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Evaluation of stochastic-resonance-based detectors of weak harmonic signals
in additive white Gaussian noise

V. Galdi, V. Pierro, and I. M. Pinto
Dipartimento di Ingegneria dell'Informazione ed Ingegneria Elettrica, University of Salerno, via Ponte Don Melillo,
I-84084 Fisciano, Salerno, Italy
(Received 9 January 1997; revised manuscript received 6 February 1998

A thorough evaluation of stochastic resonance in the framework of statistical detection theory is presented
both as a nonlinear signal preprocessor and as a detector. The pertinent receiver operating characteristics are
compared with those of the known statistically optimum detector using extensive Monte Carlo simulations.
Parameter optimization and computational budget aspects are disd&5e63-651X98)08306-9

PACS numbegps): 05.40+j, 02.50~r, 84.40.Ua

[. INTRODUCTION detection experiments, with special reference to gravitational
waves, was suggested since the infancy of[$65]. A re-

The stochastic resonan¢8R) concept was introduced in markable body of analytical, numerical, analog-simulation,
the early 1980s by Benfil] as a typical feature of bistable and experimental results support the evidence of both power
[2] systems driven by an additiviel] mixture of a time- gain (at the signal frequengyand SNR gain in a variety of
harmonic[8] signal and a Gaussian whifd2] noise. For SR systems, including bistablsee, e.9.[106,107), thresh-

these systems the output signal-to-noise réiR) is coun-  ©0ld (see, e.g.[27]), and static nonlinear devic¢89). .
terintuitively found toincreaseupon increasing the input It should be mentioned that some results in the technical

noise level, up to @broad maximum. literature should be taken with caution, the reported SNRs

SR was subsequently found to occur in Schmitt trigger€ing €ither defined in nonstandard wags], badly com-
(threshold and hygteresi); systerf@2], monostable systegmgs puted[108], or glmost wreleyan@_:see the discussion [1109))
[23], threshold systems with a deterministic return to the resigrtuinvl\ilr?:gr Ssl?/gflelrr?setggttfr;hlzsggv%rlE];'inF;rr:getrrTaO;% tput
state[24], level crossing detecto(bCDs) [25-29, so-called g\ p oo inherently rathélt defined[107,113, except in the
nondynamical nonthreshold detectérandom-pulse genera-

: : g weak driving regime, where it has been rigorously proved
tors with exponentially input-dependent rgtg32-34, cha- .t even in SR systems the output SNR is always less than

otic systemg36-38, static memoryless nonlinear devices 4 input ong 115].

[39], bistable systems with a fluctuating barrier height and no - The fundamental question is whether SR could be used to
additive nois¢40], and everinear systems with multiplica-  constructbetter detectors, the benchmark being represented
tive noise[41]. As a result, in a few years SR emerged py the well-known(statistically optimurh Neyman-Pearson
gradually as a paradigm whose universal character wagetectorsONPDS for signals embedded in additive Gauss-
shown[42—-49 to be intimately related to the pervasivenessjan noise[116,117. The answer to this question can be ob-

of the fluctuation-dissipation theoref6]. tained by a comparison of the pertinent receiver operating
The SR paradigm has drawn considerable attention icharacteristic§ROCS9 [116,117.
such diverse fields as climatolodg7—-50; chemistry[51— Inchiosa and Bulsara pointed out this is$ti&4]. In con-

53]; laser physic§54—-56; neuroscience, including single- trast to earlier beliefs, they found that ROCs obtained from
neuron[57-60 and many-neuron model8§1-63; biophys-  the output of(single as well as multiple, coupleéirst-order
ics and physiology64—73; particle acceleratof&/6]; solid-  bistable systems driven by time-harmonic signals in additive
state physics, including bistable magnetic syst¢fi578,  white Gaussian noise were alwaysrsethan those obtained
electron paramagnetic resonari@®,80, ferroelectric§81]  from the input[118].
and ferromagnetic$82], fluorescencd83], Ising systems In this paper we go one step further by showing in Sec. IlI
[84—-87, Josephson junctioi88], superconducting quantum that applying the ONPD to theutputof a generalfirst-order
interference device loofd89,91], and kink-antikink systems nonlinear system consisting of a time-harmonic signal with
[92], Landau-Ginzburg model§93], mean-field models known frequency and initial phase in additive white Gauss-
[94,95, mesoscopic systen{96], spin waves[97], super- ian noise isstrictly equivalentto applying the ONPD to the
paramagnetic particld98,99, and tunnel diodegl00]; and  plain input signal and noise mixture. Thae gain should be
even sociologyf101], as witnessed by several topical meet- expected from using #irst-orde) SR signal preprocessor,
ings[102—104. The pertinent literature is indeed still in the although one might positively speculate that SR could be
exponentially growing stage, as can be seen from the biblioused torecoverin part the SNR degradation duedowanted
graphical database maintained by Gammaitnal. [151]. but otherwise unavoidable nonlinearities along the signal
The possible use of SR in connection witiveak signal  processing chaih114].
However, it might be worth looking at SR systems not as
signal preprocessors but as detectors where one searches for
*Electronic address: pinto@vaxsa.csied.unisa.it somecharacteristicSR signature depending on the presence
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of the signal. For the simplest SR systems studied in thisium point is a random variable whose md#mamers timg
paper, the chosen signature is thiene-harmoni¢ symmetry is given exactly by the double integril26]

breaking of the output probability density functigDF)

