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Sampling Theorems for Linear Shift-Variant 
Systems 

ROBERT J. MARKS, II, MEMBER, IEEE, JOHN F. WALKUP, MEMBER, IEEE, AND 
MARION 0. HAGLER, MEMBER, IEEE 

Abstmc-Sampling theorem COIICX@ are applied to certain cfaws of 
linear shift-variant systems. Various sampling theorem characterizations 
arise from different bandlimiting assumptions on the system input and/or 
impulseresponse. Intwoofthethreecasesconside~the systemoutput 
is also bandlimited and can be expressed in a sampling theorem expansion. 
The discrete dmracte~tions arising from these two cases reduce to an 
identical computational form that can be evaluated with a generalized 
Z-transform treatment. The Fourier duals of the sampling theorems, 
wherelu the system is chara&- by its frequency rather than impulse 
response, are alsu presented. 

I. INTRODUCTION 

P AST APPLICATIONS of sampling theorem concepts 
to linear shift-variant systems has been to evaluate 

the system impulse response rather than to characterize 
the input-output relationship [I], although adequate sam- 
pling rates have been discussed briefly [2]. In this paper, 
on the other hand, we present numerous conditions under 
which the superposition integral characterization of the 
input-output relation for linear shift-variant systems can 
be expressed in sampling theorem type expansions. Cer- 
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tain ramifications of these treatments, such as digital 
characterization of the system process without loss of 
information and generalized Z-transform treatment of 
discrete superposition relations, are also discussed. These 
linear system characterizations are the result of investiga- 
tion of space-variant systems encountered in coherent 
optical processing. The sampling theorem for variation 
limited systems has previously been presented [3] and is 
included here for purposes of completeness and continu- 
ity. 

Sampling-theorem expansions rigorously hold only for 
bandlimited signals. Unfortunately, a causal signal (zero 
for negative time) can never be rigorously bandlimited [4]. 
Nevertheless, there are many causal signals that can be 
considered to be “essentially bandlimited” so that familiar 
time-bandwidth product approximations can be applied if 
appropriate [5]. Since the causality considerations for the 
sampling theorems presented here are similar to those for 
the Whittaker-Shannon sampling theorem, for example, 
they are not discussed further in this paper. We note, 
however, that for spatial systems used in coherent optical 
processing, causality is not a constraint. 

In the following section, certain preliminary notational 
and computational conventions are given which are neces- 
sary in the development of the sampling theorems. Sec- 
tions III through V present three different sampling theo- 
rems corresponding to various bandlimiting assumptions 
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on the system input and/or impulse response. We show 
Section VI that a direct consequence of these sampling 
theorems is infinite matrix characterizations of the system 
process which, except for sampling rates, are identical. 
The use of the Z-transform in treating these discrete 
characterizations i,s briefly discussed in Section VII. In t 

(4 
Section VIII the Fourier duals of the sampling theorems 
are presented wherein sampling is largely performed in the 

some concluding 
t h(t;r) 

frequency domain. Section IX contains 
remarks. 

For clarity of presentation, attention 
to one dimension.. Generalization to 
cases is straightforward. 

II. PRELIMINARIES 

will be restricted 
multidimensional 

. Fig. 1. An example of the transition between the system function 
fonns (a) h(t--7;~) and (b) h(t;~) on the (t,~) plane. 

The response u(t) of a linear system to an input u(t) 
can be expressed by the superposition integral 

y(t)=S[u(t)]=s” h(t-7;7)24(7) d7 (1) --oo 
where S( .) is the system operator and the system impulse 
response is formally defined as 

qt-7;7)=S[6(t-T)] (2) 

where 6 (t) denotes the Dirac delta. (For a causal system, 
h(f-r; 7) is zero for t <r.) This particular notation for 
the impulse response [6] apparently used first in the sys- 
tems area by Kailath [l] and later in regard to optical 
systems by Lohmann and Paris [7], has the advantage of 
bringing us directly to the shift-invariant case when the 
system function does not depend on its second argument. 
Also, we can direc:tly express the spectrum of the system 
output utilizing Fourier operators 

Y(f)=%[ YW] 

= J-l$[h(f;~)] exp (-j2?rjr)u(r) dr 

=%qw;++)]l,=f 

where the Fourier operators are defined by 

T,[s(t;~)-1 g SW s(f;~) exp (-j271ft) dt 
--m 

and 

(3) 

(4) 

‘YT[s(t;7)] g Irn S(Z;T) exp (-j2avr) d7. (5) -co 

In (3), the impulse response notation is consistent with 
that used in (2). An illustration of the transition from 
h(t- r; 7) to h(t;r) is offered in Fig. 1. Note that for the 
shift-invariant case that h(t; 7)-+/z(f). Equation (3) then 
takes on the familiar product form Y(f) = 
%~wmbwl. 

