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This paper shows how adaptive systems can learn to add ansystems with nonzero-noise optima may be the rule rather
optimal amount of noise to some nonlinear feedback systems.than the exception. Fig. 1 shows how uniform pixel noise
Noise can improve the signal-to-noise ratio of many nonlinear can improve our subjective perception of an image. A small

dynamical systems. This “stochastic resonance” (SR) effect occurs . . L
in a wide range of physical and biological systems. The SR level of noise sharpens the image contours and helps fill in

effect may also occur in engineering systems in signal processing, features. Too much noise swamps the image and degrades
communications, and control. The noise energy can enhance theits contours.
faint periodic signals or faint broadband signals that force the  Stochastic resonancéSR) [11]-[13], [21], [23], [26],

dynamical systems. Most SR studies assume full knowledge o
a system’s dynamics and its noise and signal structure. Fuzzyisg]’ [80], [89], [128], [161], [162], [181], [185], [186],

and other adaptive systems can learn to induce SR based only[193]a [243] occurs when noise enhances an external forcing
on samples from the process. These samples can tune a fuzzgignal in a nonlinear dynamical system. SR occurs in a
system’'s if-then rules so that the fuzzy system approximates thesignal system if and only if the system has a nonzero
dynamical system and its noise response. The paper derives the SR ;ise optimum. The classic SR signature is a signal-to-

optimality conditions that any stochastic learning system should . . . .
try to achieve. The adaptive system learns the SR effect as the10!1S€ ratio (SNR) that is not monotone. Fig. 2 shows the

system performs a stochastic gradient ascent on the signal-to- SR €effect for the popular quartic-bistable dynamical system
noise ratio. The stochastic learning scheme does not depend on[13], [26], [179]. The SNR rises to a maximum and then

a fuzzy system or any other adaptive system. The learning procesga||s as the variance of the additive white noise grows. More

is .slow and noisy and. can require heayy computation. Robust complex systems may have multimodal SNR’s and so show
noise suppressors can improve the learning process when we can

estimate the impulsiveness of the learning terms. Simulations testStochastic “multiresonance” [79], [240].
this SR learning scheme on the popular quartic-bistable dynamical SR holds promise for the design of engineering systems
system and on other dynamical systems. The driving noise typesn a wide range of applications. Engineers may want to

range from Gaussian white noise to impulsive noise to chaotic shape the noise background of a fixed signal pattern to
noise. Simulations suggest that fuzzy techniques and perhaps other - .
adaptive “black box” or “intelligent” techniques can induce SR exploit the SR effect. Or they may want to adapt their

in many cases when users cannot state the exact form of theSignals to exploit a fixed noise background. Engineers now
dynamical systems. The appendixes derive the basic additive fuzzyadd noise to some systems to improve how humans perceive
system and the neural-like learning laws that tune it. signals. These systems include audio compact discs [150],
Keywords—Adaptive signal processing, dynamical systems, analog-to-digital devices [10], video images [222], schemes

fuzzy systems, neural networks, noise processing, robust statisticsfor visual perception [215], [216], [228], and cochlear im-
stochastic resonance. o

plants [178], [182]. Some control and quantization schemes

add a noise-like dither to improve system performance [10],
|. STOCHASTIC RESONANCE AND ADAPTIVE [147], [150], [198], [222]. Additive noise can sometimes
FUNCTION APPROXIMATION stabilize chaotic attractors [16], [77], [1L68]. Noise can also

Noise can sometimes enhance a signal as well as corrupiMProve human tactile response [48], muscle contraction
it. This fact may seem at odds with almost a century of [42], and coordination [49]. This suggests that SR designs
effort in signal processing to filter noise or to mask or May improve how robots grasp objects [51] or balance
cancel it. But noise is itself a signal and a free source of themselves. SR designs might also improve how virtual or
energy. Noise can amplify a faint signal in some feedback augmented reality systems [32], [106] can create or enhance
nonlinear systems even though too much noise can swamghe sensations of touch and balance.
the signal. This implies that a system’s optimal noise level SR designs might lead to better schemes to filter or

need not be zero noise. It also suggests that nonlinear signaMultiplex the faint signals found in spread spectrum com-
munication systems [71], [227]. These systems transmit and
Manuscript received November 1, 1997; revised April 17, 1998. detect faint signals in noisy backgrounds across wide bands
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Angeles, CA 90089-2564 USA. based crosstalk noise found in cellular systems [142], [229],
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Fig. 1. Uniform pixel noise can improve the subjective response of our nonlinear perceptual
system. The noise gives a nonmonotonic response: a small level of noise sharpens the image features
while too much noise degrades them. These noisy images result when we apply a pixel threshold to
the popular “Lena” image of signal processing [187}= g((x+n)—©) whereg(z) = 1if 2 > 0

andg(xz) = 0 if < 0 for an input pixel valuer € [0, 1]and output pixel valug € {0,1}. The

input image’s gray-scale pixels vary from zero (black) to one (white). The threshéd=s0.05.

We threshold the original “Lena” image to give the faint image in (a). The uniform nolses mean

my, = —0.02 for images (b)—(d). The noise varianed grows from (b)—(d).s2 = 1.67 x 10~3

in (b), 2 = 2.34 x 10~2 in (c), ando? = 1.67 x 10~ in (d).
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Fig. 2.  The nonmonotonic signature of stochastic resonance. The graph shows the smoothed output
SNR of a quartic bistable system as a function of the standard deviation of additive white Gaussian
noisen. The vertical dashed lines show the absolute deviation between the smallest and largest
outliers in each sample average of 20 outcomes. The system has a nonzero noise optimum and
thus shows the SR effect. The noisy signal-forced quartic bistable dynamical system has the form
& = f(x)+s(t) +n(t) = x — 2> + e sinwot +n(t). The Gaussian noise(t) adds to the external
forcing narrowband signal(t) = ¢ sinwyt. Other systems can use multiplicative noise [9], [27],

[671, [74], [78], [83] or use non-Gaussian noise [36], [38], [39], [79], [206].

The study of SR has emerged largely from physics and systems [13]. Scientists soon explored SR in climate
biology. The awkward term “stochastic resonance” stems models [195] to explain how noise could induce periodic
from a 1981 article in which physicists observed “the ice ages [11], [12], [193], [194]. They conjectured that
cooperative effect between internal mechanism and theglobal or other noise sources could amplify small periodic
external periodic forcing” in some nonlinear dynamical variations in the Earth’s orbit. This might explain the
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observed 100000 year primary cycle of the Earth’s ice in the appendixes use input—output data from the sampled
ages. This SR conjecture remains the subject of debatenoisy dynamical system. The rule patches move quickly to
[73], [194], [245]. Physicists have since found stronger cover optimal or near-optimal regions of the function (such
evidence of SR in ring lasers [170], [236], threshold as its extrema). Experts can also state verbal if—then rules in
hysteretic Schmitt triggers [69], [171], Chua’s electrical some cases and add them to the fuzzy patch covering. These
circuit [4], [5], bistable magnetic systems [97], electron rules offer a simple way to endow a fuzzy approximator
paramagnetic resonance [81], [84], [217], magnetoelastic with prior knowledge or “hints” [1], [2] that can improve
ribbons [230], superconducting quantum interference how well a fuzzy system approximates a function or how
devices (SQUID’s) [103], [117], [220], Ising systems [20], well it generalizes from training samples [197]. Fuzzy
[188], [226], coupled diode resonators [151], tunnel diodes systems achieve their patch-covering approximation at the
[165], [166], Josephson junctions [22], [104], optical high cost of rule explosion [135], [136]. The number of
systems [9], [61], [120], chemical systems [62], [72], rules grows exponentially with the state-space dimension
[99], [105], [129], [145], [180], and quantum-mechanical of the fuzzy system. We stress that our SR learning laws
systems [93]-[96], [153], [164], [205], [214], [235]. can also tune nonfuzzy adaptive systems.

Some biological systems may have evolved to exploit Adaptive fuzzy systems offer a balance between the
the SR effect. Most SR studies have searched for the SRstructured and symbolic rule-based expert systems found
effect in the sensory processing of prey and predators.in artificial intelligence [221] and the unstructured but
Noisy or turbulent water can help the mechanoreceptor numeric approximators found in modern neural networks
hair cells of the crayfisiProcambarus clarkiidetect faint [100], [101], [132]. These or other adaptive model-free
periodic signals of predators such as a bass’s fin motion approximators might better model the SR effect in some
[58], [59], [186], [202], [208], [210], [243]. Noise helps dynamical systems. Our first goal was to show that adaptive
the mechanosensors of the cricketheta domesticdetect systems can learn to shape the input noise and perhaps
small-amplitude low-frequency air signals from predators shape other terms to achieve SR in the main closed-
[146], [172], [173]. Dogdfish sharks use noise in their mouth form dynamical systems that scientists have shown produce
sensors when they detect periodic signals from prey [17]. the SR effect. Our second goal was to suggest through
The SR effect appears in the mechanoreceptors in a rat'sthese simulation experiments that adaptive fuzzy systems or
skin [47] and in the neurons in a rat’s hippocampus [90]. other model-free approximators might achieve SR in more
The SR effect occurs in a wide range of models of neurons complex dynamical systems that defy easy math modeling
[25], [27], [44], [45], [46], [102], [207], [231] and neural = or measurement.
networks [24], [25], [27], [29], [30], [41], [44]-[46], [114], This paper presents three main results. The first and
[115], [149], [154]-[159], [183], [189], [206]. central result is that a system can learn the SR effect if

