
Space-variant processing of 1 -D signals 

Robert J. Marks If .  John F. Walkup. Marion 0. Hagler, and Thomas F. Krile 

Two general schemes for 1-D space-variant processing are proplsed. The direct cnrtput display scheme 
gives the space-variant system output dong a line in the processor's output plane. The ouruut soeetrum . . 
display acheme  direct.^ romputes the apace-var~anl system's tsutpul spectrum. Hoth uf there rrhemes utl. 
IIZP R 1.D Input and a line spread function mask. Example applaeations nnd exncrimcntal r~sult* are etua 
presented. 

Coherent optical processors, although traditionally 
used to execute space-invariant computations, are in 
many cases capable of accomplishing space-variant 
operations. These include coordinate distortion.'" 
integral transform eval~ation.fi-~ and ambiguity func- 
tion display.!' " Space-variant analysis has also proven 
useful in such areas as image restoration~?~i3 and 
handwriting synthesis.14 Schemes have been proposed 
whereby arbitrary 2-D space-variant systems may be 
represented with the use of a volume hologram.'5-'a A 
review of the various methods of space-variant pro- 
cessing is given by C o ~ d m a n . ' ~  

The potential utilization of the parallel processing of 
coherent systems to perform general 1-D space-variant 
operations was recognized by Cutrona et a1.20.21 Spe- 
cifically, he proposed a coherent system for performing 
the general linear operation 

where k (x ; [ )  is the kernel of the linear operator, and f([) 
is an input function. Advances in areas of coherent 
processing since this suggestion, including computer 
generated holograms and electrical-to-optical trans- 
ducers, make the 1-D approach to coherent space-var- 
iant processing rather easily implementable. The 
further capability of performing real time processing of 
temporal signals makes such a scheme potentially 
powerful. 

It is our purpose here to present two rather general 
techniques for 1-D space-variant processing. Both 
employ a 1-D input placed adjacent to a transparency 
whose transmittance represents the system line spread 
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function. Spherical or cylindrical lenses are utilized to 
perform appropriate Fourier transformation and 
imaging. The desired system output is viewed along a 
line in an output plane. 

The first of the two schemes to be discussed we will 
call the direct output display (DOD) method. Specific 
space-variant operations, which may he accomplished 
with the DOD processor include magnification, coor- 
dinate distortion. red time convolution and correlation, 
integral transform evaluation, and ambiguity function 
display. 

The second scheme, called the output spectrum dis- 
play (OSD) method, directly computes the Fourier 
transform of the space-variant system output. This 
processor employs a single spherical lens. The 1-D 
output spectrum appears along a 45O line in the pro- 
cessor's output plane. Specific applications Include 
cross spectral density function display and spectral 
magnification. 

Other areas addressed in this paper include lensless 
space-variant processing where required lens trans- 
mittances are included on the line spread function 
mask. Geometric interpretations of the function shifts 
encountered in 1-D convolution and correlation are 
discussed. Experimental results are also presented. 

If. Prellminarles 
The output g ( x )  of a linear system due to an input 

f(i3 may be determined by the superposition inte- 
gral*? 

where S[.] is the linear system operator. The system 
line spread function is the system's response to an input 
Dirac delta: 

kfx -(;€I = Slm - 01. (2) 

As will be made clear in the development to follow, this 
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particular line spread function notation has certain 
advantages in characterizing space-variant sy~terns.~:' 

We say that a system is space-invariant (or isopla- 
natic) if the line spread function shifts directly with the 
input and is thus a function of only (x - 0: 

If a linear system does not meet the invariance criterion 
of Eq. (3), we say that it is space-variant. 

It is the superposition integral characterization of 
space-variant systems [Eq. (I)] or various forms thereof, 
which we are interested in evaluating by optical means. 
Coherent processors capable of performing such 1-D 
operations are presented in the sections to follow. 