(see Sec. 1Y[119,123. For thesesymmetry-breaking detec- T
tors we introduce and characterize in terms of ROCs both K™ e?
parametric and nonparametric detection strategies, in Sec. V.
The main finding is that in the incohereainknowninitial
phase case, the non-parametric detector admits a simple
implementation whose performance is nearly as good as that
of the ONPD, with a substantial saving in computationalwhich can be evaluated under suitable approximations

f X"i“dy exg 2V(y)/€%]
0

X ﬁ/w exp[—2V(z)/€*]dZ, (6)

budget(see Sec. Vl [139,14Q. The simple estimate
Il. STOCHASTIC RESONANCE: HEURISTICS TK:@ exp 2_\20 (7)
a €

This section is intended as an introduction to the subject

and can be skipped by the more expert reader. We considergiovides a nice approximation in the useful range of param-

one-dimensional nonlinear stochastic system, described bgters[141].

the Langevin equation In the presence of both signal and noise, jumping between
the two potential wells is possible even for a subthreshold
input signal. It can be heuristically realized that, under suit-
able conditions, jumping mayjock to the time-harmonic

(1) forcing term. It was initially suggestdd] that such a behav-

x(0)=Xo, ior would result from the matching of the forcing peridg

=27/ wg to twice the Kramers time

X=— %( V(X)+A sin(wgt+ ¢)+ en(t),

whereV(x) is a quartic potential To~2T¢. ®)

2 4
V(X)=-a x +b X_, a,b>0, (2)  The original SR definitior(8), which resembles alassical
2 4 resonance, has suffered several criticisms. Gammaitoni and
. ) ) co-workers introducealternative definitions, more directly
having two stable stationary points gf,= = \a/b, an un-  interpretable as a bona fide resonafibé2,143.
stable one ax=0, and a barrier height
) lIl. OPTIMUM DETECTION AT THE OUTPUT
Vo 3 OF A SR DEVICE

Here we consider the strict detection probléime sought
The above quartic bistable potential Langevin equation willsignal is completely knownand formulate the optimum de-
henceforth be referred to as QPLE. The naig8) in Eq.(1)  tection strategy for continuous observation of the output of a
is assumed as Stationary, Zzero mean, White, and Gaussi@ﬁ,neral first-order nonlinear SyStem ConSIStIng of a time-

with harmonic signal with known frequency and initial phase in
additive stationary whitdE[n(t)n(t+ 7)]= &8(7)) noise (a
E[n(t)n(t+7)]=48(7). (4) class to which the QPLE belongwiz.,
The PDFp(x,t) of the stochastic processt) in Eq. (1) x=a(x)+s(t)+en(t), te[0T] )
is ruled by the Fokker-Planck equatigh26,127
X(0)=Xg.
P _ 9 |1dV(x) i Introducing ti i izati i i
= — g time discretization with step si2e one has
p X [ dx A sin(wgt+ @) p(x,t)]
62 (92 Xk+1_Xk:A[a(Xk)+Sk+ fnk]v k:O,l,...N_l,
+ 5 ooz P(X), _
2 9x? N=[T/A],
(5 T/l (10)
p(x,0)= 8(X—Xo). Xk=xX(kA), sc=s(kd), ne=n(kA).

The ONPD [116,117 for the set of observation,,
k=0,1,...N—1, is based on thenaximum likelihood ratio
test, viz.,

In the general caséA+#0, e#0) this equation cannot be
solved in the closed formi128]. In the absence of noise
(e=0) and with asubthreshold A<V,) signal,x(t) oscil-
lates forever in a neighborhood of either stable stationary I(Xo,... Xn_1)=T'=signal present,

point (no transition allowed In the presence of noise only (17
(A=0), the responsg(t) fluctuates in the neighborhood of 1(Xo,... Xn—1)<I'=no signal present,

X, jumping at random times between the two wells. The

first-passage time from either well to the unstable equilib-where
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P(Xg,... Xn—1|Signa) 1.00 T T T T T T
[(Xg,..o XnNot) = - , 12
(X N-1) P(Xg, ... Xn—_1/NO signa) (12 s a=b=1 .
p( ) being the joined PDF anH a suitable threshold. Using '
the Euler approximatioil44] for the involved PDFs, one L .
has[127] w
@ 060f —
pP(Xg,....Xn_1/NO signal 2 A i
f
p— [Xer 1~ X~ a(x,) A2 % 0.40 — m
— 2\ —N/2 _ =
=(2mA€°) kEo exp[ oA } 0 I |
(13 0.20 - .
P(Xg, ... Xn—1|signa) = (27rA €2) N2 i 1
N—1 0.00 L L
[Xis1— Xe—a(X) A —5,A]? -4.00 -2.00 0.00 2.00 4.00
X H expi — > . (19 X
k=0 2A€
FIG. 1. Stationary(steady-state output PDF relevant to the
Hence QPLE, in the absence of a signal.
. - ax’* bx* .
In[1(Xg,....XN)]= s kZO {SiXk+1— Xk—a(X ) A]—35.A}. >4 +AX sin(wgt + ¢)
(15) p(x,t)~C(t) exp 275 ,

19
Letting A— 0 and taking Eq(10) into account, Eq(11) can 19

be recast as C(t) now being a(time-dependeftnormalization factor.
Floquet theory confirms that an oscillating symmetry break-
ing of the PDF occurs at the same frequency of the driving

1 (7 1 Eg
s(t)z(t)dt=In I' + = —=signal present, . .
€ Jo (®)z(t) 2259 P signal forall values of the ratidl i/ Ty [134].