Research in SR has grown from the study of external it performs a stochastic gradient ascent SR = S/N.
periodic signals in simple dynamical systems to the study of Then the random noise gradieGtSNR/do can tune the
external aperiodic and broadband signals in more complexparameters in any adaptive system through a slow type of
dynamical systems [35], [36], [41], [44]-[47], [102], [108], stochastic approximation [219]. We derive these learning
[146], [209], [231]. Below we review examples of these laws in terms of discrete Fourier transforms. The idea
dynamical systems and the performance measures involvedehind the gradient-ascent learning is that such hill climbing
in the SR effect. There is no consensus on which signal-to- is nontrivial if and only if the SNR surface shows some
noise performance measure best measures the SR effecform of SR. The second result is that the SNR first-order
The breadth of SR systems suggests that the SR effectcondition for an extremum has the ratio foS{N = 5//N’
may occur in still more complex dynamical systems for for S/ = 35/80. The termS’/N’ can produce impulsive
still more complex signals and noise types. These signalor even Cauchy noise that can destabilize the stochastic
systems may prove too complex to model with simple gradient ascent. Time lags in the training process can
closed-form techniques. This suggests in turn that we might compound this impulsiveness. The third result is that a
use “intelligent” or adaptive model-free techniques to learn Cauchy-based noise suppressor from the theory of robust
or approximate the SR effects. statistics can often reduce the impulsiveness of the noise

Below we explore how to learn the SR effect with adap- gradientd SNR/do and thus improve the learning process.
tive systems in general and with adaptive fuzzy function The paper reviews the main math models involved in SR
approximators [132]-[136] in particular. Adaptive fuzzy to date and reviews the adaptive fuzzy rule structure that
systems approximate functions with if—then rules that relate can implicitly approximate these models and produce a like
tunable fuzzy subsets of input and outputs. Each rule definesSR effect. The next two sections review these dynamical
a fuzzy patch or subset of the input—output state space. Thesystems and the competing performance measures that
fuzzy system approximates a function as its rule patchesscientists have used to detect SR in them. We used a
cover the graph of the function. These systems resemblestandardSNR = S/N based on discrete Fourier spectra.
the radial-basis function networks found in neural networks Most SR research has focused on the quartic bistable
[100], [176], [136]. Neural-like learning laws tune and dynamical system. We worked with that signal system in
move the fuzzy rule patches as they tune the shape of thedetail and also applied the stochastic learning scheme to
fuzzy sets that make up the rule patches. The learning lawsother dynamical systems. The learning scheme converged
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in most cases to the SR effect or the SNR mode in all of
these systems. The SR learning scheme still converged for
the quartic bistable system when we replaced the forcing
additive Gaussian white noise with other additive random
noise, with infinite-variance noise, and with chaotic noise
from a chaotic logistic dynamical system. Sections V and
VI derive the SR optimality conditions and the stochastic
learning law and then test the learning scheme in SR sim-
ulations of the quartic bistable dynamical system and other
dynamical systems. The appendixes derive the supervised
learning laws for the fuzzy function approximator where
the fuzzy sets have the shape of s{sim z/z) functions.

II. SR DYNAMICAL SYSTEMS

This section reviews the main known dynamical systems
that show SR. These models involve only simple nonlin-

earities. They also simply add a random noise term to a

differential equation rather than use a formal Ito stochastic
differential [43], [60], [86]. There are so far no theorems
or formal taxonomies that tell which dynamical systems
show SR and which do not. A dynamical system relates
its input—output response through a differential equation of
the form

[l
Sy

&= f(z) +u(z,t) (1)
u(t) = g(=(t)). ()

The inputw may depend on both timé and on the
system’s stater. The system is unforced or autonomous
when u(z,¢) = 0 for all  and¢. The system output or
measuremeny depends on the state throughy = g(x).
The output of a simple model neuron may be a signum
function: y = sgn(x).

A. Quartic Bistable System [13], [56], [75],
[82], [109], [121], [179], [249]

The quartic bistable system is the most studied model
that shows SR. It has the form

©)
(4)

for a quartic potentiall/(x,t) = —(a/2)z% + (b/4)x*
with ¢ > 0, & > 0, input signals, and white Gaussian
noise n with zero mean and variance?: E[n] = 0
and Var(n) = o2 < oo. Researchers sometimes include
the forcing functionss and n in the potential function:
U(x,t) = —(a/2)x? + (b/4)x* + x(t)[s(t) + n(t)]. The
unforced version of (4) has the forh = az — b2, It
has two stable fixed points at = +c = +./a/b and
one metastable fixed point at = 0. These fixed points
are the minima and the local maximum of the potential
U(x,t) = —(a/2)x? + (b/4)x*. Fig. 3 shows the quartic
potential fora = 6 = 1. The two minima are at = +1.
Fig. 3 shows the potential at rest and hence with no input
force. Fig. 4 shows the potenti&l(z, t) when the external
sinusoidal input modulates it at each time instant

T = —%U(w,t) + s(t) + n(t)
= ar — bx® + s(t) +n(t)
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Fig. 3. Unforced quartic potential/(xz,t) = —(1/2)x2 + (1/4)a*.
B. Threshold Systems [36], [79], [88],
[91], [122], [123], [201]

Threshold systems are among the simplest SR systems.
They show the SR effect for many of the performance
measures in the next section. A simple threshold system
can take the form

_]_7

y(t) = sgn(z(t) = {17 if 2(t) < ©

it oty >0 O
for the signalz(t) = s(t) + n(t) and a threshold® € R.
Thresholds quantize signals. So we state the general forms
of uniform infinite quantizers with gaiG > 0. A uniform
mid-tread quantizer with step siz® has the form

o =aum=cal Pl @
A mid-riser quantizer has the form
v =y =a| P+ @

The floor operator | gives the greatest integer less than
or equal to its argument. Researchers have studied the
SR effect in M-level quantizers that approximate some
dynamical systems [203].

C. Bistable Potential Neuron Model [27]
This neuron model is a bistable system of the form
Z=—x+(ng+nm(t)) tanhz +n,(¢) +s(t). (8)

The multiplicative and additive noises,, andn, are zero
mean and uncorrelated. The terw is a constant.

D. Monostable Systems [63], [64], [66], [98], [232], [238]

These systems have no potential barriers as do bistable
and multistable systems. They have only one stable fixed
point. A special case is the single-well Duffing oscillator
&+ 2l + wiz +ya®

= s(t) +n(t) = ecoswot + n(t) (9)
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Fig. 4. Forced evolution of the noise-free quartic potential systéigr,t) = —(1/2)a?
+(1/4)x* + (1/4)asin 27t. (@) Unforced potential surface at= 0 when the sinusoidal forcing
term is zero. (b) Surfac®(x,t) at timet = (1/4). (c) Surfacel/(z,t) at timet = (3/4).

whereT’, |éw| < wo andyéw > 0 for bw = wo —w;. These F. FitzHugh—Nagumo (FHN) Neuron Model [35],
systems show the SR effect in the small signal limit with [44]-[46], [102], [154], [155], [183], [207], [244]

an approximate linear response. The FHN neuron model is a two-dimensional limit cycle

] oscillator that has the form
E. Hodgkin—Huxley Neuron Model [44], [156], [209]

The Hodgin—Huxley model is among the most studied

models in the neural literature. et =z(z—a)l(l—z)—w+A+s()+n(E) (14)

. w=x—w-—>. 15
Ci = —gnam®h(z — zxa) — gxp*(z — 2x) (15)
—gulr—a) +I+s@) +n(t)  (10) | o
= cm(@)(1 = m) — fu(2)m (11) Herea: is a fast (voltage) vanapla;; is a s!ow (r.ecove.ry)
. variable, A is a constant (tonic) activation signad, is
h = an(z)(1 = h) = pu(x)h (12) an input signal, anch is noise. Sample constants for the
p = ap(z)(1 —p) — Bp(z)p. (13) SR effect arec = 0.005, a = 0.5, A = —5/12\/3 =

Herex is the membrane potential or activation ands the —0.24056, andb = 0.15 [46].

sodium activation. The terrh is the sodium inactivation

is the potassium activation; is the membrane capacitance, .
zy, is the leakage reversal potential; is the leakage G. Integrate-Fire Neuron Model [25], [31], [37],
conductancezk is the potassium reversal potentigk is [39], [44], [74], [211], [231]

the maximal potassium conductangg is the potassium This neuron model has linear activation dynamics.
ion-channel densityzn, is the sodium reversal potential,
Jna IS the maximal sodium conductangsy, is the sodium
ion-channel density/ is an input current, and is a
subthreshold aperiodic input signal. These systems use a
neural threshold signal functiofi(z) that lets the neuron  wherez is cell membrane voltage, is a positive drift,\ is
rest or retract after firing. SR occurs when a low level of a decay constant rate, ang is a resting level. A threshold
noisen brings the input signal above the neuron’s firing function governs the neuron’s output pulse firing and gives
threshold. the nonlinear system that shows the SR effect.

&= AMur —2) + p + 5(t) +n(t) (16)
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H. Array And Coupled Systems [24], [27], [29], for drift term a(x, t) and diffusion termb(z,¢). This partial

[30], [41], [44]-{46], [92], [110], [114], differential equation stems from a Taylor series and shows
[115], [124], [149], [154]-[159], [177], [183], how a probability density functiop of a Markov system’s
[188]-[190], [206], [212], [215], [216] states evolves in time. System nonlinearities often preclude

These systems combine many units of the above systems¢losed-form solutions. Approximations and assumptions
They include neural networks and other coupled systems.Such as small noise and small signal effects can give closed-
A special case is the Cohen—-Grossberg (“Hopfield”) [132] form solutions in some cases. These solutions motivate

feedback neural network some of the performance measures below. SR dynamical
N systems in general need not be Markov processes [78],
Cizy; = —% + jz::lmij tanh x; + s(t) + n(¢) [192].

fori=1,....,N (17) A. Signal-to-Noise Ratio

The most common SR measure is some form of SNR
[69], [75], [85], [111], [169], [249]. This seems the most
intuitive measure, even though there are many ways to
define SNR.

