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Evaluation of stochastic-resonance-based detectors of weak harmonic signals
in additive white Gaussian noise
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A thorough evaluation of stochastic resonance in the framework of statistical detection theory is presented
both as a nonlinear signal preprocessor and as a detector. The pertinent receiver operating characteristics are
compared with those of the known statistically optimum detector using extensive Monte Carlo simulations.
Parameter optimization and computational budget aspects are discussed.@S1063-651X~98!08306-8#

PACS number~s!: 05.40.1j, 02.50.2r, 84.40.Ua
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I. INTRODUCTION

The stochastic resonance~SR! concept was introduced in
the early 1980s by Benzi@1# as a typical feature of bistabl
@2# systems driven by an additive@4# mixture of a time-
harmonic @8# signal and a Gaussian white@12# noise. For
these systems the output signal-to-noise ratio~SNR! is coun-
terintuitively found to increaseupon increasing the inpu
noise level, up to a~broad! maximum.

SR was subsequently found to occur in Schmitt trigg
~threshold and hysteresis systems! @22#, monostable system
@23#, threshold systems with a deterministic return to the r
state@24#, level crossing detectors~LCDs! @25–29#, so-called
nondynamical nonthreshold detectors~random-pulse genera
tors with exponentially input-dependent rates! @32–34#, cha-
otic systems@36–38#, static memoryless nonlinear device
@39#, bistable systems with a fluctuating barrier height and
additive noise@40#, and evenlinear systems with multiplica-
tive noise @41#. As a result, in a few years SR emerg
gradually as a paradigm whose universal character
shown@42–45# to be intimately related to the pervasivene
of the fluctuation-dissipation theorem@46#.

The SR paradigm has drawn considerable attention
such diverse fields as climatology@47–50#; chemistry@51–
53#; laser physics@54–56#; neuroscience, including single
neuron@57–60# and many-neuron models@61–63#; biophys-
ics and physiology@64–75#; particle accelerators@76#; solid-
state physics, including bistable magnetic systems@77,78#,
electron paramagnetic resonance@79,80#, ferroelectrics@81#
and ferromagnetics@82#, fluorescence@83#, Ising systems
@84–87#, Josephson junctions@88#, superconducting quantum
interference device loops@89,91#, and kink-antikink systems
@92#, Landau-Ginzburg models@93#, mean-field models
@94,95#, mesoscopic systems@96#, spin waves@97#, super-
paramagnetic particles@98,99#, and tunnel diodes@100#; and
even sociology@101#, as witnessed by several topical mee
ings @102–104#. The pertinent literature is indeed still in th
exponentially growing stage, as can be seen from the bib
graphical database maintained by Gammaitoniet al. @151#.
The possible use of SR in connection with~weak! signal
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detection experiments, with special reference to gravitatio
waves, was suggested since the infancy of SR@105#. A re-
markable body of analytical, numerical, analog-simulatio
and experimental results support the evidence of both po
gain ~at the signal frequency! and SNR gain in a variety o
SR systems, including bistable~see, e.g.,@106,107#!, thresh-
old ~see, e.g.,@27#!, and static nonlinear devices@39#.

It should be mentioned that some results in the techn
literature should be taken with caution, the reported SN
being either defined in nonstandard ways@27#, badly com-
puted@108#, or almost irrelevant~see the discussion in@109#!
to the weak signal detection issue@110,111#. Furthermore,
for nonlinear systems both the power gain and the out
SNR are inherently ratherill defined@107,113#, except in the
weak driving regime, where it has been rigorously prov
that even in SR systems the output SNR is always less
the input one@115#.

The fundamental question is whether SR could be use
constructbetter detectors, the benchmark being represen
by the well-known~statistically optimum! Neyman-Pearson
detectors~ONPDs! for signals embedded in additive Gaus
ian noise@116,117#. The answer to this question can be o
tained by a comparison of the pertinent receiver opera
characteristics~ROCs! @116,117#.