(16) In the following subsection we shall discuss in terms of
1 (7T 1E, _ ROCs detection algorithms based on the possibly simplest
s JO s(hz(t)dt<In I'+ 5 —=no signal present, PDF symmetry-breaking indicators, viz.,
where P+(t)=Pr0t{x(t)>0}=J p(x,t)dx (20)
0
-
z(t)=s(t) + en(t), Eszf s(t)dt. 17 and
0
The above decision rule reproduces the ONB@herent cor- E(t)=E[x(t)]= Jm X p(x,t)dx. (21)
relator[117]) applied to thenput signal plus noise mixture. —o

Thus, if the process is observed continuously, insertion of a . S
SR filter (or, more generally, a first-order nonlinear system In the absence of a signgl, = 0.5, E=0. Typical time evo-

doesnot improve the detection performance. lutions of P, andE, obtained from numerical Monte Carlo
[144] simulations, are displayed in Figs. 2 and 3. Irrespective
IV. PDE SYMMETRY BREAKING of the initial conditions, after a short transidiith P, andE

lock to the signal, but for soméonstan phase lad 145],
In the absenceA=0) of the time-harmonic driving sig- which vanishes in the adiabatic limit.
nal, the steady-state solution of E§) is [126]

QPLE parametrization, resonant features, and optimization

ax’ bx* . - o
> T Before proceeding further, to optimize performance, it is
Psd X)=C ex . , (18  convenient to introduce dimensionless parameters and vari-
€2 ables as follows: The normalized angular frequency is
shown in Fig. 1, whereC is a normalization constant. The ws=wgTk, (22

two peaks centered af, have equal widths, which increase

with the noise rms value. Switching the sinusoidal forcing The normalized potential-barrier height is

term on produces modulated-in-time symmetry breaking

the PDF. This is most easily described in the asymptotic Vo= 0 23)
adiabaticlimit T Ty, where Eq(5) has the solutiofi126] 0 e
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FIG. 2. Time behavior of the asymmetry indicat®r, , in the

presence of an input harmonic signal, for three different initial con-
ditions. The vertical dotted lines correspond to the zeros of the inpuY

signal.

and the signal-to-noise ratiR is

E INT.A2
R: \/:ZS: —S,
€ 2€

E¢ being the signal energy and the number of observed
cycles,

(24)

X

L
€TK

t . J—
= t=—, a=aTx=V27 exp(2Vy).

Tk

Equation(1) can be recast as

_— =
. — a — (£ — —
X=ax— — x>+ R \/— sin(wg+ ¢)+n(t),
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FIG. 3. Time behavior of the asymmetry indicaty in the
presence of an input harmonic signal, for three different initial con-
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FIG. 4. ma{P.(t)] frequency response of the SR detector for
arious values of the SNR. Dashed curves refer to the adiabatic
approximation.

(25
X(0)=Xq.

The (steady-statevalues of maxP, (t)] and ma}E(t)], are
displayed in Figs. 4 and 5, respectively, as functions of the
normalized(angulaj frequencywsTy , for several values of

R at fixedVy=0.25. Both show a resonant behavior, being
maximum at

ws~m, i.e., Tg~2Tg, (26)
which is the original Benzi SR conditiof8). The numerical
results merge smoothly into their adiabatic limitscastends

to zero, as seen in Figs. 4 and 5. The phase lag between the

maxima ofP_ (t), E(t), and the input signal turns out to be
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FIG. 5. mayE(t)] frequency response of the SR detector for

ditions. The vertical dotted lines correspond to the zeros of the inputarious values of the SNR. Dashed curves refer to the adiabatic

signal.

approximation.
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FIG. 6. Phase lag of mg. (t)]maxE(t)] vs the normalized FIG. 8. mayE(t)] at resonanced,=7) vs the normalized po-
angular frequency. tential barrier height.
the same, is almost independent of Revalue (see Fig. 6, The QPLEoutput Xt) is sampled throughout an interval
and vanishes in the adiabatic limit. ChangMgaffects only  (0NT,) at
the resonance peak height, as shown in Figs. 7 and 8.
For the best PDF symmetry-breaking detection, one (2k+ 1)
should look for the largest possible value of piBx ] and 2
max[E]. Accordingly, for a given signal frequenays and ty=———, k=0,1,2,...,. N-1, (27)

noise power spectral densigf, one should enforce E¢26) @s

and determine/, accorc_jing to Figs._ 7 and 8. Then, using i.e., at times when the asymmetry effect induced by the sig-
Egs.(3) and(7), the optimum potential parameteaisb can | presence is maximumy being the (known) phase lag

be readily obtained. introduced by the SR processor, and the time s¢(id3]

V. PDF SYMMETRY-BREAKING DETECTORS x=(—1D)*(ty), k=0,1,2,...N—1, (28)

In this section we develop a quantitative analysis ofig tormed.
QPLE-related PDF symmetry-breaking detectors in terms of v ghall first consider the case where both the angular

their ROCs. We assume that the system parameters hayg,,,encyw, and the initial phase of the signal are known
been optimized as shown in the preceding section. (coherent detectionWe assumab=0 for simplicity.