Suppose the input signal is the sineway& = ¢ sin wot.
Then the SNR measures how much the system output
y = g(x) contains the input signal frequenay

for neural activation potentiak;, synaptic efficacym,;,
and hyperbolic neural firing functio;(x;) = tanhz;.
Simulations show that the SR profile grows more peaked
as the numbeW of neurons grows [115]. One study [115]
found that the SR effect goes away fr > 10.

I. Chaotic Systems [3], [5], [13], [33], [52],

S
[160], [196], [2_41], [242], [251] SNR = 101og = 21)
Some chaotic systems show the SR effect. These models N
include Chua’s electric circuit, the Henon map, the Lorenz — 10log S5(wo) dB (22)
system, and the following forced Duffing oscillator: N(wo)

&= —6& + x + x> + esin(wot) + n(t). (18) The signal powerS = |Y (wo)|? is the magnitude of the
utput power spectrury’(w) at the input frequencywg.
he background noise spectrulywy) at input frequency
wp is some average 0¥ (w)|* at nearby frequencies [116],
5 Random Syt 05, 09, 29, 68, sz o P e e e o ©FD
These systems include many classical random processeglements of a discrete-time sequedgg, v1, .. ., yr_1} of
such as random walks and Poisson processes. They als@utput signal samples
include the pulse system [15] whose response is a random

At least one researcher [87] has argued that noise—inducedcT)
chaos-order transitions need not be SR.

. . . L—1
train of pulses with a pulse probability that depends on a1 EEY
an input signalV’ through Yik] = tz_% LS . (23)
r(V(#) = r(0)exp (V()). (19) The signal frequencyy corresponds to bik, in the DFT

The input V is the signal plus noiseV(t) = s(t) +  forintegerko = LAT fo and forwo = 2 fo. This gives the
n(t). This model includes manyZ-driven physiochemical ~ output signal in terms of a DFT & = |Y[ko]|*. The noise
systems [15]. powerN = Nlko] is the average power in the adjacent bins

Other systems show SR in the literature [7], [11], [14], ko — M,... . ko — 1, ko +1,... ko + M for some integer
[20], [55], [107], [127], [167], [169], [188], [193], [213], M [6], [249]

[225], [239], [246], [248]. Special issues of physics journals | M
[23], [181] also present other systems that show SR. Most N=_ Z (|Y[k0 —j]|2 + Y ko +j]|2). (24)
use the SR measures in the next section. 2M i=1

We expand this noise term in Section V to include all

; . ) energy not due to the signal.
This section reviews the most popular measures of SR.  An adiabatic approximation [169] can give an explicit

These performance measures depend on the forcing signagNRR for the quartic bistable system in (4) with sinewave
and noise and can vary from system to system. There isj, ¢ s(t)

no consensus in the SR literature on how to measure the
022202 AU /o
SR effect. S lﬁaEQCQG—QUO/"Q] [1 - ;‘;2(02)2@ 4Uo/ ]

Ill. SR PERFORMANCE MEASURES

= esinwgt

Some researchers study a stochastic dynamical systerd? = N

2)2 202 —4Uy /02 2
in terms of the Fokker—Planck (or forward Kolmogorov) (%) w7 © o
equation [57], [125], [184], [218] (25)
ap 0 1 82 o Y2052 oy (26)
T —%(a(w,t)p) + Qﬁ(b(x,t)p) (20) (52)2
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Fig. 5. SNR measure of the quartic bistable system= 2 — x3 + s(t) +n(t) with output

y(t) = sgn(x(t)). The signals is the sinewaves(t) = ssin2wfot wheree = 0.1 and

fo = 0.01 Hz. (a) SNR-noise profiles of zero-mean white noise from Gaussian, Laplace, and

uniform probability densities. The simulation ran over 20 distinct noise seeds over 10000 s with

time stepA7T = 10000/1000000 = 0.01 s in the forward Euler formula of numerical analysis.

(b) Average SNR-noise profile and its spread for Laplace noise. (c) Average SNR-noise profile and
its spread for uniform noise. Fig. 2 shows a like SR profile for Gaussian noise. Fig. 18 shows the
SR profile for the quartic bistable system when chaotic noise drives the system. The plots show

distinct spreads of SNR for each kind of noise.

Here Uy = a?/4b is the barrier height wher = 0, a sinewave input and view the output stgte) = g(z(t))
r = +c = +,/a/b defines the potential minima, and of the dynamical system as a mixture of signal and noise.
0% is the variance of the additive white Gaussian noise We arrange the DFT computation so that the energy of the
n. This result stems from Kramers rate [139] if the signal sine term lies in frequency bikhy,. The squared magnitude
amplitudes is small and if its frequency is smaller than the of this energy spectrunY[ko] acts as the system-level
characteristic rate or curvature at the minimuii(+c) signal: S = 2|Y[ko]|>. We view all else in the spectrum
[169]. The SNR approximation (26) is zero for zero noise as noise:N = P — S = P — 2|Y[ko]|> where the total
o2 = 0. It grows from zero asr? grows and reaches a energy isP = Ef;ol |Y[E]|2. We ignore the factorL
maximum ato? = U, before it decays. So the optimum that scalesS and P since the ratioS/N cancels its effect.
noise intensity iss? = Uy = a?/4b. Fig. 2 shows the SR profile with this SNR measure for the
There is no standard definition of system-level signal quartic bistable system with forcing sinewave input signal
and noise in nonlinear systems. We work with an SNR and Gaussian noise. Fig. 5 shows the SR profiles of the
that is easy to compute and that depends on standardjuartic bistable system with forcing Gaussian, uniform, and
spectral power measures in signal processing. We start withLaplace noise. Fig. 17 shows the SR profiles of the quartic
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Fig. 6. Feedforward fuzzy function approximator. (a) The
parallel associative structure of the additive fuzzy system
F : R™ — RP with m rules. Each inputtg € R™ enters
the systemF" as a numerical vector. At the set level, acts as

a delta pulse’(x — z¢) that combs the if-part fuzzy set$; and
gives them set valuesu; (o) = [g, 8(x — xo)aj(x)dr. The

set values “fire” or scale the then-part fuzzy s&s to give B;.

A standard additive model (SAM) scales eaBh with a;(x).
Then the system sums tliéﬁv sets to give the output “sef3. The
system outputF'(xq ) is the centroid ofB. (b) Fuzzy rules define
Cartesian rule patched; x B; in the input-output space and
cover the graph of the approximarfd This leads to exponential
rule explosion in high dimensions. Optimal lone rules cover the
extrema of the approximand, as in Fig. 7.

C. Probability of Residence Time and Escape Rate

This approach looks at the probabilify(T’) of the time
T that a dynamical system spends in a stable state between
consecutive switches between the stable states [55], [68],
[82], [121], [250]. So P(T") depends on the input noise
intensity. Data can give a histogram of thi3(T) to
estimate the actual probability for each input noise intensity
o2, The probability of residence time relates to the first
passage time density function (FPTDF) or the interspike
interval histogram (ISIH) found in the neurophysiological
literature [19], [25], [28], [34], [76], [154]-[158], [163].
The symmetric bistable system (4) with input) =
esinwot gives a system that tends to stay at or wander
about one stable state far = 7;,/2 = 27 /wo s and then
hops to a new stable state as it tracks the input.

D. Information and Probability of Detection

Tools from information theory can also measure SR.
The information rate of a threshold system shows the SR
effect for subthreshold inputs [31], [36], [37], [231]. The
FHN neuron model (14)—(15) shows SR for aperiodic input
waveforms when we measure the cross correlation between
input and output or the information rate [44], [46], [102].
Noise can also sometimes maximize the mutual information
[50]

I(X;Y)=H(X)- H(X |Y)

_ e ) log PEY)
=2 s gy @9

The mutual (Kullback) information/(X;Y") and Fisher
information [50] can measure SR in some neuron models
[31], [191], [231]. Probability of correct detection and other
statistics can also measure SR [108], [116], [231].

E. Complexity Measures
Researchers have suggested other ways to measure SR.

bistable system for impulsive noise with infinite variance. These include Lyapunov exponents, Shannon entropy, fluc-
Fig. 18 shows the SR profile of the quartic bistable system tuation complexity that measures the net information gain,

for chaotic noise from a logistic dynamical system.

B. Cross-Correlation Measures

ande-complexity for first-order Markov stochastic automata
[160], [247].

Other forms of SR measures also occur in the SR
literature. They include the other SNR'’s [64], [123], [131],

Thes_e “gha_pe matchers” can measure SR when“input_s ar§1 48], [152], the amplification characteristic of a system like
not periodic signals. Researchers coined the term “aperiodiCi,gse found in electronic devices [9], [40], [94], [95], [126],

stochastic resonance” (ASR) [41], [44], [45], [102] for such susceptibility [65], [66], [177], [233],

crisis” measure in

cases. They defined cross-correlation measures for the inputp 405 [33], and prediction error of spike rates [35]. The

signal s and the system response in terms of the mean

transition rater in the FHN model in (14)—(15)

Cp = max {m} (27)

C = “ (28)
2

where? is the time averager = 4 [ x(t) dt.

MITAIM AND KOSKO: ADAPTIVE STOCHASTIC RESONANCE

number of SR performance measures will likely grow
as researchers explore how noise and signals drive other
systems in the vast function space of nonlinear dynamical
systems.