111. Dlrect Output Display Method 
A coherent processor capable of evaluating the su- 

perposition integralzL is pictured in Fig. 1. The I-D 
input f(E) is placed in plane PI directly adjacent to 
a mask on which the system line spread function 
h(x - €;[) is recorded. Note that f(E) covers the entire 
( x . 0  plane with no variation in the x direction. Cy- 
lindrical lenses Lt, Lz, and LJ have respective focal 
lengths of 

As such, Fourier transformation is performed in the E 
direction, and imaging is performed in the x direction. 
The field amplitude go(x,v) on the output plane P2 is 
then given by 

where the spatial frequency u is related to the actual 
horizontal distance x l  on plane P? by 

Here. A is the wavelength of the spatially coherent il- 
lumination. 

Comparing the superposition integral in Eq. (1) with 
the processor output [Eq. (5)], we find that 

That is, the 1-D output, corresponding to the input and 
line spread function mask, appears in the processor 
output plane along the x axis. The desired space-var- 
iant operation has thus been performed. For later 
reference, this processing scheme, or modifications 
thereof, will be referred to as the direct output display 
or DOD method. 

An alternate and somewhat simpler scheme for per- 
forming 1-D Fourier transformation5 is pictured in Fig. 
2. As shown, spherical and cylindrical lenses, placed 
back to back, replace the three cylindrical lenses in Fig. 
1. If we assign a focal length off  to both the spherical 
and cylindrical lens, this processor's output intensity 
distribution is the same as in Fig. 1 with u = xplAf. 

With the concept of the DOD processor firmly es- 
tablished, we shall now present some specific applica- 
tions. 

Fig. 1.  A coherent optical pruces'u>r for performing I-Dspace-variant 
operations. The desired processor output lies along the r axis on 

plane Pr. 

Fig. 2. Another mherent processor tor perrorming 1.D spce.variant 
operstiom. The intensity distribution on P2 is identical to that in 

Fig. 1. 

Fig. 3. DOD processor lor performing 1-D mepnification. The 
magnifiestinn iaequsl to theslopeof lens L, which is mounted on a 

rotatable ns8embly. 

A. One-Dimensional Magnification 
The ideal magnifier is characterized by the input- 

output relationship 

where M is the magnification. The corresponding line 
spread function is 

l t(x - €;O = 6 ( x  -ME). (9) 

On the (x,.$) plane, we interpret this relation as a Dirac 
delta sheet along the line x = ME. The magnification 
is simply the line's slope. 

We may implement the DOD magnifier as shown in 
Fig. 3. The Dirac delta sheet is formed by focusing a 
plane wave with a cylindrical lens mounted on a rota- 
table assembly. (This configuration replaces the pre- 
viously employed line spread function mask.) We may 
change the slope of this sheet, and thus the resulting 
magnification, by simply rotating the lens. 

At the lens's back focal plane we place the input f ( [ ) .  
As before, Fourier transformation is performed in the 
E direction by cylindrical lenses L,, L2, and L3. The 
desired output, (11M) f(xlM), appears on plane P p  

along the x axis. For the case of a double pulse input, 
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Fig.4. Theoutputofthe D O D p r w o r  in Fig. 3 tosdoublesqwe 
pulse input. The msgnifications are (81 M = %, (b) M = 1. (el M = 

3. 

Fig. 5. Output of a piecewise magnifier distortiun procewn corre. 
spanding to the inputs pictured in Fig. 6.  The larger pulse is roughly 

three times the length of t h ~  smaller. 

Fig. 6. Inputs for piwewise magnification modinate distortion DOD 
processor: (a) The distortion function D(x). For > 0, we have 
magnification of tan 70" .-. 3. For I < 0, tan 4S0 = 1. (b) Double 

square pulse input. 

experimental results using this setup are shown in Fig. 
4 for various values of M. Note that, although 2-D 
magnification is optically trivial, no conventional 
scheme can control the magnification parameter from 
a single plane as it is done here. 