Inchiosa and Bulsara pointed out this issue@114#. In con-
trast to earlier beliefs, they found that ROCs obtained fr
the output of~single as well as multiple, coupled! first-order
bistable systems driven by time-harmonic signals in addit
white Gaussian noise were alwaysworsethan those obtained
from the input@118#.

In this paper we go one step further by showing in Sec.
that applying the ONPD to theoutputof a generalfirst-order
nonlinear system consisting of a time-harmonic signal w
known frequency and initial phase in additive white Gau
ian noise isstrictly equivalentto applying the ONPD to the
plain input signal and noise mixture. Thusno gain should be
expected from using a~first-order! SR signal preprocessor
although one might positively speculate that SR could
used torecoverin part the SNR degradation due tounwanted
but otherwise unavoidable nonlinearities along the sig
processing chain@114#.

However, it might be worth looking at SR systems not
signal preprocessors but as detectors where one searche
somecharacteristicSR signature depending on the presen
6470 © 1998 The American Physical Society
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57 6471EVALUATION OF STOCHASTIC-RESONANCE-BASED . . .
of the signal. For the simplest SR systems studied in
paper, the chosen signature is the~time-harmonic! symmetry
breaking of the output probability density function~PDF!
~see Sec. IV! @119,122#. For thesesymmetry-breaking detec
tors we introduce and characterize in terms of ROCs b
parametric and nonparametric detection strategies, in Se
The main finding is that in the incoherent~unknowninitial
phase! case, the non-parametric detector admits a sim
implementation whose performance is nearly as good as
of the ONPD, with a substantial saving in computation
budget~see Sec. VI!.

II. STOCHASTIC RESONANCE: HEURISTICS

This section is intended as an introduction to the sub
and can be skipped by the more expert reader. We consid
one-dimensional nonlinear stochastic system, described
the Langevin equation

ẋ52
d

dx
V~x!1A sin~vst1f!1en~ t !,

~1!

x~0!5x0 ,

whereV(x) is a quartic potential

V~x!52a
x2

2
1b

x4

4
, a,b.0, ~2!

having two stable stationary points atxm
656Aa/b, an un-

stable one atx50, and a barrier height

V05
a2

4b
. ~3!

The above quartic bistable potential Langevin equation w
henceforth be referred to as QPLE. The noisen(t) in Eq. ~1!
is assumed as stationary, zero mean, white, and Gaus
with

E@n~ t !n~ t1t!#5d~t!. ~4!

The PDFp(x,t) of the stochastic processx(t) in Eq. ~1!
is ruled by the Fokker-Planck equation@126,127#

]p~x,t !

]t
5

]

]x H FdV~x!

dx
2A sin~vst1f!Gp~x,t !J

1
e2

2

]2

]x2 p~x,t !,
~5!

p~x,0!5d~x2x0!.

In the general case~AÞ0, eÞ0! this equation cannot be
solved in the closed form@128#. In the absence of nois
(e50) and with asubthreshold(A,V0) signal,x(t) oscil-
lates forever in a neighborhood of either stable station
point ~no transition allowed!. In the presence of noise onl
(A50), the responsex(t) fluctuates in the neighborhood o
xm

6 , jumping at random times between the two wells. T
first-passage time from either well to the unstable equi
is

h
V.

le
at
l
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rium point is a random variable whose mean~Kramers time!
is given exactly by the double integral@126#

TK5
2

e2 U E
0

xm
6

dy exp@2V~y!/e2#

3E
2`

y

exp @22V~z!/e2#dzU, ~6!

which can be evaluated under suitable approximati
@139,140#. The simple estimate

TK5
&p

a
exp F2V0

e2 G ~7!

provides a nice approximation in the useful range of para
eters@141#.

In the presence of both signal and noise, jumping betw
the two potential wells is possible even for a subthresh
input signal. It can be heuristically realized that, under su
able conditions, jumping maylock to the time-harmonic
forcing term. It was initially suggested@1# that such a behav
ior would result from the matching of the forcing periodTs
52p/vs to twice the Kramers time

Ts;2TK . ~8!