0.60 T T T T T | T T T )
A. Parametric strategy: Sample mean
i s =7  N=100 i In the parametric strategy we use the first momergan
0.58 - SNR=1 5'(0 5)3 - wn of the samplex, as a likelihood ratio
| | 1 N1
— > X (29)

M:
0.56 M\\_\@ | e
- B/Q\E\B—\S\S_B\e . One accordingly adopts the decisigp (asymmetrical distri-
054 M bution, signal presepif and only if
B HN—AM ] M>F (30)
A

0.52 | SNR =15 — and the decisiony, (symmetrical distribution, no signal
present if and only if

maxt[P_,_(t)]

0.00 0.2 . ‘ ) .
0 0.40 0.60 0.80 1.00 u<T, (31)
Vo
I' e R being a suitable threshold. The detector’s performance
FIG. 7. maP.(t)] at resonanceds=7) vs the normalized is described by th&alse-alarmandfalse-dismissaprobabili-

potential barrier height. ties
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False Alarm Probability False Alarm Probability

FIG. 9. Receiver operating characteristics of the parametric SR~ T |G- 10- Receiver operating characteristics of the ONPD.

detector. ) ] )
B. Nonparametric strategy: Sign counting

a=Prou>T|no signa}, B=Produ<I|signa}. The second conceivable strategy is nonparameétee
(32 [117] for an abstract definition We now use the total num-

ber N, of positive samples as a likelihood ratio
The stochastic variableg, can be assumed as statistically

independent{148] and are identically distributed. Hence N
[117] No= 2 U0, (36)
a=1—F r (33) whereU( ) is Heaviside’s step function. One adopts the de-
V2Nog ' cision y; (asymmetrical distribution, signal presgiift and
only if
I'-2NE
B=F —1) (34) N,>T (37
\/ZN(T]_
and the decisiony, (symmetrical distribution, no signal
where present if and only if
E,=E[x(signall, o2=Var x,/signal, N, <T, 38)
o5=Varxno signal, where T is a (positive integer threshold (unilateral
symmetry-testing hypothes{417]). The detector's perfor-
1 X t2 mance is described by the false-alarm and false-dismissal
F(x :—J ex (——)dt. 35 robabilities
(X) 2. P72 ( P

=ProgdN,>T i =lp(I'+1,2N-T
In the Appendix we show that in the adiabatic assump- a=ProffN..>T|no signa}=1 ' ), (39

tion, this strategy is equivalent to theptimum, strobeqd i

Neyman-Pearson ratio test performed on the output of the SR~ 8= Prol{N, <T[signa}=1—1p (I'+ 1L,2N-T'), (40)
processor. This supports the heuristic conclusion that the

same strategy might be nearly optimum in thenadiabatic ~ whereP , =Prol{x,>0} andl,(x,y) is the incomplete Beta
regime as well. The input SNR parametrized RQCs Bvs  function [146]. The corresponding ROCs, parametrized in
«a) of the above-described SR detector are shown in Fig. 9. Aerms of the input SNR, are shown in Fig. 11.

comparison with the ROCs of the ONPD applied to ithygut It is seen that the nonparametf&ign-counting decision
signal and noise mixturécoherent correlatgy displayed in  rule performs onlyslightly worse (less than 1 dB, on aver-
Fig. 10, shows an average uniform loss of approximately &ge than the parametriimear) one. On the other hand, the
dB. As the coherent correlator can be cheaply implementedign-counting strategy is computationailgry cheagsince it
using an analog multiplier, the above parametric SRrequires only binary and/or integer arithmetics. In the next
symmetry-breaking detector offerso apparent advantage section we will show that the sign-counting detector can be
over direct ONPD application to the input signal and noiseéimplemented with little additional burden for the noncoher-
mixture. ent case as well.
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FIG. 11. Receiver operating characteristics of the nonparametric

SR detector. FIG. 12. Receiver operating characteristics of the NCC.