0. Coordinate Distortion 
The magnifier scheme may he generalized to linear 

systems with input-output relationships of the form 

where we shall refer to D ( x )  as the distortion function. 
The line-spread function associated with Eq. (10) is 

Our Dirac delta sheet is now bent along the locus [ = 
D ( x )  on the ( x , [ )  plane. Such a bent Dirac delta may 
be crudely generated by an appropriately bent glass rod 
which acts as a curved cylindrical lens. Experimental 
results, using a glass rod with a single bend, are shown 
in Fig. 5. The resulting lens slopes, as shown in Fig. 
6(a), constitute different magnifications for 5 > 0 and 
< 0. The DOD processor output, for the input pulse 

configuration in Fig. 6(b), is shown in Fig. 5. 
An alternate form of distortion, used by Rhodes,:% 

employs the line spread function 

Here, the system output is a diatorted version of the 
input's spectrum 

= F[D(xII. (13) 

where F(u)  is the Fourier transform of the input 

Rhodes" uses such a system for generating a log-fre- 
quency display of the input by utilizing a distortion 
function proportional to lnx. 

C. Real Time Convolution and Correlation 
The capability of conventional coherent processors 

to perform 2-D convolution is well known. All these 
schemes, however, either necessitate encoding the 
Fourier transform of a function on a transparency or 
require motion. As we will show, l-D convolution may 
be performed with a variation of the DOD processor 
with no requirement of motion or Fourier encoding. 

The convolution integral, descriptive of isoplanatic 
systems, is ohtained by substituting the invariance 
criterion of Eq. (3) into thesuperposition integral [Eq. 
(I)]: 

where * denotes convolution. The similar operation 
of correlation is defined as 
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Fia. 7. (a) A 1-D function r ( £ )  on the 1x.E) plane. (b) The trans- 
mltmnce in (8) rc~tata ~l~~ckrvteeshout theongbn an angle of8 (e) 
l'he rra~l~mttmnee in (hl for R = 4S0 with a mordtnate r e v e m l  formed 

by physically rotating (b) about its 6 and x axes. 

where the underbar denotes complex conjugate and + 
denotes correlation. 

Before presenting the DOD processors capable of 
performing convolution and correlation, we digress 
briefly for a discussion of the geometrical interpreta- 
tions of thespatial shifts encountered in both Eqs. (15)  
and (16) .  Consider the l - D  function r(E) on the ( x , [ )  
plane as pictured in Fig. 7(a). If we rotate this trans- 
parency about the origin through an angle of B in the 
clockwise sense [Fig. 7(b)], the resulting 2-D function 
is described by 

r(Z cos0 - x sinfJ). (17) 

For the case of a 45O rotation, we obtain r[(E - x)N2)'"], 
which is a scaled version of the shift required by the 
correlation integral [Eq. (16)) .  Scaling may be trivially 
accomplished by a conventional ( 2 - D )  imaging system 
with magnification M = 1/(2)1p2. 

Next, consider physically rotating the transparency 
in Fig. 7(bJ 180' about both its x and 5 axes. This 
constitutes coordinate reversal. For the case of 6 = 45', 
the result would be the transmittance r [ ( x  - [ )1 (2 )1 /2 ] ,  
which is thescaled shift required by the convolution 
integral [Eq. (1511. Various other rotations could of 
course be employed to obtain a number of such shifts 
and scalings. 

Consider, then, the DOD convolution processor as 
pictured in Fig. 8. In plane P I ,  we place the transpar- 

ency representing h(6) with the 45O rotation shown. 
This function, h[(E - ~ ) / ( 2 ) ' / ~ ]  is scaled and inverted 
by lenses Lo and Lb which have respective focal lengths 
of 

fa - (2)'"fb. (18) 

Incident on plane Pz is the desired h ( x  - [) which 
multiplies the input transmittance f ( 6 )  The product 
is then processed as before by the three cylindrical 
lenses. The output (f * h )  appears along the x axis in 
plane PQ 

An alternate approach, not necessitating the use of 
the scaling lenses, will be illustrated for the case of 
correlation. The 1-D transmittances f ( E )  and s(6)  are 
appropriately rotated 45" in plane P I  in Fig. 1 in such 
a manner to form the product 

The field amplitude in plane Pa, after the l-D Fourier 
transformation (Eq. ( 5 ) ] ,  is 

where we have made the variable substitution P = (6 + 
~ ) / ( 2 ) ' / ~ .  Along the x axis, we obtain the output 

This relationship is recognized as a scaled version of the 
correlation integral [Eq. (16)]  and is thus the desired 
result. Convolution can of course be performed in a 
similar manner by choosing appropriate orientations 
of the l -D input transparencies. 