The original SR definition~8!, which resembles aclassical
resonance, has suffered several criticisms. Gammaitoni
co-workers introducedalternativedefinitions, more directly
interpretable as a bona fide resonance@142,143#.

III. OPTIMUM DETECTION AT THE OUTPUT
OF A SR DEVICE

Here we consider the strict detection problem~the sought
signal is completely known! and formulate the optimum de
tection strategy for continuous observation of the output o
general first-order nonlinear system consisting of a tim
harmonic signal with known frequency and initial phase
additive stationary white„E@n(t)n(t1t)#5d(t)… noise ~a
class to which the QPLE belongs!, viz.,

ẋ5a~x!1s~ t !1en~ t !, tP@0,T#
~9!

x~0!5x0 .

Introducing time discretization with step sizeD, one has

xk112xk5D@a~xk!1sk1enk#, k50,1,...,N21,

N5 bT/D c,
~10!

xk5x~kD!, sk5s~kD!, nk5n~kD!.

The ONPD @116,117# for the set of observationsxk ,
k50,1,...,N21, is based on themaximum likelihood ratio
test, viz.,

l ~x0 ,...,xN21!>G⇒signal present,
~11!

l ~x0 ,...,xN21!,G⇒no signal present,

where
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l ~x0 ,...,xN21!5
p~x0 ,...,xN21usignal!

p~x0 ,...,xN21uno signal!
, ~12!

p( ) being the joined PDF andG a suitable threshold. Using
the Euler approximation@144# for the involved PDFs, one
has@127#

p~x0 ,...,xN21uno signal!

5~2pDe2!2N/2)
k50

N21

exp H 2
@xk112xk2a~xk!D#2

2De2 J ,

~13!

p~x0 ,...,xN21usignal!5~2pDe2!2N/2

3 )
k50

N21

exp H 2
@xk112xk2a~xk!D2skD#2

2De2 J . ~14!

Hence

ln@ l ~x0 ,...,xN!#5
1

e2 (
k50

N21

$sk@xk112xk2a~xk!D#2 1
2 sk

2D%.

~15!

Letting D→0 and taking Eq.~10! into account, Eq.~11! can
be recast as

1

e2 E
0

T

s~ t !z~ t !dt> ln G1
1

2

Es

e2 ⇒signal present,

~16!

1

e2 E
0

T

s~ t !z~ t !dt, ln G1
1

2

Es

e2 ⇒no signal present,

where

z~ t !5s~ t !1en~ t !, Es5E
0

T

s2~ t !dt. ~17!

The above decision rule reproduces the ONPD~coherent cor-
relator @117#! applied to theinput signal plus noise mixture
Thus, if the process is observed continuously, insertion o
SR filter ~or, more generally, a first-order nonlinear syste!
doesnot improve the detection performance.

IV. PDF SYMMETRY BREAKING

In the absence (A50) of the time-harmonic driving sig
nal, the steady-state solution of Eq.~5! is @126#

pss~x!5C expF ax2

2
2

bx4

4

e2/2
G , ~18!

shown in Fig. 1, whereC is a normalization constant. Th
two peaks centered atxm

6 have equal widths, which increas
with the noise rms valuee. Switching the sinusoidal forcing
term on produces amodulated-in-time symmetry breakingof
the PDF. This is most easily described in the asympto
adiabaticlimit Ts@TK , where Eq.~5! has the solution@126#
a

ic

p~x,t !;C~ t ! exp F ax2

2
2

bx4

4
1Ax sin~vst1f!

e2/2
G ,

~19!

C(t) now being a~time-dependent! normalization factor.
Floquet theory confirms that an oscillating symmetry bre
ing of the PDF occurs at the same frequency of the driv
signal forall values of the ratioTs /TK @134#.

