
neering curricula [9], and dictates how many discrete samples must be captured on 
DVD’s and digital images to faithfully reconstruct continuous time audio signals 
and images [8, 9]. A relationship between average information and thermody-
namic  entropy was established by Shannon. In one of the most important applied 
mathematical results of the twentieth century, Shannon also showed that errorless 
communication was possible over a noisy channel. Forty five years later, turbo 
codes for the first time came very close to achieving the errorless communication 
bounds predicted by Shannon [10].

A fundamental contribution of Shannon’s paper is a mathematical definition of 
information. Two axioms are foundational to Shannon information.

1 IEEE, the Institute of Electrical and Electronic Engineers, is the world’s largest professional 
 society. In 2010, there were 382,400 members. 
2 Shannon credited John W. Tukey, a fellow Bell Labs researcher, with coining the word. 
3 I wrote an entire book dedicated to this topic [8], only one of the amazing contributions 
of Shannon’s paper. 
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1. As the probability of an event increases, the amount of information decreases. 
There is little or no information in the statement that the sun will rise tomor-
row morning. The probability of the event is nearly one. On the other hand, 
the event of the sun going supernova tomorrow has a miniscule almost zero 
probability. Being told the sun is going supernova tomorrow conveys much 
information.

2. Information of two disjoint events should be additive. That is, if the word 
“stuttering” conveys information I1 and “professor” conveys information I2, 
then “stuttering professor” should convey information I1 + I2.

If p denotes the probability of an event, the definition that satisfies both of these 
axioms is4

I = − log2 p.

As required by the first axiom, information increases as probability decreases. 
If two disjoint (statistically independent) events have probabilities p1 and p2, then 
the probability of both events is p1p2 with information I = − log2 p1p2 = I1 + I2 
where I1 = − log2 p1 and I2 = − log2 p2. The additivity axiom is thus satisfied.

The base of the log in the definition of  Shannon information is arbitrary and 
determines the units of information. If base 2 is used, then the unit of information 
is a bit. If a fair coin is flipped 6 times, we can say there are six bits of information 
generated since the probability of generating a specific sequence, say HTTHH, is

6
1

2 .
2

Ip -Ê ˆ= =Á ˜Ë ¯

The bit can be viewed as probability measured in coin flips. Ten bits, for example, 
corresponds to successfully forecasting the results of ten coin flips. Pioneering 
application of Shannon information theory to biology includes the work of 
Thaxton, Bradley & Olsen [12] and Yockey [13, 14]. There are limitations to 
Shannon information. Isolated from context, Shannon information measure is 
divorced from meaning. A Braveheart DVD can contain as many bits as a DVD 
filled with random noise. When applying Shannon information, care must be taken 
to recognize this property and, if meaning is applicable, to make clear the 
connection.

4 Use of the log to measure information dates to 1928 when Ralph Hartley noted that “...our practical 
measure of information [is] the logarithm of the number of possible symbol sequences.” [11] This is 
equivalent to Shannon information when all symbol sequences are equally probable.
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Solomonov-Kolmogorov-Chaitin Information

Shannon information is motivated by communication.  Algorithmic information 
theory, also called Solomonov-Kolmogorov-Chaitin information after the three 
men who independently founded the field5 [15–22], is a topic in the field of com-
puter science. Whereas Shannon information deals with probability of future or 
unknown events, algorithmic information deals largely with the complexity of 
existing structure. To what degree can a thick book, say the KJV Bible, be com-
pressed? The length of the shortest computer program to generate KJV Bible is 
dubbed the Chaitin-Kolmogorov complexity of the book.6 A repeated sequence 
010101010... for a billion bits has low complexity. The computer program is 
“Repeat 01 a half billion times.” A billion bits generated by repeated flips of a fair 
coin, on the other hand, is almost certainly incompressible. The shortest program 
to print the sequence must then contain the sequence, “Print ‘0110100010....’.”

An implication of the word information, when used conversationally, is the 
communication of meaning. Algorithmic information theory’s measure of com-
plexity suffers from the same problem as Shannon’s model—it does not inherently 
capture the meaning in the information measured [23]. A digital image of a 
Caribbean sunset can have the same  Chaitin-Kolmogorov complexity as an unfo-
cused image of correlated noise.

The Meaning of Informati on

Meaning in information is captured by the concept of  specified complexity popular-
ized by Dembski [24, 25]. The idea can be illustrated using the English alphabet [12]. 
The phrase

OVER AND OVER AND OVER AND OVER AND OVER AND 

OVER AND OVER AND OVER AND OVER AND OVER AND

has specific meaning but has a low Chaitin-Kolmogorov complexity. A program 
can read “Repeat ‘OVER AND’ ten times.” The phrase

HSUEX SHDF OSJ HDFN SJABXMJ SHBU SZJLK QPRQZ HASKS 

FPSCSJSJAA PJKAO DFAJ AJDFHFQWSALA DAFL V AZQEF

5 Chaitin, born in 1947, was still a teenager when his first groundbreaking work was published 
in 1966.
6 The minimum program depends on the computer program used, but the measure from computer to 
computer varies only by an additive constant.
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is complex. The program for this phrase would be “Print HSUEX SHD... ZQEF”. 
This is about the same size of the phrase itself. The phrase however, has no speci-
fied meaning. Next, consider the Bob Dylan lyrics7

I ASKED FOR SOMETHING TO EAT IM HUNGRY AS HOG SO I 

GET BROWN RICE SEAWEED AND A DIRTY HOT DOG.