IV. ADDITIVE Fuzzy SYSTEMS AND
FUNCTION APPROXIMATION

This section reviews the basic structure of additive fuzzy
systems. The appendixes review and extend the more
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'\ The scaling choice3) = a;(x)B; gives a SAM. Appen-
dix A shows that taking the centroid @(z) in (30) gives
the following SAM ratio [132], [133], [134], [135]:

C rimwie(@Vie I8
F(z) = ST wiai(@)V; =Y pi(®)e. (3L

I

1

A : HereV; is the finite positive volume or area of then-part set

m B; and¢; is the centroid ofB; or its center of mass. The
PP — =x convex Weightspﬁl(az), ..., pm(z) have the forrrmj(a_:)_ =

Fig. 7. Lone optimal fuzzy rule patches cover the extrema of (wjaj(x)‘/j)/(Zi:l wiai(x)Vi). The convex coefficients

approximandf. A lone rule defines a flat line segment that cuts the pj (a:) change with each 'nPUt VeCtm'_
graph of the local extremum in at least two places. The mean value Fig. 8 shows how supervised learning moves and shapes

theorem implies that the extremum lies between these points. This the fuzzy rule patches to give a finer approximation as
can reduce much of fuzzy function approximation to the search for . .
seroest of the derivativeymag“’ : f,‘(’;’) — 0. the_system sampl_es more mput—_output d_ata. Append|>_< B
derives the supervised SAM learning algorithms for the sinc
. . ~set functions [136], [174], [175] in Fig. 23 that we use in
formal math structure that underlies these adaptlve function the SR simulations. Supervised gradient ascent Changes the

1
|
1 j=1
|
|

approximators. SAM parameters with performance data. The learning laws
A fuzzy systemF” : R™ — RP storesm rules of the word  ypdate each SAM parameter to maximize the performance
form “If X = A; ThenY = B;" or the patch form4; x measureP of the SR dynamical system. This process
Bj C X xY = R" x RP'. The if-part fuzzy setsi; C R" repeats as needed for a large number of sample data pairs
and then-part fuzzy set8; C R’ have set functionsg; : (z:,y:). Fig. 8(e) displays the absolute error of the sinc-

R — [0,1] andb; : R? — [0, 1]. Generalized fuzzy sets  pased fuzzy function approximation.
map to intervals other thaj®, 1]. The scalar sinc set func-

tions in Fig. 23 map real inputs to “membership degrees” v, SR LEARNING AND EQUILIBRIUM
in the bipolar ranggd—0.217, 1]. The system design must

take care when these negative set values enter the SAI\/Ith
ratio in (31). The system can use the joint set functign

or some factored form such as(x) = aj(x1) ... a}(xn)

The scalar SAM fuzzy systei’ : R* — R can learn

e SR pattern of optimum noise of an unknown dynamical

system if it uses enough rules and if it samples enough
data from a dynamical system that stochastically resonates.

() = min(ql n ] : / .
or a;.(x) o mlfn(% (xl)t’ o ’taj (n)), Or any other %2” Below we derive a gradient-based learning law that tunes
J[lig;]'ve orm for input vectors = (z1,...,2n) € the SAM parameters to achieve SR from samples of system

dynamics. It can also tune the parameters in other adaptive
systems. We first define a practical SNR measure in terms
of discrete Fourier transforms. Other SR measures can give
other learning laws.

An additive fuzzy system [132], [133] sums the “fired”
then-part setsB;

B(zx) = w; B = w;a;(x)B;. 30
) ; a ; 1)y o A. The SNR in Nonlinear Systems
Suppose a nonlinear dynamical system has a sinewave
forcing functions(¢) of known frequencyf, Hz. We search
the sinusoidal part(t) of the outputy(¢) for the known
frequency fo but unknown amplitude and phase in the
system output responggt). The “noisy signal’y(t) has
the form of “signal” plus “noise”

Fig. 6(a) shows the parallel fire-and-sum structure of the
SAM. These nonlinear systems can uniformly approximate
any continuous (or bounded measurable) functfoon a
compact domain [133], [136]. Engineers often apply fuzzy
systems to problems of control [119] but fuzzy systems can
also apply to problems of communication [200] and signal
processing [130] and other fields. Yt =Tt + Ny (32)

Fig. 6(b) shows how three rule patches can cover part of
the graph of a scalar functioh: R — R. The patch-cover
structure implies that fuzzy systenis: R — RP suffer
from rule explosionin high dimensions. A fuzzy system
F needs on the orQer gf*tr~1 rules to cover the graph We define the SNR measure as
and thus to approximate a vector functign R* — RP. g g
Optimal rules can help deal with the exponential rule SNR= — = ——.
explosion. Lone or local mean-squared optimal rule patches N P-§
cover the extrema of the approximayid135], [136]. They Here S = 2|Y[ko]|?, P = Ef;é |Y'[k]|?, and Y [k] is the
“patch the bumps” as in Fig. 7. Better learning schemes L-point discrete Fourier transform (DFT) of,

The SNR at the output is the spectral ratio of the energy of
{r:} to the energy of n,;}. We assume that the signg(t)

is always present. This ignores the important problem of
signal detection but lets us focus on learning the SR effect.

(33)

move rule patches to or near extrema and then fill in I—1
between extrema with extra rule patches if the rule budget Y[k] = Z yt@—i%t, (34)
allows. t=0
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I

Fig. 8. Fuzzy function approximation. Two-dimensional (2-D) sinc SAM function approximation
with 100 fuzzy if-then rules and supervised gradient descent learning. (a) Desired function or
approximandf. (b) SAM initial phase as a flat sheet or constant approximator(c) SAM
approximatorF" after it initializes its centroids to the samples:= f(m;). (d) SAM approximator

F after 100 epochs of learning. (e) SAM approximakdafter 6000 epochs of learning. (f) Absolute
error of the fuzzy function approximatiof|f — F|).

We assume that the discrete frequekgy= fo LT, > 0 is
an integer for sampling rate/7, andwg = 27 fo. We also

assume that there is no aliasing due to sampling. Then we
can show that for largd, the SNR measure in (33) tends
to the standard definition of SNR as a ratio of variances.

Theorem:
2Y [ko]|? 2
SNR = —7— | [50” P 0_12
om0 YIE]? = 2[Y[ko][*> %
AQ 2 1 L—1 7,2
= 2/ =L (35)
I T Zf 0 ¢
Here o2 = (1/7) jo (Asinwot)?dt = A%/2 and o2 =

Var(n) = E[n?]. We need further assumptions to derive

(35). First consider the “energy” in each frequency kin
of the transformY[k]

Y [k]]* = Y[E]Y*[] (36)
= (R[k] + N[k]) (R[K] + N[K])" (37)

= RK)R*[k] + R[K]N*[#]
+ R*[KIN[k] + N[E]N*[K] (38)

= |R[E]]* + [N [F]* + 2Re{R[KIN"[K]} (39)

where R[k] and N[k] are the DFT’s ofr, andn; in (32).
Suppose the sinusoidal term has the form

re = Acos(2m foTst + @) (40)

fort =0,...,L — 1. Its DFT has the form [199]
L—1 o

R =) re 7" (41)
t=0
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Flayl

Hcsc b= e ]

L—1
= Z Acos(2m foTst + ¢)e*i2%kt (42)
t=0
_ k=) A A [sinaQ(k — ko) = sinaQ(k + ko)
T, | Qk—ko) Qk + ko)
(43)

_ cim(qs—a)%((s[k — ko] + 6[k — (L — ko)]) (44)

where kg = foLT;, > 0 is an integer,Q = 77 is
a frequency bandg = LQTS, and é is the Kronecker
delta function. SoR[k] vanishes when botlk # ky and
k # L — kq. This gives

|R[ko]|* + |R[L — ko]|* = 2|R[ko]|*
aA\?  I[2A?
_2<T5) - A (45)

So R[ko] and R[L — ko] contain all the energy of the
sinusoidal signak,;. We define the noise power a§ =
E{n?} and assume that, is stationary and ergodic with
zero mean. Then Parseval's theorem gives

Z |[R[E) =

L—1 L—1
> INTE]? =LZ Ine|? (46)
k=0
L(La ) (47)
= (48)
2161



The ergodicity ofn; gives (47). Now consider the total
output spectrum”

I—1
P=3"|Y[H? (49)
k=0
L—1
= [Y[kl?+ YL —kl*+ > [Y[K]? (50)
k=0,ksko,L—ko
L—1
= 2|Y [kol|* + > |NTE]? (51)
k=0, k#kqo,L—kq
= 2|R[ko]|* + 2|N[ko]|? + 4 Re{R[ko]N*[ko]}
L—1
+ > INRP (52)
k=0,k=£ko,L—kq
L—1
= 2|R[ko]|* + <Z IN[k]I2> + 4Re{ R[ko]N*[ko]}.
= (53)
Then (53) and (39) give
L—1
— 2V [ko]l* = > IN[E]I* — 2|N ko] |*. (54)
k=0
Then the SNR structure in (33) follows:
S S
SNR = — N=P 5 (55)
_ 2|R[ko]|* + 2|NT[ko]|> + 4Re{ R[ko] N* [ko]}
= i (56)
(2xZo INTK]I?) — 2N [Ko]|?
N 2|R[k0]|2 _L2A%)2 A%)2
Silo IN[ENE - Len o &0

for large L and for small (or null) N[ko]| and [N[L — ko]|.
Note that|N[ko]| = |[N[L — ko]| for ko # 0 due to the
symmetry of the DFT.

L—-1L-1

= |RIkol* + > > anslt — ]

t=0 7=0
s (62)
=| [ko]|* + Loy, (63)
AQ
= L2T + Lo? (64)
and
L—1
E[P = 2[YTkol|’l = E| > IN[KI[* — 2|N[ko]*| (65)
k=0
L—1
=Y Lo, —2Lo,, (66)
k=0
= L?02 —2Lo2. (67)
Putting (64) and (67) into (33) gives
2E[|Y [ko]’]
SNR = ———————1 - 68
B[P — 21V [koll? (%9)
2(L24 4 Lo?

L?62 —2Lc2
Then SNR — A;/Q asL — oo.