In the following subsection we shall discuss in terms
ROCs detection algorithms based on the possibly simp
PDF symmetry-breaking indicators, viz.,

P1~ t !5Prob$x~ t !.0%5E
0

`

p~x,t !dx ~20!

and

E~ t !5E@x~ t !#5E
2`

`

x p~x,t !dx. ~21!

In the absence of a signalP150.5,E50. Typical time evo-
lutions of P1 andE, obtained from numerical Monte Carl
@144# simulations, are displayed in Figs. 2 and 3. Irrespect
of the initial conditions, after a short transientboth P1 andE
lock to the signal, but for some~constant! phase lag@145#,
which vanishes in the adiabatic limit.

QPLE parametrization, resonant features, and optimization

Before proceeding further, to optimize performance, it
convenient to introduce dimensionless parameters and v
ables as follows: The normalized angular frequency is

v̄s5vsTK , ~22!

The normalized potential-barrier height is

V̄05
V0

e2 , ~23!

FIG. 1. Stationary~steady-state! output PDF relevant to the
QPLE, in the absence of a signal.
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and the signal-to-noise ratioR is

R5AEs

e25ANTsA
2

2e2 , ~24!

Es being the signal energy andN the number of observed
cycles,

x̄5
x

eATK

, t̄5
t

TK
, ā5aTK5&p exp ~2V̄0!.

Equation~1! can be recast as

xG 5āx̄2
ā2

4V̄0

x̄31RA v̄s

Np
sin~v̄st̄1f!1n~ t̄ !,

FIG. 2. Time behavior of the asymmetry indicatorP1 , in the
presence of an input harmonic signal, for three different initial c
ditions. The vertical dotted lines correspond to the zeros of the in
signal.

FIG. 3. Time behavior of the asymmetry indicatorE, in the
presence of an input harmonic signal, for three different initial c
ditions. The vertical dotted lines correspond to the zeros of the in
signal.
~25!

x̄~0!5 x̄0 .

The ~steady-state! values of maxt@P1(t)# and maxt@E(t)#, are
displayed in Figs. 4 and 5, respectively, as functions of
normalized~angular! frequencyvsTK , for several values of
R at fixed V̄050.25. Both show a resonant behavior, bei
maximum at

v̄s;p, i.e., Ts;2TK , ~26!

which is the original Benzi SR condition~8!. The numerical
results merge smoothly into their adiabatic limits asv̄s tends
to zero, as seen in Figs. 4 and 5. The phase lag between
maxima ofP1(t), E(t), and the input signal turns out to b

-
ut

-
ut

FIG. 4. maxt@P1(t)# frequency response of the SR detector f
various values of the SNR. Dashed curves refer to the adiab
approximation.

FIG. 5. maxt@E(t)# frequency response of the SR detector f
various values of the SNR. Dashed curves refer to the adiab
approximation.
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the same, is almost independent of theR value~see Fig. 6!,
and vanishes in the adiabatic limit. ChangingV̄0 affects only
the resonance peak height, as shown in Figs. 7 and 8.

For the best PDF symmetry-breaking detection, o
should look for the largest possible value of maxt@P1# and
maxt@E#. Accordingly, for a given signal frequencyvs and
noise power spectral densitye2, one should enforce Eq.~26!
and determineV̄0 according to Figs. 7 and 8. Then, usin
Eqs. ~3! and ~7!, the optimum potential parametersa,b can
be readily obtained.

V. PDF SYMMETRY-BREAKING DETECTORS

In this section we develop a quantitative analysis
QPLE-related PDF symmetry-breaking detectors in terms
their ROCs. We assume that the system parameters
been optimized as shown in the preceding section.

FIG. 6. Phase lag of maxt@P1(t)#,maxt@E(t)# vs the normalized
angular frequency.