This sequence of letters, display both a specified meaning and high complexity.
Leslie Orgle notes, regarding the requirement of specified complexity in life:

“Living organisms are distinguished by their specified complexity. Crystals such 

as granite fail to qualify as living because they lack complexity; mixtures of ran-

dom polymers fail to qualify because they lack specificity.” [26]

Orgle’s statement was independently observed by Yockey and Wickens [12]. Other 
models of information include  universal information [1], functional information 
[23, 27, 28],  pragmatic information [29] and evolutionary informatics [30–32]. 
Except for functional information, all of these models are addressed in this section.

Papers

The papers in this section on Information and Biology fall into three distinct 
categories.

1. Informati on Theory Models

How can information be modeled to reflect the information residing in biological 
systems? Gitt, Compton and Fernandez [1] define  universal information as; “A 
symbolically encoded, abstractly represented message conveying the expected 
action and the intended purpose.” They then show how universal information is 
resident in biological systems. Dembski et al. [43] build on the theory of evolu-
tionary informatics [30–32] by developing a generalized search methodology. 
Using conservation of information ideas popularized by the No Free Lunch theo-
rem [25], evolutionary search is shown to produce no active information. The 
difficulty of the search at hand, measured by endogenous information, can be 
simplified only by access to some source of information. Oller’s pragmatic 

7 “On the Road Again” by Bob Dylan.
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information [29] refers to the content of valid signs — the key that unlocks lan-
guage acquisition by babies and ultimately leads to human communication 
through language. Oller shows this same measure is required for “codes” in 
genetics, embryology, and immunology to work.

2. Limitati ons of Evoluti onary Models

A colleague of mine visiting my office noticed my computer buzzing away. When 
he asked what I was doing, I replied “running a self-organizing evolutionary pro-
gram.” In mocked astonishment, he queried “That’s exciting! When will it be able 
to talk?” The truth in this quip is that evolutionary systems often hit a point after 
which no further improvement is observed. Behe [37], who coined the phrase edge 
of evolution, documents that biological  evolution can also develop to a point where 
no other improvement is observed. In such case, specified complex information is 
bounded. Basener [38] proves such a ceiling of performance exists in many evo-
lutionary processes. Specifically he finds; “In an evolutionary system driven by 
increasing fitness, the system will reach a point after which there is no observable 
increase in fitness.” Schneider’s ev [39] and  Avida [40] computer programs that 
purport to demonstrate biological evolution obey the criteria necessary for 
Basener’s result to apply. No matter how long they run, neither program will ever 
learn to talk. Ewert et al. [41] demonstrate that  TIERRA, Thomas Ray’s attempt 
to simulate a Cambrian explosion on the computer, also hits Basener’s ceiling. 
Although TIERRA demonstrates fascinating and unexpected behavior, interesting 
innovations consistently arise only from loss of function. This same phenomenon 
in biology is reported by Behe [37]. Montañez et al. [42] assess the probability of 
information being increased via random mutations within a  genome. They show 
that the probability of improvement drastically diminishes as the number of  over-
lapping codes increases and to the extent that the DNA sequence is already near 
its optimum.

3. Thermodynamics, Entropy and Informati on

Both  information theory and  thermodynamics share the concept of  entropy refer-
ring to maximum disorder and uncertainty. Recognizing that life does not conform 
to thermodynamics’ demand for ever increasing disorder, Erwin Schrödinger 
coined the term negentropy (negative entropy) to apply to life. What is the source 
of negentropy?
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Sewell [35] shows that the decrease of entropy within a non-isolated system is 
limited not by “compensating” entropy increasing outside the system, but by the 
type and amount of entropy exported through the boundary. Thus, in open sys-
tems, information increases are limited by the information entering through the 
boundary. In other words, it is not true that anything can happen in an open 
 system [36]. McIntosh [33] carefully argues that the laws of thermodynamics do 
not permit the rise of functional devices (‘machines’) just by the flow of energy 
into a non-isolated system. Free energy devices available to do useful work are a 
product of intelligence. If one then considers information itself, one then finds that 
rather than matter and energy defining the information sitting on the polymers of 
life (a view held by many today), McIntosh posits that the reverse is in fact the 
case. Information has its definition outside the matter and energy on which it sits, 
and furthermore constrains matter/energy to operate in a highly non-equilibrium 
thermodynamic environment. He then outlines principles of information interac-
tion with energy and matter in biological systems [34].

A Final Thought

Much work remains on development of a concise mathematical model of informa-
tion applicable to biological systems. Some physicists have argued that all of the 
information required for the observable universe, including physical laws and the 
prescription for life, was created through the  Big Bang. The authors of this section 
appear to unanimously disagree with such an assertion.
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