B. Supervised Gradient Learning and SR Optimality

An adaptive system can learn an SR noise pattern that
maximizes a dynamical system’s SNR. The learning law
updates a parameter; of a SAM fuzzy system (or of any
other adaptive system) at time stepvith the deterministic
law

OE[SNR]

mj(n+1) = B
J

for learning coefficients{s,,}. This is gradient ascent

The result (57) also holds if the zero-mean noise sequence/€@ming. We assume that the first-order moment of the SNR
n, is not correlated in time and does not correlate with €Xists. We seldom know the probability structure or the

.. Then we can take expectations ¥ [ko]|> and P —
2|Y [ko]|? to get

E[[Y kol "] = El|R[koll* + |N[ko]|*
+ 2 Re{ R[ko| N*[ko]}] (58)
= E[|R[ko]|"] + E[|N[ko]|*]
+2Re{E[R[ko]|E [N *[/fo]]}] (59)

= E[|R[ko]|’] + E

. <Z n——> ]

+2Re{ kol E Zn e_’TT] } (60)
L—-1L-1
|Rk0]|2+ZZETLt” ]CZ Tk (f 1)
t=0 7=0

L—-1
+ 2Re{E[R[k0]] <Z Eln,] ZTT) } (61)
=0
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expectation of the SNR. So we estimate this expectation
with its random realization at each time stepiSNR] =
SNR. This gives thestochasticgradient learning law

dSNR
8mj

my(n+ 1) = my(n) + (72)

or simple random hill climbing. We assume the chain rule
holds (at least approximately) to give

dSNR  9SNR Jo
om; T o amj'

(72)

Hereo is the noise level or standard deviation of the forcing
noise term(¢). We want the SAM or other adaptive system
F to approximate the optimum noise levelfor any input
signal or initial condition of the dynamical systetfi:~ &.
We then user and ' interchangeably

dSNR  JSNR oF
8mj o do 8m1

(73)

The term dF/dm; shows how any adaptive systei
depends on itgith parametern;. We again assume that
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the chain rule holds to get
JSNR  JSNROS | dSNRAIN

o aS 9o ' ON o’ (74)
Then SNR = S/N implies that
GSNR 8 S 1
S ~OSN N (75)
9SNR 9 S S SNR 76)
ON ~ ONN N2 N

Like results hold for the decibel definitiolsNR
10log S/N dB for the base-10 logarithm

JdSNR a

S 1
I 9 10log 2 = (10loge) = 77
95~ g5 Vleey = (0lose)g (77)
dSNR a S 1

We next put (75)—(78) into (74) to get the log term that
drives SR learning

dSNR

do

[ kEospa isNR= g
_{(1010ge)(§g—f—%%), if SNR = 10log 5.

(79)

The right side of (79) leads to the first-order condition for
an SNR extremum
198 1 9N
S90 Noo (80)
or simply
s_5
N NU
We can rewrite this optimality condition as
S _ 0S/do

N|. = ON/do

(81)

(82)

Topt Topt

when the partial derivatives &f and NV with respect tar
are not zero atr = o,,. Equations (80) and (82) give a
necessary condition for the SR maximum. The result (82)
says that at SR the ratio of the rate of changes ehd NV
must equal the ratio of and V. This has the same form
as the result in microeconomics [140] that the marginal
rates of substitution of two goods must at optimality equal
the partial derivatives of the utility function with respect
to each good. But (81) and (82) hold only in a stochastic
sense for sufficiently well-behaved random processes.
We find the second-order condition for an SR maximum
when SNR = 10log S/N from

9?SNR 9 9SNR

0> 902 O do o
— %(1010g6) [%g—i — %Z—jj} (84)
:(1010g6)[<%%+g_i<_$g_i>>

2
(R ()] e
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19%8 1

SQ

(%)

192N 1 [ON\?
T N0z m(%) ] (86)
1928 182N

or §”/S < N"/N. The last equality follows from the
first-order condition(1/5)(95/30)—(1/N)YON /80 = 0 or
S'/S = N’/N since then(S")?/5? = (N')?/N?. A like
result holds forSNR = S/N. We still get the second-order
condition

19*S 1 0°N
S do?2 N Qo2
These first- and second-order conditions show how the
signal powerS and noise powetV relate to each other
and to their derivatives at the SR maximum.
Much of the noisiness and complexity of the random
learning law (71) stems from the probability structure that
underlies the random optimality “error” proces§s

_ 5 95/0c
N ON/do

<0 (88)

(89)

near the optimum noise = o,;,,. The probability density

of £ depends on the statistics of the input noise, the
differential equation that defines the dynamical system, and
how we define the signal and noise teriand V.

Below we test statistics of the random procéskr the
quartic bistable system in Fig. 9. The results suggest that in
some cases the density &fis Cauchy or otherwise belongs
to the “impulsive” or thick-tailed family of symmetric
alpha-stable bell curves with parametein the characteris-
tic functione~1<1" [18], [70], [223], [224]. The parameter
lies in0 < « < 2 and gives the Gaussian random variable
whena = 2 or ¢(w) = ¢=". It gives the thicker-tailed
Cauchy bell curve whemx = 1 or ¢(w) = e~I“l. The
moments of stable distributions with < 2 are finite only
up to the ordek for & < «. The Gaussian density alone has
finite variance and higher moments. Alpha-stable random
variables characterize the class of normalized sums that
converge in distribution to a random variable [18] as in the
famous Gaussian version of the central limit theorem. The
noisiness or impulsiveness of tidebased learning grows
as « falls. Note also that the ratid(/Y is Cauchy if X
andY are jointly Gaussian [70], [137], [141], [204]. Our
simulations found that the impulsiveness&ktemmed at
least in part from the step size of the successive DFT’s in
(92).

We now derive the SR learning laws in terms of DFT’s.
We can approximat®S/do and 9N/do with a ratio of
time differences at each iteration

98, _AS, S, —Sn1
o, Aon,  Op—0n_1 (90)
aNn ANn Nn - Nn—l

~ = . 1
doyp, Ao, On — Op—1 (91)

2163



The math model in (1)—(2) gives the exact learning laws. We can consider the terdly; /0o in (93) as a sample of

Recall that thel.-point DFT [199] for a sequence of states
{y:} has the form

_i2mk
k] = Zyl-l—(n—l—l—h)e T

The time indexn denotes the current time = nZ for
the sampling periodl,. Let 8S,,/8y; denote the partial
derivative of the signal energy at iterationn with respect
to the outputy evaluated at time steg: 95,/dy; =
08, /0ylj]. We likewise putoN, /dy; = dN,/dy[j] and
dy; /0o = dy/do[j]. We assume some form of the chain
rule holds to give

k=0,...,L—1. (92)

89S, = S, dy;
do Z dy; do
j=n+1-L
and
ON, <~ ON,0y
= 3 RIS (93)
j=n+1-L

We first derivedS,,/dy; and ON,,/dy; in (93). Consider
the partial derivative ofY,,[k]|? with respect toy at time
step j

a

)
— YL [K]|)? = =Y, [K]Y [k 94
ayj| [%]] v, (K1Y, K] (94)

) )
= Yn[k]—YJ (K] + Yo [k] o — Yo [k] (95)

Jy;

=Y, [k]gm(J (n+1-1))

+ Y [k]em U (nt1=L)) (96)
= 2Re{ Y, [k]e! F - (nHL=LDY (97)

= 2Re{Yn[k]}cos<2L—k(j —(n+1- L)))

- ZIm{Yn[k]}Sin<?(j —(n+1- L)))

(98)

So the partial derivative of the signal spectrush —
2|Y,,[ko]|? is

a5y

ayj

= 4re{Nifful}eos( 22— (0 +1- 1)

— 4Tm{Y,[ko]} Sin<27;k0 (G—(n+1- L))).

(99)
The partial derivative‘fa’,‘T’;f follows in like manner
ON, 3]
"=~ (P, — S, (100)
Ay, 3%’( :
i Z IR — 95w (101)
aLJ =0 Iy;
9 =
= 3 Z from Parseval’s relation
J =0 J
(102)
a8y,
=2Ly; — —. 103
y] ayj ( )

2164

dy/do at the time stepy.

Recall the math model of the dynamical system (1)-(2)
and letG(z,u,t) = f(x) 4+ u(x,t). Assume thau(x,t) =
s(t) + n(t) = s(t) + ow(t) for the zero-mean white noise
processw(t) with unit varianceE[w?] = 1. So the model
becomes

f(x) + s(t) + ow(t) (104)

=Gz, s,0,w) =

y(t) = g(x(t)). (105)
The chain rule gives
dy 8g ar
90 9z 9o’ (106)

Let n(¢) denote dx/9s. Assume thatG is sufficiently
differentiable. Then differentiate with respect to time [8]

to get
dn _ d oz _ a‘fi—f _ 0G(z,s,0,w)
dt — dt <$> T 90 do (107)
0Gadx 9G OG oG

The last derivativedG/o results fromG's explicit depen-
dence ons. So the additive casé&/(x,s,o,w) = f(z) +
s(t) + cw(t) gives

oG of
ga_o (109)
O = 2 r) + st +owl)] = wln).  (110)

We need to simulate the evolution (108) for/dcs and
obtaindy/9do from (106). Then we put (99), (103), ari
into (93) to get the stochastic gradient learning law

OSNR,,
o(n+1)=0c(n)+ i oo (111)
o)+ OSNR,, 85, _9SNR, N,
SO T TH5 T 90 T AN, do
(112)
1 .98, Ay,
=agn)+ pn| 5 —_—
() + 1 <Sn I:T;_L dyr Do
Ly 8%@)
Nn l=nt1 L 8yl 80
(113)

Here we omit the constant facto® log ¢ from (75)—(78) or
view it as part of the learning raje, in (113). The learning
law for the parametersn; of a function approximator
I that approximates the surface of optimal noise levels
follows in like manner. Here" replaces the parameter

so the learning law becomes

JSNR,,

myn 1) = my(n) + 1y o (114)
J
9SNR,, 95,
= m;(n) +’“‘"< 95, om,
n j
9SNR,, N,
9 115
ON,, Om, ) (115)
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otherwise it has infinite variance. (c) Log-tail test of the parametésr an alpha-stable bell curve.