D. Entire Output Plane Utilization 
There do exist some computational manipulations 

for which the entire output plane of the DOD processor 
may be utilized. Upon setting 

where fi(0 is the unit step function, the DOD processor 
output in Eq. ( 5 )  becomes 

Fig. 8. DOD processor for performing convolution. Lenses L. and 
Lo have focal lengths related by /, = 12)'/% to perform seeling on 

the rotated transmittanceon plsne PI. 
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Fig. 9. An example of the relationship between the line spread 
function farms h ( x  - t:c) and h(r;E) on the(1.0 plane. 

where 

Equation (23) is immediately recognized as the one- 
sided Laplace transform o f f ( ( )  with frequency vari- 
able 

For this case, the (a,@) output plane of the DOD pro- 
cessor may be interpreted as the complex s plane en- 
countered in Laplace transform theory. A discussion 
of this specific DOD processor is given by Mueller and 
C a r l ~ o n . ~  

The computation of a signal's ambiguity function is 
another case where the entire output plane of the DOD 
processor is utilized. Here, we set 

so that Eq. (5) becomes the ambiguity function of the 
signal f (x):  

The function f(E - x )  may be generated by the pre- 
viously discussed 45' rotation and scaling. A discussion 
of this particular DOD processor, with experimental 
results, is given by Marks et al. l 1  

E. Integral Transform Display 

We have seen that the Laplace transform of a func- 
tion can be evaluated by the DOD processor. All inte- 
gral transforms are, in fact, special cases of the super- 
position integral and thus, in principle, may be evalu- 
ated by a DOD processor. Included are the Hankel, 
Abel, 2, Mellin, and Fresnel transforms. Use of the 
Mellin transform, for example, has been proposed as an 
alternate to the Fourier transform for matched filter- 
ing.: We are of course limited to 1-D so that multidi- 
mensional manipulations, such as the Radon trans- 

cannot be evaluated. Some transforms, such 
as the Hilbert, are space-invariant in n a t u r e Y k d  may 
thus be evaluated by more conventional means. 

IV. Output Spectrum Display 
The direct output display or DOD method may be 

used to compute directly the output of a I-D linear 
space-variant system. An alternate scheme, which we 
shall call the output spectnun display or OSD method, 
directly computes the Fourier transform (or spectrum) 
of the system output given by 

= ?=k(x)I 

= 1: ~ ( r )  exp(-j2rfXx)dr. (23) 

where 3, [.I denotes Fourier transformation with respect 
to x and where f, is the frequency variable associated 
with x .  

In the development to follow, i t  will also be necessary 
to perform Fourier transformation with respect to the 
spatial variable (. As such, for an arbitrary function 
p(x;E), we define 

Here, as in the DOD treatment, the frequency variable 
u is assigned to [. 

Consider again the superposition integral [Eq. (I)]. 
Substituting into Eq. (28) and freely interchanging in- 
tegration order, we write18 

Note that we are still utilizing the line spread function 
notation defined in Eq. (2). An example of the transi- 
tion from h(x - E ; E )  to h(x;[ )  is shown in Fig. 9. 

Equation (30) states that we may generate the output 
spectrum of a space-variant system by successive Fou- 
rier transformation of the product f(E)h(x;[) with re- 
sped to (and x followed by evaluation along the line u 

= f1. 
The coherent processor capable of generating the 

output spectrum in Eq. (30) is pictured in Fig. 10. The 
input f ( ()  and the line spread function mask h(x;F) are 
both placed in the front focal plane of spherical lens L 1. 

In the back focal plane we obtain the familiar Fourier 
transform relationship 

Fig. 10. A coherent opticnl processor for directly displsying the 
output spectrum of s space-variant system. 
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Fig. 11. When only the output intensity is of interest, the input, line 
spread function mask, and spherid lens may all be placed in the m e  

plane for the OSD p r o c m r .  