FIG. 7. maxt@P1(t)# at resonance (v̄s5p) vs the normalized
potential barrier height.
e

f
f
ve

The QPLEoutput x(t) is sampled throughout an interva
(0,NTs) at

tk5

~2k11!p

2
2c

vs
, k50,1,2,...,2N21, ~27!

i.e., at times when the asymmetry effect induced by the s
nal presence is maximum,c being the~known! phase lag
introduced by the SR processor, and the time series@147#

xk5~21!kx~ tk!, k50,1,2,...,2N21, ~28!

is formed.
We shall first consider the case where both the ang

frequencyvs and the initial phasef of the signal are known
~coherent detection!. We assumef50 for simplicity.

A. Parametric strategy: Sample mean

In the parametric strategy we use the first moment~mean!
m of the samplesxk as a likelihood ratio

m5
1

2N (
k50

2N21

xk . ~29!

One accordingly adopts the decisiong1 ~asymmetrical distri-
bution, signal present! if and only if

m.G ~30!

and the decisiong0 ~symmetrical distribution, no signa
present! if and only if

m<G, ~31!

GPR being a suitable threshold. The detector’s performa
is described by thefalse-alarmandfalse-dismissalprobabili-
ties

FIG. 8. maxt@E(t)# at resonance (v̄s5p) vs the normalized po-
tential barrier height.
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a5Prob$m.Guno signal%, b5Prob$m<Gusignal%.
~32!

The stochastic variablesxk can be assumed as statistica
independent@148# and are identically distributed. Henc
@117#

a512FS G

A2Ns0
D , ~33!

b5FS G22NE1

A2Ns1
D , ~34!

where

E15E@xkusignal#, s1
25Var@xkusignal#,

s0
25Var@xkuno signal#,

F~x!5
1

A2p
E

2`

x

exp S 2
t2

2 Ddt. ~35!

In the Appendix we show that in the adiabatic assum
tion, this strategy is equivalent to the~optimum, strobed!
Neyman-Pearson ratio test performed on the output of the
processor. This supports the heuristic conclusion that
same strategy might be nearly optimum in thenonadiabatic
regime as well. The input SNR parametrized ROCs~12b vs
a! of the above-described SR detector are shown in Fig. 9
comparison with the ROCs of the ONPD applied to theinput
signal and noise mixture~coherent correlator!, displayed in
Fig. 10, shows an average uniform loss of approximatel
dB. As the coherent correlator can be cheaply implemen
using an analog multiplier, the above parametric
symmetry-breaking detector offersno apparent advantag
over direct ONPD application to the input signal and no
mixture.

FIG. 9. Receiver operating characteristics of the parametric
detector.
-

R
e

A

3
d

e

B. Nonparametric strategy: Sign counting

The second conceivable strategy is nonparametric~see
@117# for an abstract definition!. We now use the total num
ber N1 of positive samples as a likelihood ratio

N15 (
k50

2N21

U~xk!, ~36!

whereU( ) is Heaviside’s step function. One adopts the d
cision g1 ~asymmetrical distribution, signal present! if and
only if

N1.G ~37!

and the decisiong0 ~symmetrical distribution, no signa
present! if and only if

N1<G, ~38!

where G is a ~positive! integer threshold ~unilateral
symmetry-testing hypothesis@117#!. The detector’s perfor-
mance is described by the false-alarm and false-dismi
probabilities

a5Prob$N1.Guno signal%5I 1/2~G11,2N2G!, ~39!

b5Prob$N1<Gusignal%512I P1
~G11,2N2G!, ~40!

whereP15Prob$xk.0% andI p(x,y) is the incomplete Beta
function @146#. The corresponding ROCs, parametrized
terms of the input SNR, are shown in Fig. 11.

It is seen that the nonparametric~sign-counting! decision
rule performs onlyslightly worse ~less than 1 dB, on aver
age! than the parametric~mean! one. On the other hand, th
sign-counting strategy is computationallyvery cheapsince it
requires only binary and/or integer arithmetics. In the n
section we will show that the sign-counting detector can
implemented with little additional burden for the noncohe
ent case as well.