The test looks at the plot dbg Prob(XX > u) versuslog u for large «. If the underlying density

is alpha-stable withv < 2 then the slope of this plot is approximatelya. This test found that

a =~ 1 and so the density was approximately Cauchy.
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both cases. The impulsiveness of the learning t&rffiNR /9o destabilizes the learning process

near the optimal noise level.
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We get (113) ifo replacesF and m;. Appendix B de-
rives the last partial derivativeF/9m; in the chain-rule
expansion (73) for all SAM fuzzy parameters;. This

(116)

function approximatorg” and derive learning laws for their
parametersn,; by expandingdF/dm,. Formal stochastic
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0.5. The learning
1 Must decrease slowly but not too slowly
o> o>
Z p2 < oo and Z = OO, (117)
n=1 n=1

Linear decay termg,, = 1/n obey (117). We used small
but constant learning rates in most simulations.

VI.

SR LEARNING: SIMULATION RESULTS

This section shows how the stochastic SR learning laws
in Section V tend to find the optimal noise levels in many
is again the step where users can insert other adaptivedynamical systems. The learning process updates the noise
parameters,, at each iterationn. The learning process
is noisy and may not be stable due to the impulsiveness
approximation [219] further requires that the learning rate of the random gradien® SNR,,/dc,,. We used a Cauchy
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Fig. 13. Impulsive effects on learning paths of noise intensity. The quartic bistable system has
the forma = x — 3 + s(#) + n(¢) with binary outputy(*) = sgn(z(¢)) and initial condition
2(0) = —1. The input sinusoid signal function igt) = 0.1sin 27(0.01)¢. (a) The sequence,
with different initial values that differ from the optimum noise intensity. (b) Noise-SNR profile of
the quartic bistable system. The graph shows that the optimum noise intensity lies gefr5.
The paths ofr,, do not converge to the optimum noise. This stems from the impulsiveness of the

derivative termd SNR,, /9o in the approximate SR learning law (137).
4000 T i T T

noise suppressor from the theory of robust statistics [112] a0l (@)
to stabilize the learning process. Then sample paths,of
converged and wander about the optimal values if the initial
values were close to the optimum. |
The response of a system depends on its dynamics and ~ °[7 "1 ’ o T

2000

dSNR/do

1000} i

on the nature of its input signals. We applied the SNR -0 35555 o5 1 P T R S —
measure to the quartic bistable and other dynamical systems teration n x o'
with sinusoidal inputs. Future research may extend SR s e | -2,
learning to wideband input signals. Fig. 24(a) shows how gso0; | (b) {; _
the optimum noise level varies for each input sinewave in & auwo| ‘ 2
the quartic bistable system. The learning process samples %3000 J g5
the system’s input—output response as it learns the optimum 20 ] fg—,
noise. It does not make direct use of the equation that & o e S
underlies the system. T 2‘ -4,
An adaptive fuzzy system can encode this pattern of Number of samples n < 10

optlmqm noise in its if-then rules when gradlenF Ieammg Fig. 14. Visual display of sample statistics of approximated
tunes its parameters. The fuzzy system learns this optimuma sNR,,/8s. (a) Cauchy-like samples ofdSNR, /8o at
noise level as it varies the output of a random noise €ach iterationn for quartic bistable system with sinusoidal

t M lex f t th | input of amplitudes = 0.1 and frequencyfy, = 0.01
generator. More complex tuzzy systems can themselves ac z. We compute 9SNR,/dc at each iteration from

as adaptive random number generators [136], [200]. 9SNR. /00 & [(Su—Sn-1)/Su = (Nu = Nn_1)/Nu]
Consider the forced dynamical system in (1)—(2) with sgu(on —on—1) in (136). We vary the noise levet, between

L. " . on = 0.50 ando, = 0.51 so thatsgn(o, — o,—1) changes
initial condition xz(0). We set up a discrete computer 5 ,es petween 1 and-1. The plot shows impulsiveness of

simulation with the stochastic version of Euler's method the random variabléd SNR,, /do. (b) Converging variance test

(the EuIer—Maruyama scheme) [53], [86], [115] as test of infinite variance. The sequence of sample variances
converges to a finite value if the underlying probability density
has finite variance. Else it has infinite variance. (c) Log-tail test

Tep1 = oy + AT(f(2) + s¢) + oV ATw,  (118) of the parametery in for an alpha-stable bell curve. The test

_ looks at the plot oflog Prob(X > wu) versuslogu for large

yr = g(x) (119) u. If the unerIying densily(is alpha)—stable with < 2 thgn

the slope of this plot is approximatebra. This test found that
with initial condition g = a:(()) Here the zero-mean « =~ 1 and so the density was approximately Cauchy. The result
white noise sequenc{awt} has unit variancer,i — 1. The is that we need to apply the Cauchy noise suppressor (131) to

. the approximate SR gradie@tSNR., /9¢ in (136) as well as to
term AT scalesw; so thaty/ ATw, conforms with the the eﬁgct SR gradier?t in (129). /97 in (136)

Wiener increment [86], [115], [184]. The learning process

itself does not use the system model in any calculation. It the time stepAT" of the dynamical system’s simulator in
needs access only to the system’s input—output responses(118)—(119). The subsampling rate for the quartic bistable
The learning process’s sampling peridd differs from system is 1:50. We ignored all aliasing effects.
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Fig. 15. Learning paths of,, with the Cauchy noise suppressgz) = 2z/(1+22) for the quar-
tic bistable system with binary threshold output= sgn(z;). The term¢(d SNR,, /0o )replaces
OSNR,, /0o in the SR learning law (133). The paths ef. wander in a Brownian-like mo-
tion around the optimum noise. The suppressor functilomakes the learning algorithm more
robust against impulsive shocks. The input signals ares(@) = 0.1sin27(0.001)¢, (b)
s(t) = 0.1sin27(0.005)¢, (c) s(t) = 0.1sin2x(0.01)¢, and (d)s(¢) = 0.2sin 27(0.01)t.

A. SR Test Case: The Quartic Bistable System with initial condition zo. The time step iIA7 = 0.0195.

We tested the quartic bistable system (4) in detail becauseThe sampling period i, = 0.976 with 1:50 subsampling.
of its wide use in the SR literature as a benchmark SR We can freely choose the time length between the itera-

dynamical system. The quartic bistable systemadfer b = tion steprn and the step+1. Longer time lengths can better
1 with binary output has the form [185] show how the noise intensityat iterationn affectsSn, Ny,

. 3 and SNR,,. We chose the time length,, ., — 7,, = 2000

¥ =z ="+ s(t) +n(t) (120) s for the simulations of the quartic bistable system. The

y(t) = sgn(z(t)) (121)  sampling period wasl, = 0.976 s. This yields 2048

or y(¢) = z(¢) in the linear-output case. The sinewave input samples per iter_ation. This long period of time allows for
forcing term iss(¢) = e sin wot. The terma(t) = ow(t)isa  |OW frequency signals such g = 0.001 Hz. _ _
zero-mean additive white Gaussian noise with variante The simulations use Gaussian noise, Laplace noise, uni-
and whereE[w] = 0 and E[w?] = 1. The discrete version form noise, and impulsive alpha-stable noise. We also tested
has the form (118)—(119): the quartic bistable system with the chaotic noise from the

logistic map. Figs. 2, 5, and 18 show the output SNR for
input signals(t) = 0.1sin27(0.01)¢t for Gaussian noise,

(122) Laplace noise, uniform noise, and chaotic noise from the
yr =sgn(xy) OF y =4 (123) logistic map.

Tip1 =2+ AT(xt — x? + esin 27rfoATt) + oV ATw,
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Fig. 16. Learning paths of,, for other noise densities in the quartic bistable system with binary

output y¢
o = 0.5 for both cases of (a) Laplace noise and (b) uniform noise.

sgn(x¢). The input signal iss(¢) = 0.1sin2x(0.01)¢. The optimal noise lies near

The Jacobian of the quartic bistable system has the form[70], [204] or if they obey certain more general statistical

oG a

o " Ba [z — 2% + s(t) + ow(t)]
=1-3z%

(124)
(125)

Then the partial derivativeG/9c = w(t) from (110) gives
the evolution ofyn(t) = dxz/do for the quartic bistable
system

N = (1 — 3z%)n(t) + w(t).
Its discrete version has the form

n(t+1) = n(t) + AT(1 = 323)n(t) + VATw,. (127)

(126)

We used the initial conditio@z,/3s = 0 in simulations.
Then we gety/do from (106) for use in the learning law
(113). The linear outpuy = g(z) = x« hasdg/dz = 1.
We can approximate a binary output @s:) = sgn(x)
tanh(cz) for a large positivec > 0. Then dg/0x
¢(1 — tanh?(cz)).

The equilibrium tern€,, in (89) helps gauge the noisiness
of the learning process. We compufg at each iteration

n from
ON,,

/ 0o
The statistics of,, change with the noise levef and with
the sinewaves values and f,. The empirical histogram
of &, is a bell curve. A key question is how thick are
its tails. Fig. 9 shows,, samples from the quartic bistable
system (122)—(123) with Gaussian noig¢) = ow(t). The
convergence of variance test [223] confirms tlgt had
infinite variance in our simulations. The log-tail test [223]
of parametera in the family of alpha-stable probability
densities leads to the estimatex 1.0. So the&,, density
is approximately Cauchy. Recall also that = X/Y
is a Cauchy random variable ik and Y are Gaussian

~
~

S
En= -

aS,
do

(128)
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conditions [137], [141]. This suggests that much of the
impulsive nature of,, and hence of the learning process
may stem from the ratio of derivatives in (128).

We also simulate the random gradi€h$NR,, /8o with
the partial derivatives from (99), (103), arth/do from
(108)

n

dSNR,, 1 Z aSs,, Sy
o S, dy, do
I=n+1—-L
1 ~ 8Nn 8yl
- = 129
Nn Z 8yl do ( )
I=n+1—-L
The simulations confirm that the random gradient

9SNR,,/0c is often impulsive and can destabilize the
learning process (113) at or near the optimal noise level.
The impulsiveness o SNR,, /8¢ in Fig. 10 suggests that
dSNR,,/0c may have an alpha-stable probability density
function with parameterx < 2. A log-tail test found
that « 1. So 9SNR,,/ds again has an approximate
Cauchy distribution.