C. Nonparametric noncoherent detection The ONPD for signals with unknown initial phase is the
' noncoherent correlatof116,117, (NCC), whose ROCs
The possibly simplestnonparametric detector for the shown in Fig. 12 display a loss of about 3 dB as compared to

case where the initial phase of the signal is unkndnon-  that of the coherent correlator. It is concluded that the non-
coherent detectpris obtained by taking the largest sign coherent detectofl) is nearly as goodas the NCC, while
count(36) among those corresponding iy different(equi-  being computationally much cheap@nly binary and inte-
spaced starting times in a half period of the sought signal, ger arithmetics required The likelihood ratio(41) can be
viz., using the likelihood ratio computed using, e.g., tharallel scheme shown in Fig. 13,
which uses a single SR processor plus a sampling gate, a

2N-1
mT, shift register, andNg accumulators.
N,= max >, u[(—l)kx(tk+—3”. (41) 9 s
me(0Ng) k=0 2N
VI. CONCLUSIONS AND RECOMMENDATIONS
For sufficiently largeNg, we might expect theameperfor- We presented a thorough evaluation in terms of ROCs of

mance as in the known initial-phase case, i.e., some 4 dBRPLE-SR-based detectors of weak time-harmonic signals in
worse than the known initial-phase ONPDoherent cor- white Gaussian noise, where the signal-induced PDF asym-

COUNTER

PROCESSOR (INVERTER )

relato. metry is observed. This complements the study by Inchiosa
LS I =] COUNTER
X1 | L»{ COUNTER ll
S
H Signal Present
! ‘ ‘ M —
F :
' . A __l— No Signal Present
: X -

l COUNTER
=XNs

] )
Signal + Noise !
9 SR x(t) SAMPLER 1
I
I
]
]
3
1
t

FIG. 13. Block diagram of the noncoherent SR detector, with the oversampling fégtor
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and Bulsar4114], who worked out the case where the outputtheir joint PDF can be accordingly written, using Efj9), as
PSD is observed instead. We further showed tfat con-  follows:

tinuous observationinsertion of a SR preprocessor provides
no gainover the straightforward ONPD of the plain signal
and noise mixture.

Several directions for future research are suggested. SR-
detector performance in non-Gaussian and/or nonstationary
noise should be investigated. A ROC analysis should be car-
ried out for detectors where the escape-time distribution is
observed. Better analog-to-digital implementations could be
studied.

We stress that SR detectors should be judged not only on
the basis of ROCs, but also in terms of their computational
complexity, in view of getting reasonable trade-offs between
statistical(detection and computationdimplementation ef-
ficiency. In this connection, the applicability of SR-based
detectors to chirping or Doppler-modulated signals, which is
relevant in the context of gravitational wave physics and for
which the optimum Neyman-Pearson approach is computa-

tionally quite demandind149,150, might deserve further ¢ c. peing suitable normalization constants. Ttega-
study. rithm of the likelihood ratio is therefore:

In[ ]
2N 2N—-1 2N-1

> X sin(ogd)x > (—1)kx,,
k=0 k=0

W(Xg,... Xon_1|Signa)

2 4
axg bxy

2 2 + AXy Sin(wstk)

2N—-1

=y I
k=0

&Xp €212 '

(A1)

W(Xg, ... Xon_1/NO signa)

2 4
ax bxg

2N-1

=(Co)™ kljo exp (A2)

€12 '
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In the adiabatic regimeT>Tg) the random variables
x,=X(t,) are independent and identically distributed andwhich, is just the sample medgufficient statistig

We thank Dr. L. GammaitoniUniversity of Perugia,
Italy) for several stimulating discussions.

APPENDIX: OPTIMUM PDF —SYMMETRY-BREAKING
DETECTION STRATEGY IN THE ADIABATIC

REGIME (A3)

[1] R. Benziet al, J. Phys. Al14, L453(1981).
[2] SR occurs in multistable systems as wWél|, which exhibit
severalmaxima in the output SNR curve vs noise.

[14] L. Gammaitoniet al., Phys. Rev. A40, 2114(1989.
[15] T. Zhou and F. Moss, Phys. Rev. 44, 4255(1990.
[16] L. Gammaitoniet al., Phys. Rev. Lett71, 3625(1993.

[3] J. M. G. Vilar and J. M. Rubi, Phys. Rev. Leff8, 2882
(1997.

[4] Bistable systems with multiplicative noise with or without
additive noise have been shown to exhibit SR5r-7].

[5] M. I. Dykmanet al, Phys. Rev. A46, R1713(1992.

[6] L. Gammaitoniet al, Phys. Lett. A195 116(1994).

[7] L. Gammaitoniet al, Phys. Rev. E49, 4878(1994). [19]

[8] Extensions of the SR concept to transient, wideband signalg20]
have been discussed in terms of Kullbackd and Shan-  [21]
non’s (mutua) input-output entropyf10]. The SR-enhanced
channel capacity of a simple binary channel with level cross-
ing detector has been studied|ihd].

[9] A. Neimanet al, Phys. Rev. Lett76, 4299(1996.

[10] A. R. Bulsara and A. Zador, Phys. Rev 58, R2185(1996.

[11] F. Chapeau-Blondeau, Phys. Revbg 2016(1997).

[12] An extension to coloredcorrelated, Gaussiamoise is pos-
sible[13] and has been discussed by several auttets17.
Also, SR in bistable systems affected byf 18], narrow-
band[19], monochromati¢20], and chaos-relatd@1] noises
has been studied.

[13] P. Jung and H. Risken, Z. Phys.@, 367 (1985.