R FIG. 10. Receiver operating characteristics of the ONPD.
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C. Nonparametric noncoherent detection

The possibly simplest~nonparametric! detector for the
case where the initial phase of the signal is unknown~non-
coherent detector! is obtained by taking the largest sig
count~36! among those corresponding toNs different ~equi-
spaced! starting times in a half period of the sought sign
viz., using the likelihood ratio

N15 max
mP~0,Ns!

(
k50

2N21

UF ~21!kxS tk1
mTs

2Ns
D G . ~41!

For sufficiently largeNs , we might expect thesameperfor-
mance as in the known initial-phase case, i.e., some 4
worse than the known initial-phase ONPD~coherent cor-
relator!.

FIG. 11. Receiver operating characteristics of the nonparam
SR detector.
,

B

The ONPD for signals with unknown initial phase is th
noncoherent correlator@116,117#, ~NCC!, whose ROCs
shown in Fig. 12 display a loss of about 3 dB as compared
that of the coherent correlator. It is concluded that the n
coherent detector~41! is nearly as goodas the NCC, while
being computationally much cheaper~only binary and inte-
ger arithmetics required!. The likelihood ratio~41! can be
computed using, e.g., theparallel scheme shown in Fig. 13
which uses a single SR processor plus a sampling gat
shift register, andNs accumulators.

VI. CONCLUSIONS AND RECOMMENDATIONS

We presented a thorough evaluation in terms of ROCs
QPLE-SR-based detectors of weak time-harmonic signal
white Gaussian noise, where the signal-induced PDF as
metry is observed. This complements the study by Inchi

ic
FIG. 12. Receiver operating characteristics of the NCC.
FIG. 13. Block diagram of the noncoherent SR detector, with the oversampling factorNs .
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57 6477EVALUATION OF STOCHASTIC-RESONANCE-BASED . . .
and Bulsara@114#, who worked out the case where the outp
PSD is observed instead. We further showed that~for con-
tinuous observation! insertion of a SR preprocessor provid
no gain over the straightforward ONPD of the plain sign
and noise mixture.

Several directions for future research are suggested.
detector performance in non-Gaussian and/or nonstatio
noise should be investigated. A ROC analysis should be
ried out for detectors where the escape-time distribution
observed. Better analog-to-digital implementations could
studied.

We stress that SR detectors should be judged not only
the basis of ROCs, but also in terms of their computatio
complexity, in view of getting reasonable trade-offs betwe
statistical~detection! and computational~implementation! ef-
ficiency. In this connection, the applicability of SR-bas
detectors to chirping or Doppler-modulated signals, which
relevant in the context of gravitational wave physics and
which the optimum Neyman-Pearson approach is comp
tionally quite demanding@149,150#, might deserve further
study.
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APPENDIX: OPTIMUM PDF –SYMMETRY-BREAKING
DETECTION STRATEGY IN THE ADIABATIC

REGIME

In the adiabatic regime (Ts@TK) the random variables
xk5x(tk) are independent and identically distributed a
ut

na

ss
t

R-
ry
r-

is
e

n
l

n

s
r
a-

their joint PDF can be accordingly written, using Eq.~19!, as
follows:

w~x0 ,...,x2N21usignal!

5~C1!2N )
k50

2N21

expF axk
2

2
2

bxk
4

4
1Axk sin~vstk!

e2/2
G ,

~A1!

w~x0 ,...,x2N21uno signal!

5~C0!2N )
k50

2N21

expF axk
2

2
2

bxk
4

4

e2/2
G , ~A2!

C0 ,C1 being suitable normalization constants. The~loga-
rithm of the! likelihood ratio is therefore:

lnH w~x0 ,...,x2N21usignal!

w~x0 ,...,x2N21uno signal!J
5S C1

C0
D 2N

(
k50

2N21

xk sin~vstk!} (
k50

2N21

~21!kxk ,

~A3!

which, is just the sample mean~sufficient statistic!.
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