We tested the learning law (113)

~
~

1 n

5. 2
l=n+1—-L
1 n

aSn ayl
8yl do

ONn %> (130)

dn+D=0W%ﬂm<

1 0o

Fig. 11 shows the simulation results. It displays the un-
stability in the learning due to the impulsiveness of the
random gradient SNR/do.

The theory of robust statistics [112] suggests one way to
reduce the impulsiveness 6fSNR,,/9o. We can replace
the noisy random sample, with a Cauchy-like noise
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Fig. 17. Learning paths ofy,, for alpha-stable noise in the quartic bistable system with binary
outputy; = sgn(x¢). The input signal is(t) = 0.1sin27(0.01)¢. (a) « = 1.9. (b) o = 1.8. (¢)

a = 1. The dispersiony acts like a standard deviation and controls the width of the alpha-stable
bell curve. Learning becomes more difficult asfalls and the bell curves have thicker tails. The
impulsiveness is so severe in the Cauchy case (c)-thatften fails to converge. Note the noisy
multimodal nature of the SNR profiles.
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suppressor(z,) [112]

2z,
¢(7n) 1 + 72 .

(131)

So¢(dSNR,,/do) replaces the noise gradiehSNR,, /do

in (129). This gives the robust SR learning law

o(n+1) = a(n) + un¢<asal\;R").

(132)

This approximation gives the SR learning law

Sn - Sn—l Nn - Nn—l
On+l = On + lin S - N

n

~sgn(o, — Op_1). (137)
This learning law does not require that we know the
dynamical model. It depends only on samples from the

system dynamics and from the input sigrét).
Fig. 13(a) shows sample learning paths «f for the

Fig. 12 shows the results of the SR learning law (132) quartic bistable system and approximation (136). Fig. 13(b)

with the gradient in (129). The,, learning paths
converge near the optimal noise level.

in (113)

shows the noise-SNR profile of the dynamical system. The
o, learning paths converge to the optimum noise values

The above learning law requires a complete knowledge only in some cases. The chance of path convergence is
of the math model that describes the dynamical system. It higher for larger sinewave amplitudes. The paths do not
also needs accurate estimation of the evolution of (108). converge as often for small amplitudes. The simulations
This may not be practical in many cases. So we instead confirm that the random gradietSNR,, /do,, in (136)

sampleS,, and N, and use the approximation formulas

(90) and (91). This gives the learning law
JSNR,,
Op+l = On + lin
do

o (195, 10N,
T TS 8 T N, B0

(133)

(134)

n 1.5, —5.-1 1 Ny— Ny
= Op n —_— = | .
a S Opn — On—1 Nn Opn — On—1

We also replace the difference, — o, 1 with

(135)

its sign

segn(o, —o,_1) to avoid numerical instability. The gradient

becomes

ISNR,, (S, —S,1 No—N,
doc

Sh Ny

~sgn(oy, — 0p—1).
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(136)

is often impulsive and can destabilize the learning process
(137) as in Fig. 13. The impulsiveness ®8NR,, /Jdo in

Fig. 14 suggests th&SNR,, /do may have an alpha-stable
probability density function with parameter < 2. A log-

tail test found thaty =~ 1. S08 SNR,, /do in (136) also has

an approximate Cauchy distribution.

We again apply the Cauchy-like noise suppressor
from robust statistics [112] to reduce the impulsiveness
of the approximated termdSNR,/ds in (136). So
¢(0SNR,,/d0) replaces the approximation of the noise
gradient SNR,,/do in (136) to give the robust SR
learning law

S, — S,_ N, — N, _
(S5 580

- sgu(oy, — an_1)>. (138)

n
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Fig. 19. SR learning paths of,, for the threshold systeny; = sgn(s: + nt — ©) where
sgn(z) = 1if @ > 0 andsgn(xz) = —1 if # < 0. The input sinewave i$; = esin 27 fot
with additive white Gaussian noise sequemnge The parameters are (# = 0.001, ¢ = 0.1, and

© = 0.5 and (b) fo = 0.001, ¢ = 0.5, and® = 1.

Fig. 15 shows the results of the SR learning law (138). The (0,1). The chaotic noise,; comes from

o, learning paths converge to the optimum noise level if the 1

initial value lies close enough to it. Then, wanders in a ny = A(;;t — _>, (140)
small Brownian-like motion about the optimum noise level. 2

Like results hold for other noise densities with finite vari- The factor4 > 0 acts as the scaled power or standard
ance such as Laplace and uniform noise. Fig. 16 shows deviation if the term(z, — 3) is a zero-mean random
learning paths for the quartic bistable system (122)—(123) variable with unit variance. Learning tunes so that the
with Laplace noise and uniform noise. We also tested the dynamica| system shows the SR effect. F|g 18 shows a

quartic bistable System with alpha-stable noise. Flg 17 Samp|e chaotic noise sequence and ShowsMearning

shows the paths of the optimal dispersignfor o = 1.9, paths on their way to stochastic convergence.
1.8, and1. The learning degrades asfalls and the alpha-
stable bell curves have thicker tails. B. Other SR Test Cases

We also used a chaotic time series as the forcing ngise
in the quartic bistable dynamical system [118]. The simple
and popular logistic map created the noise sequéngcke

The SR learning schemes also work for other SR models.
We here show only the results for zero-mean white Gauss-
ian noise. We first tested the discrete-time threshold neuron

Zt+1 = 4Zt(1 — Zt) (139) model
from the initial valuez, = .123 456 789 [118]. The positive v = {L if sy +n¢ 20 (141)
sequence z } stays bounded within the unit interval; € =L s +n <O
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Fig. 20. SR learning paths of, for the forced bistable neuron mod¢l = —z + 2tanh«
+esin 27 fot + n(t) with binary outputy(¢) = sgn(z(¢t)). The parameters of the input sinewaves

are fo = 0.01 Hz and (a)e = 0.1 and (b)e = 0.3.

for t = 0,1,2,... The threshold® sets the output of
the neuron. The input sinewave has the forn rewrote (14)—(15) witha = 0.5 and with the changes of
esin 27 foATt. The Gaussian noise; has variances2. variablest — z+0.5, w — w—b+0.5, andA — A-b+0.5
The threshold system is not a dynamical system but it [46]

€ = —x(

We next tested the forced FHN neuron model [183]. We

does show SR. Fig. 19 shows the result of learning when
fo=10.001, £ = 0.1, and® = 0.5 and whenf, = 0.001,
e = 0.5 and® = 1. The sampling period i¥, = AT = 1.

z? -

4) —w+ A+ s(t) +n(t) (144)

We next tested the bistable potential neuron model with w=rmw (145)
Gaussian white noise [27] y(t) = z(t). (146)
The constants are = 0.005, a = 0.5, and A =

Z = —x + 2tanh z + s(t) + n(t) (142) —(5/12v/3 +0.07) = —.31056 as in [102]. The sinewave

y(t) = sgn(x(t)). (143) input is s(t) = esin 27 fot with £ = 0.01, fo = 0.1 and 0.5

We ignored the multiplicative noise in (8). Fig. 20 shows
the SR learning paths ef,,. The sinewave input is(¢) =

e sin 27 fot where fo = 0.01 Hz ande = 0.1 ande = 0.3.
The time step in the discrete simulationAs” = 0.0195.
The sampling period g, = 0.975 or 50 times the time
step AT.

MITAIM AND KOSKO: ADAPTIVE STOCHASTIC RESONANCE

Hz. The sampling period i%, = 0.01 with A7 = 0.001.
Fig. 21 shows the learning paths of the standard deviation
o, of the Gaussian white noise.

We also showed SR learning in the forced Duffing
oscillator with Gaussian white noise [196]

= —0.15& 4+ = + 2 + esin(wot) + n(t) (147)

y(t) = z(t). (148)
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Fig. 21. SR learning paths of, for the FHN neuron modeti = —x(2? — i) —w+ A
+s(t) + n(t) andw = = — w with outputy(t) = z(¢). The parameters are = 0.005 and
A = —(5/12/3 + 0.07) = —.31056. The sinewave input signal is(t) = ¢sin 27 fot where

(@ e =0.01 and fo = 0.1 Hz and (b)e = 0.01 and fo = 0.5 Hz. (a) and (b) show how SR
learning convergence can depend on initial conditions. The distant startingooint7.5 x 103

leads to divergence in the third learning sample in (a) but it leads to convergence in the third
learning sample in (b).

Fig. 22 shows the learning paths®f for input sinewaves m; as in (71)
with frequencyf, = 0.01 Hz and with amplitudes = 0.1 9SNR.
and ¢ = 0.3. The sampling period ig, = 0.02 with m;(n+1) :mj(n)+unT" (149)
AT = 0.005. asﬁf& oF
=m;(n) + NnTn% (150)
J

C. Fuzzy SR Learning: The Quartic Bistable System

We used a fuzzy function approximatét: R* — R to Appendix B derives the partial derlvat|v§— for the
learn and store the entire surface of optimal noise valuesSiNC SAM fuzzy system that we used. The Cauchy noise
for the quartic bistable system with input sinewaves. The suppressor gives the learning law as
fuzzy system had as its input the 2-D vector of sinewave OSNR,, \ OF
amplitude= and frequencyf,. We tested the system with mj(n+1) =m;(n) + un¢<T)T~ (151)
the fixed input initial valuer(0) = —1. The fuzzy system 7 i
itself defined a vector functio : R? — R and used Fig. 23 shows how we formed a first set of rules on the
200 rules. The chain rule extended the learning laws in product space of the two variablesand fy. It also shows
the previous sections to tune the fuzzy system’s parametershow the learning laws move and shape the width of the
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Fig. 22. SR learning paths ofr, for the forced Duffing oscillatori = —éi 4+ = + «?