[17]

(18]

[22]
[23]
[24]
[25]

[26]

[27]

P. Héhggi et al, in Proceedings of the NATO Advanced Re-
search Workshop on Stochastic Resonance in Physics and
Biology (Ref.[102]), p. 25.

L. B. Kiss et al, in Proceedings of the NATO Advanced Re-
search Workshop on Stochastic Resonance in Physics and
Biology (Ref.[102]), p. 451.

R. Li et al, Phys. Rev. B51, 3964(1995.

R. Li et al, Commun. Theor. Phy®4, 19 (1995.

E. Ippenet al, in Proceedings of the NATO Advanced Re-
search Workshop on Stochastic Resonance in Physics and
Biology (Ref.[102]), p. 437.

S. Fauve and F. Heslot, Phys. LE%A, 5 (1983.

N. G. Stockset al, J. Phys. A26, L385 (1993.

K. Wiesenfeldet al, Phys. Rev. Lett72, 2125(1994).

Z. Gingl et al, in International Workshop on Fluctuation in
Physics and Biology: Stochastic Resonance and Related Phe-
nomena, Elba, 1994Ref.[103]), p. 795.

P. Jung and G. Mayer-Kress, International Workshop on
Fluctuation in Physics and Biology: Stochastic Resonance
and Related Phenomena, Elba, 19%%f.[103]), p. 827.

K. Loerinczet al, Phys. Lett. A224, 63 (1996.



6478 V. GALDI, V. PIERRO, AND I. M. PINTO 57

[28] Z. Gingl et al, Europhys. Lett29, 191 (1995. [69] D. T. Kaplanet al, Phys. Rev. Lett76, 4074(1996.
[29] SR in multithreshold devicel80] is synonomous with dith-  [70] J. J. Collinset al, J. Neurophysiol76, 642 (1996.
ering in analog-to-digital convertef81]. [71] R. P. Morse and E. F. Evans, Nat. Méh.Y.) 2, 928(1996.
[30] L. Gammaitoni, Phys. Lett. 208 315(1995. [72] J. J. Collinset al., Nature(London 383 770 (1996.
[31] L. Gammaitoni, Phys. Rev. B2, 4691(1995. [73] P. Cordoet al, Nature(London) 383 769(1996.
[32] S. M. Bezrukov and I. Vodyanoy, Natuteondon 385, 319 [74] M. Riani and E. Simonotto, Phys. Rev. LetR, 3120(1994.
(1997. [75] E. Simonottoet al, Phys. Rev. Lett78, 1187(1996.
[33] S. M. Bezrukov and I. Vodyanoy, Natuteondor) 386, 738 [76] M. Bai et al, Phys. Rev. A55, 3493(1997.
(1997). [77] A. N. Grigorenko and P. I. Nikitin, IEEE Trans. MagB1,
[34] It has been argued that these systems could describe biomem- 2491 (1995.
brane specific-ion chann€]85]. [78] A. N. Grigorenko and P. I. Nikitin, Appl. Surf. ScB2, 466
[35] S. M. Bezrukov and I. Vodyanoy, Natuteondon 378 362 (1996.
(1995. [79] L. Gammaitoniet al, Phys. Rev. Lett67, 1799(1991J).
[36] V. S. Anishchenkeet al, Int. J. Bifurcation and Chad® 397 [80] L. Gammaitoniet al, Mod. Phys. Lett. B6, 197 (1992.
(1992. [81] A. E. Dubinov, Izv. Ross. Akad. Nauk, Ser. Fig0, 76
[37] A. Crisantiet al,, J. Phys. A27, L597 (1994. (1996.

[38] V. S. Anishchenkeet al, in Proceedings of the NATO Ad- [82] A. Perez-Madrid and J. M. Rubi, Phys. Rev.H, 4159
vanced Research Workshop on Stochastic Resonance in (1995,

Physics and BiologyRef. [102]), p. 183. [83] C. Suet al, Z. Naturforsch. Teil A52A, 127 (1997).
[39] F. Chapeau-Blondeau and X. Godivier, Phys. Rev5% [84] Z. Neda, Phys. Rev. 1, 5315(1995.

1478(1997). _ [85] J. J. Brey, A. Prados, Phys. Lett. 26, 240 (1996.
[40] U. Zurcher and C. R. Doering, Phys. Rev4l, 3862(1993. [86] Z. Neda, Phys. Lett. 210 125(1996
[41] V. Berdichevsky and M. Gitterman, Europhys. L&6, 161 [87] Sl W Si,deset é| J -Appl Phys81, 5597(1990

(1996.
- . [88] A. K. Chattahet al, Mod. Phys. Lett. B10, 1095(1996.
[42] M. I. Dykman et al, Pis'ma Zh. Eksp. Teor. Fiz52, 780 [89] A. Hibbs et al, J. Appl. Phys77, 2582(1995.

(1990 [ JETP Lett.52, 141(1990]. o0l R R e e 108 (100
[43] M. I. Dykmanet al, Phys. Rev. Lett68, 2985 (1992. [90] R. Rouseet al, Appl. Phys. Lett66, 108 (1995.
[91] I. K. Kaufmanet al, Phys. Lett. A220, 219 (1996.