Fig. 12. The OSD processor for displaying the spectrum of a mag- 
nified input The slopeof the Dirac delta sheet on plane PI  is equal 

t o M  - 1. 

where the spatial frequencies are related to the hori- 
zontal ( x o )  and vertical (yo) distances in the output 
plane by 

fx = ~ u / i f  v = so/Af. (32) 

Note that we may write Eq. (31) as 

Comparing with Eq. (30), we conclude that 

C(f*) = Co(/..f. ). (34) 

That is, the desired 1-D output of the OSD processor 
in Fig. 10 lies on the 45' line v = f, in plane Pz. Re- 
markably, this familiar Fourier transform configuration 
thus has the capability of potentially performing a wide 
number of space-variant operations of the form of Eq. 
(30). 

When one is interested only in the magnitude of the 
output of the OSD processor, the Fourier transforming 
lens may be placed in the same plane as the input and 
line-spread function mask" (Fig. 11). One may fur- 
thermore completely discard the lens by simply in- 
cluding the lens's phase transmittance in the line spread 
function mask. In this case, we may perform 1-D 
space-variant processing with an input, a mask, and a 
few centimeters of free space. Also, note that vignetting 
is eliminated by such a scheme. 

We now present some specific applications of the 
OSD processor. 

A. Magnifier Spectrum Display 
A straightforward application of the OSD processor 

is in displaying the spectrum of an ideal magnifier. We 
begin by rewriting the magnifier's line-spread function 
from Eq. (9) as 

As before, we may generate the required Dirac delta 
sheet with a cylindrical lens. The slope, however, is now 
equal to M - 1. The OSD processor for spectrum 
magnification is pictured in Fig. 12. 

Experimental results displaying the spectrum of a 
magnified rectangular pulse are in Fig. 13. As shown, 
the resulting sinc functions are inversely magnified due 
to the scaling theoremz6 of Fourier transform theory. 
Note that, for M = 0 (corresponding to a -45' delta 
sheet input), the magnified pulse is a Dirac delta, the 
spectrum of which is uniform. 

Fig. 13. The output of the OSD pnesaur in Fig. 12 for a single 
square pulse input. The spectrum displays corresplnd to pulse 
magnification of (a) M = 2. (h) M = :%, (c )  M = I ,  (dl M = %,and (el 

M = 0. 



B. Cross Power Spectral Density Display 
The cross power spectral density function of two 

signals, f ( x )  and s ( x ) ,  is defined as the Fourier trans- 
form of their cross-correlation: 

Consider, then, placing two transparencies of f ( x )  and 
s ( x )  in plane Pi of Fig. 10 in such a manner as to form 
the product f ( x ) s ( [ ) .  From Eq. ( 3 1 ) ,  the processor 
output is 

Along the 45O line v = f,, this becomes 

where we have made the variable substitution = [ + 
x .  We may rewrite Eq. (38)  as 

which is the desired result. 

V. Generallzatlon 

We have so far restricted the input f(E) to be l-D. We 
may easily generalize all previous schemes to utilize a 
2-D input f(x;E), in which case the superposition integral 
of Eq. ( 1 )  is augmented to the form 

This relationship adds another degree of flexibility t o  
the computational capability of the DOD and OSD 
processors. 

V1. Conclusions 
We have presented two coherent proceseors capable 

of performing general l - D  space-variant operations. 
Both employ a l - D  input placed adjacent to a line 
spread function mask. The direct output display, or 
DOD processor, then performs a l-D Fourier transform 
on the resulting product. .The desired space-variant 
system output then appears along the zero frequency 
axis in the Fourier plane. Many recently proposed 
space-variant processors have been shown to be special 
cases of the DOD processor. 

The output spectrum display, or OSD processor, di- 
rectly generates the Fourier transform of the space- 
variant system output. Only a single spherical lens is 
utilized when both the output magnitude and phase are 
desired. No lens is required when only the output 
magnitude is of interest. 

In practice, one may utilize a computer generated 
hologram for the required line spread function mask. 
The l - D  input can be generated by an electrical-to- 
optical transducer for real time applications. 
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