+e sin 27 fot + n(t) with outputy(+) = =(¢) andé = 0.15. The parameters of the input sinewaves
are fo = 0.01 Hz and (a)e = 0.1 and (b)e = 0.3.

if-part sinc set. Fig. 24 shows the results of SAM learning measure. Other SNR measures or other process statistics
of the optimal noise pattern for the quartic bistable system. may favor other types of robust noise suppressors or may
The sinc SAM used 200 rules. Fewer rules gave a coarserfavor still other techniques to lessen the impulsiveness.
approximation. Fourier techniques may not extend well to the general
case or broadband or nonperiodic forcing signals found in
VI, CONCLUSION {nanyf nonll[r;?r[igg] r}ggit]at[gg%ry enw;fonrtr:etrt]ts. WaV(teIet
. . ! ransforms , , , may offer better ways to

Stochastic grad|gnt ascent can learn to find th? SR m(.)demeasure SR effects in these cases when nonperiodic signals

of at least some simple dynamical systems. This learning | . . .
drive nonlinear dynamical systems. Wavelet transforms can

scheme may fail to scale up for more complex nonlinear dantivelyv locali odic signals in both ti q
dynamical systems of higher dimension or may get stuck in adaptively ocage nonpe.rlo IC signais in o- Ime .an.
frequency. Fourier techniques tend to localize periodic

the local maxima of multimodal SNR profiles. Simulations " ) i i X

showed that impulsive noise can destabilize the SR learningSignals either in frequency or in time. Arbitrary or random
process even though the learning process does not minimizeProadband signals may require new techniques to detect
a mean-squared error. Simulations showed that the keythese signals and extract their key statistical features from
learning term itself can give rise to strong impulsive shocks their noisy dynamical backgrounds.

in the learning process. These shocks often approached Gradient-ascent learning can find the SR mode of the
Cauchy noise in intensity. A Cauchy noise suppressor gavemain known dynamical models that show the SR effect and
a working SR learning scheme for the DFT-based SNR can do so in the presence of a wide range of noise types.
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Fig. 23. If-part sinc fuzzy sets. (a) Scalar sinc set functiop(z) = sinxz/z. Sinc sets are

generalized fuzzy sets with “membership values” ir.317,1]. Elementz belongs to setA;

to degreea;(x): Degreéx € A;) = aj(x). (b) Initial subsets for sinewave amplitudes and

frequencies. There are ten fuzzy sets for amplitualed 20 fuzzy sets for frequendy. The product

of two one-dimensional (1-D) sets gives the 2-D joint seig:r) = a; (e, fo) = a}(c)a%(fo). So

the product space giveld) x 20 = 200 if-part sets in the if-then rules. (c) One of the 2-D if-part

sinc sets in the 200 rules at the initial location. (d) Learning laws tune the location and width of

the same set in (c) after 30 epochs of learning.

This suggests that SR may occur in many multivariable dy- SAM Theorem:Suppose the fuzzy system: R — R?
namical systems in science and engineering and that simplés a standard additive modeF'(z) = Centroid B(z))
learning schemes can sometimes measure or approximate= Centrmdz _, wja;(x)B;) for if-part joint set function
this behavior. We lack formal results that describe when ¢; : R* — [O 1], rule weightsw; > 0, and then-part
and how such SR learning algorithms will converge for fuzzy setB; C R?. ThenF(z) is a convex sum of then
which types of SR systems. This reflects the general lack then-part set centroids

of a formal taxonomy in this promising new field: which

noisy dynamical systems show what SR effects for which F(z) = 2o wiay( VCJ zm: p;(@)e; (152)
forcing signals? >y wia(x)V, ’
APPENDIX A The convex coefficients or discrete probability weights
THE STANDARD ADDITIVE MODEL (SAM) THEOREM p1(), ..., pm(z) depend on the input through

This appendix derives the basic ratio structure (31) of a
SAM fuzzy system and review the local structure of optimal p(x) = M (153)
fuzzy rules. 2 i1 wiai(@)Vi
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Fig. 24. Optimal noise levels in terms of the SNR for the
guartic bistable system with binary output. (a) The optimum noise
pattern when inputs are sinewaves with distinct amplitudes and
frequencies. (b) SAM fuzzy approximation of the optimum noise
after 30 epochs. The sinc SAM used 200 rules. One epoch used
20 iterations that trained on 200 input amplitudes and frequencies.
The quartic bistable system has the foim= x — 23 +s(t) +n(t)

with initial condition 2(0) = —1. The initialized SAM gave the
output value 0.2 as its first estimate of the optimal noise level.

V; is the finite positive volume (or area jf = 1) and¢;
is the centroid of then-part se;

RP

— pr ybi(yr, .. yp)dyr -+ - dy,
’ pr bi(yr, ..y yp)dyr -+ - dyp

(155)

Proof: There is no loss of generality to prove the
theorem for the scalar-output cage= 1 whenF : R* —
Rr, This simplifies the notation. We need but replace the
scalar integrals ove? with the p-multiple or volume
integrals overR? in the proof to prove the general case.
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The scalar casg = 1 gives (154) and (155) as

Vi [ b (156)
= ybi(y)d
;= f_.gsyj(y) y (157)
S biy) dy
Then the theorem follows if we expand the
centroid of B and invoke the SAM assumption

F(z) = CentroidB(x)) = Centroid} ;L wja;(x)B;)
to rearrange terms

F(x) = Centroid B(x)) (158)
S vb(y) dy
T b dy (158)
Syl wibl(v) dy
= —7& = 160
TS () dy (160)
Pyl wiag ()b (y) dy
S S L wa@hmd D
ST wiai(x) [70 ybi(y) dy
= = 162
ST @) [ dy
X wia(@)V; L yvb’j(y) E (163)
- Z;n:l wja;(x)V;
_ 2jmwia(@)Vie (164)

Y wia(w)Vi

Now we give a simpldocal description of optimal lone
fuzzy rules [135], [136]. We move a fuzzy rule patch so
that it most reduces an error. We look (locally) at a minimal
fuzzy systemF' : R — R of just one rule. So the fuzzy
system is constant in that regio# = c¢. Suppose that
f(z) # c for z € [a,b] and define the error

o(x) = (f(z) = F(@)* = (f(2) = o).

We want to find the best plade So the first-order condition
gives Ve = 0 or

_ Je(x) _

- - (165)

0= "5 = 2(f(2) — ) =5 (166)
Then f(z) # ¢ implies that
de(z) _ . Of(@) _

atz = Z. So the extrema of and f coincide in this case.
Fig. 7 shows how fuzzy rule patches can “patch the bumps”
and so help minimize the error of approximation. [

APPENDIX B
SAM GRADIENT LEARNING

Supervised gradient ascent can tune all the parameters
in the SAM model (31) [134], [136]. A gradient ascent
learning law for a SAM parametef has the form

aP

+

€t +1) = €06) + s

(168)
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where y; is a learning rate at iteration. We seek to
maximize the performance measuft of the dynamical

So this scalar set function leads to the learning laws

systemg = h(q, ). Here the SNR defines the performance mi(t+1) = m;(t) + utaSNR[ F(x)] ( )
P
Let ¢¥ denote thekth parameter in the set functiory. x— m,
i(z) — 178
Then tﬁ]e chain rule gives the gradient of the SNR with x| aslw) - cos T —my (178)
respect tac¥, with respect to the then-part set centreid aSNR p;(x)
and with respect to the then-part set volufiie di(t+1) = d;(t) + [e; - F(UU [ o) (@)

OSNR _ 9SNR OF 9a;  OSNR _ 9SNROF N <aj(x) _ COS(@“ —my )) 1 arg
ok OF da; 0k ;| OF e d; d;
Like results hold for the learning laws of product
and n-D set functions. A factored set function,(z) =
JSNR  9SNR OF a}(xl) . a?(wn) leads to a new form for the performance
8—Vj - Wa—vj (169) gradient. The gradient with respect to the paramet(}—;\rof

the jth set functiona; has the form

We have derived the partial derivative SNR/JF

k
dSNR/do in Section V-B. We next derive the partial oP _ 9P OF da; 9a;
derivatives for the SAM parameters omk — AF da; dak Im¥
or o
da; where
_ (Zi was@)Vi) (3 Viey) =,V (THL, wias(o)Vie) 9a; _ Ha 2) = 4@ (180)
(X wiai(#)Vi) daf g b (w)
(170) : . i :
le; — F(x)|w, V, pi(@) Products of the scalar sinc set functions defined the if-part
= Zi—F2 T = [¢; — F(x)]2 (171) fuzzy setsA; C R" in the SAM approximator. Simulations
2 iz witi(2)V; a;(x) have shown [174], [175] that sinc set functions tend to
The SAM ratio (31) gives [134] perform at least as well as other popular set functions in
9 supervised fuzzy function approximation.
OF _ _ wia;()V;
;S wiai(x)Vi =p;(2) (172) REFERENCES

(1]

and
[2]
oF _ wja;(x)[c; — F(x)] B p;(a) ' il
av; JZJ?;:L w:ai(x)Vi B ij [e; = F(=)]. (A73)

[4]
Then the learning laws for the centroid and volume have

the final form [5]

JSNR

Cj (t + 1) =cj (t) + ij (JI) (174) (6]
and
. 7
Vit + ) = Vi) + 0 B py) a7y
J

8]
Learning laws for set parameters depend on how we

define the set functions. The partial derivatives for the scalar g

sinc set functiona;(z) = sm(%)/(’”’d—?’j) have the

form [10]
Oaj _ [(aj(w) —cos(*5)) o=y fOr @ # my [11]
om; 0, for x = m; 1

aze) 12

da; T —my 1 [13]
2 — | a- — —. 177
ad; <a1 (=) COS( d; )) d; )
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