[44] M. I. Dykmanet al, Phys. Lett. A180, 332(1993. .
[45] M. I. Dykman et al, in International Workshop on Fluctua- 92 F. Marchesongt al, Phys. Rev. Lett76, 2609(1996.
193] R. Benziet al, J. Phys. A18, 2239(1985.

tion in Physics and Biology: Stochastic Resonance and Re

lated Phenomena, Elba, 199Ref.[103]), p. 661. [94] M. Morillo et al,, Phys. Rev. 52, 316(1995.
[46] L. Landau and E. LifshitzPhysique StatistiquéMir, Mos- [95] J. M. Casado and M. Morillo, Phys. Rev.52, 2088(1995.
cow, 1984, Sec. 124. [96] F. Marchesoni, inProceedings of the NATO Advanced Re-
[47] R. Benziet al, Tellus34, 10 (1982. search Workshop on Stochastic Resonance in Physics and
[48] R. Benziet al, SIAM (Soc. Ind. Appl. Math.J. Appl. Math. Biology (Ref. [102]), p. 247.
43, 565(1983. [97] E. Reiboldet al, Phys. Rev. Lett78, 3101(1997.
[49] C. Nicolis, Tellus34, 1 (1982. [98] Y. L. Raikher and V. I. Stepanov, Phys. Rev. 3, 3493
[50] G. Matteucci, Climate Dyn3, 179 (1989. (1995.
[51] W. Hohmannet al, J. Phys. Cheml00, 5388(1996. [99] T. F. Ricci and C. Scherer, J. Stat. Phg8§, 803 (1997).
[52] M. L. Dykmanet al, J. Chem. Physl03 966 (1995. [100] R. N. Mantegna and B. Spagnolo, Phys. Rev4% R1792
[53] D. S. Leonard and L. E. Reichl, Phys. Rev.4B, 1734 (19949.
(1994. [101] P. Babinec, Phys. Lett. 225 179 (1997.
[54] B. McNamaraet al, Phys. Rev. Lett60, 2626(1988. [102] Proceedings of the NATO Advanced Research Workshop on
[55] G. Vemuri and R. Roy, Phys. Rev. 39, 4668(1989. Stochastic Resonance in Physics and Biolpgy Stat. Phys.
[56] B. Jost and B. Saleh, Opt. Le1, 287 (1996. 70, (1/2) (1993)].
[57] X. Peiet al, Phys. Lett. A206, 61 (1995. [103] International Workshop on Fluctuation in Physics and Biol-
[58] P. Jung, Phys. Rev. B0, 2513(1994. ogy: Stochastic Resonance and Related Phenomena, Elba,
[59] A. Longtin, in International Workshop on Fluctuation in 1994[ Nuovo Cimento D17, (7—8 (1995)].
Physics and Biology: Stochastic Resonance and Related Ph¢104] Proceedings of the Third Technical Conference on Nonlinear
nomena, Elba, 1994Ref.[103]), p. 835. Dynamics (Chaos) and Full Spectrum ProcesdiatP, New
[60] A. R. Bulsaraet al,, Phys. Rev. 49, 4989(1994). York, 1995.
[61] P. Jung and G. Mayer-Kress, Phys. Rev. L&, 2130 [105] L. Gammaitoniet al., Phys. Lett. A142 59 (1989.
(1995. [106] A. K. Chattahet al, Mod. Phys. Lett. BL0O, 1085(1996.
[62] M. Morillo et al, Phys. Rev. B52, 316 (1995. [107] P. Jung and P. Hagi, Phys. Rev. A44, 8032(1991).
[63] D. R. Chialvoet al, Phys. Rev. B55, 1798(1997. [108] Gong DeChunet al, Phys. Rev. A46, 3243 (1992; 48,
[64] J. Douglaset al, Nature(London 365 337 (1993. 4864E) (1993.
[65] M. Stemmleret al, Science269, 1877(1995. [109] M. E. Inchiosa and A. R. Bulsara, Phys. Rev.58, 327
[66] F. Chapeau-Blondeaet al, Phys. Rev. E53, 1273(1996. (1995.
[67] A. Longtin and K. Hinzer, Neural Compug, 215(1996. [110] As an example, the SNR enhancement reportefRih28|
[68] J. E. Levin and J. P. Miller, NaturéLondon 380, 165 occurs at relatively largénput SNR values(D<A, in the

(1996. notation of[27,28)), well within the capabilities of standard-



57 EVALUATION OF STOCHASTIC-RESONANCE-BASE . . . 6479

detection techniques, and is thus almost irrelevant from the the stable-well populations, which was solved under the
viewpoint of signal detection. weak-signal and adiabatic approximations. The original
[111] An infinite output-SNR system has been describefilit?]. master-equation adiabatic approdd29] was subsequently
[112] J. M. G. Vilar and J. M. Rubi, Phys. Rev. Leff7, 863 extended to the nonlineatand/or weak noige case in
(1996. [130,131. Time-dependent perturbation-expansion-based ap-
[113] In nonlinear systems there is no clear-cut definition of the proximate solutions were worked out t32,133. A rigor-
noise backgroundno superposition In [114] the (discrete ous approach, based on Floguet theory, was developed by P.
output spectral amplitude is used to estimate the output Jung and co-workergl34—-138. More recently, an efficient
power spectral densityPSD. The noise power within the path-integral solution technique was applied 106]. An ex-
(known) spectral bin of the signal is estimated by taking the act solution of Eq(5) is available for the special case of a
(average of the total (signal and noisepower several bins piecewise constar{tectangular we)l potential[137,138.
away. The signal power is then obtained by subtracting thg129] B. McNamara and K. Wiesenfeld, Phys. Rev.38, 4854
noise power from the totalsignal and noisepower in the (1989.
signal bin. [130] H. Ganget al, Phys. Lett. A172, 21 (1992.
[114] M. Inchiosa and A. R. Bulsara, Phys. Rev.33, R2021 [131] N. G. Stocks, ininternational Workshop on Fluctuation in
(1996. Physics and Biology: Stochastic Resonance and Related Phe-
[115] M. de Weese and W. Bialek, imternational Workshop on nomena, Elba, 1994Ref.[103]), p. 925.
Fluctuation in Physics and Biology: Stochastic Resonanceg132] R. F. Fox, Phys. Rev. 89, 4148(1989.
and Related Phenomena, Elba, 19®kef.[103]), p. 733. [133] C. Presillaet al, Phys. Rev. A40, 2105(1989.
[116] C. W. Helstrom,Statistical Theory of Signal Detectigfer-  [134] P. Jung and P. Hagi, Europhys. Lett8, 505 (1989; Phys.
gamon, New York, 1968 Rev. A41, 2977(1990.
[117] B. Levine, Fondements Theetiques de la Radiotechnique [135] P. Jung, Z. Phys. B6, 521(1989.
Statistique(Mir, Moscow, 1976. [136] P. Jung, Phys. Ref234, 175(1993.
[118] The performance loss was found to decrease by increasingl37] V. Berdichevsky and M. Gitterman, J. Phys. 29, L447
the number oficoupled nonlinear elementgl14]. (1996.
[119] Other choices are possible. An alternative definition of SR in[138] V. Berdichevsky and M. Gitterman, J. Phys. 29, 1567
terms of residence-time distributions was introducedL20]. (1996.

This definition seems more general since it covers casefl39] L. Ramirez-Piscinat al, Phys. Rev. A40, 2120(1989.
whereno PDF simmetry breaking occufd21] (e.g., SR in  [140] R. S. Larson and M. D. Kostin, J. Chem. Phy®, 4821

linear systems with multiplicative noigé1]). (1978.
[120] T. Zhouet al, Phys. Rev. A42, 3161(1990. [141] TheT estimate7) is exactly twice that introduced by Benzi
[121] L. Gammaitoniet al, in International Workshop on Fluctua- [1]. The latter, however, provides a good approximation only
tion in Physics and Biology: Stochastic Resonance and Re- in the high-barrier asymptotic limite— 0. For finite ¢, the
lated Phenomena, Elba, 199Ref.[103]), p. 785. first-order correction is availabl@40]. It can be verified that
[122] LCDs will not be discussed here, since, despite a renewed Eq. (7) provides a good trade-off between ease and accuracy
SR-related popularity, they are pretty old23] and have in the (finite) potential barrier height range of interest.

been well understood since the early 1968, e.g.[124]), [142] L. Gammaitoniet al, Phys. Rev. Lett74, 1052(1995.
including the study of jittekzero-crossing noisewhich has  [143] A. R. Bulsara and L. Gammaitoni, Phys. Tod49 (3), 39

been curiously overlooked in many recent papers on the sub- (1996.
ject. LCD parameter optimization has been discussed irf144] P. E. Kloeden and E. PlateNumerical Solution of Stochas-
[125]. tic Differential EquationgSpringer, New York, 1991

[123] S. O. Rice, Bell Syst. Tech. 23, 282(1944); 24, 46 (1945. [145] L. Gammaitoniet al, Phys. Lett. A158 449 (1991).
[124] D. Middleton, Statistical Communication TheofMicGraw-  [146] |. S. Gradsteyn and |. M. RyzhiKlable of Integrals, Series

Hill, New York, 1960. and Productsg/Academic, New York, 1976
[125] P. Jung, Phys. Lett. 207, 93 (1995. [147] In the presence of noise only, the random variallebave
[126] C. W. GardinerHandbook of Stochastic Methods for Phys- the same distribution as thet,).
ics, Chemistry and Natural SciencéSpringer-Verlag, Ber- [148] We checked via numerical simulations that the correlation is
lin, 1983. negligible in the parameter range of interest.
[127] H. Risken, The Fokker-Planck EquatioiSpringer-Verlag, [149] T. A. Apostolatos, Phys. Rev. B4, 2421(1996.
Berlin, 1984. [150] B. F. Schutz, Max Planck Institute Report No. MPQ-185,
[128] Several techniques have been envisaged to solvésEdhe 1997 (unpublishegl

problem was recast if129] in terms of a master equation for [151] L. Gammaitoniet al,, http://www.pg.infn.it.sr