A transform of the impulse response which will be of 
interest is the variation spectrum defined as 

H,(t;V)=qh(t;7)]. (6) 
The support of the variation spectrum is a measure of the 
manner in which th!e impulse response changes shape with 

respect to 7. We consider here the low-pass case for which 
H,(t; v) is identically zero outside the interval Iv] Q W,. 
Such systems will be referred to as variation limited. The 
quantity 2W,, is appropriately termed the variation band- 
width [I]. Note that a shift invariant system has a variation 
bandwidth of zero and is thus truly “invariant.” 

III. A SAMPLING THEOREM FOR VARIATION 
LIMITED SYSTEMS 

We now will develop a sampling theorem applicable to 
variation limited systems with bandlimited inputs. For the 
bandlimited input, we again consider the low-pass case 
where u(t) has bandwidth 2 W,. Consider, then, the term 
h(t;~)~(r) which is the argument of the Fourier operator 
in (3). Multiplication in the r domain corresponds to 
convolution in the v domain. As such, if u(r) has band- 
width 2 W,, and h(t; r) has a variation bandwidth of 2 WV, 
then their product will have a bandwidth 2 W, equal to the 
sum of the component bandwidths: 

2ws=2w,+2wu. (7) 
The product h(t; ) ( ) r u 7 can thus be expanded in a uni- 
formly converging [8] Whittaker-Shannon sampling theo- 
rem [9] in 7: 

h(CT)U(7)’ ~qc~,)~(%) 

.Zinc2W,(r-7,) (8) 
where r,, = n/2W, and sincx 2 sin TX/TX. Substituting 
into (3) and simplifying gives 

where our transfer function is defined by 

Ktf;~) A %[ h(v)] 
and G(j) is the gate function: 

(10) 

IfI< l/2 
If I > l/2. 
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SAMPLER 

Fig. 2. An implementation of the sampling theorem presented in Section III. Sample values of the 
input are fed into a bank shift invariant filters each of which corresponds to a sample of the parent 
shirt variant impulse response. 

Inverse Fourier transforming (9) gives 

y(t)= C.h(t- fin; 7,)24(7,)*sinc2 WSt (11) ” 
where “*” denotes the convolution operation. 

We interpret (11) as follows: For bandlimited inputs, 
the output of a variation-limited system can be computed 
by 1) sampling the input, 2) multiplying each input sample 
by its corresponding sample impulse response, 3) sum- 
ming the results, 4) passing the sum through a suitable 
low-pass filter. As is shown in Fig. 2, we can interpret this 
result as the representation of a variation-limited system 
by a bank of shift-invariant systems each of which corre- 
sponds to a sample impulse response. The switching 
mechanism required to feed each filter its corresponding 
sample value represents the shift variance of the overall 
system. Note that (11) is not optimal in the sense of 
utilizing minimum sampling rates. That is, u(r) only re- 
quires a sampling rate of 2 W, and h( t; 7) a sampling rate 
of 2 WV in 7. Both are here being sampled at a rate of 2 W,. 
As is shown in [3], however, the expression resulting from 
individual sampling of the input and impulse response at 
their corresponding minimum rates yields a computation- 
ally less attractive expression. 

IV. AN ALTERNATE SAMPLING THEOREM 
In the previous section, h(t;r) was assumed to be 

bandlimited in r. Note that this restriction does not neces- 
sarily assure that h(t - 7; 7) is also bandlimited in 7. As 
such, we can derive an alternate sampling theorem for the 
case. where .g7[tz(t- T;T)] is zero outside of the interval 
) Y] < W,,. If our input has bandwidth 2 W,, then the prod- 
uct h(t-r;r)u(r) has bandwidth 2W,=2Wu+2Wh in T 
and can be expressed in the sampling theorem expansion: 

h(t-7;7)u(7)= ~h(f-7&J 
n 

.u(7,) siix2W,(7--7J (12) 

where, here, r,, = n/2 W,. Substituting into the superposi- 
tion integral (1) gives 

sinc2Wd(r-7,) d7 

(13) 

Our expansion here is similar to that in (11) except for the 
sampling rate and the fact that no low-pass filtering is 
required. We thus note that the system output in this case 
need not necessarily be bandlimited. 

V. A THIRD SAMPLING THEOREM 

The sampling theorems thus far discussed require sam- 
pling in the r or input domain. A third sampling theorem 
that utilizes output sampling occurs when h(f;r) is band- 
limited in t with (low pass) bandwidth of, say, 2W,. (Note 
that this condition is equivalent to h(t - r; r) being band- 
limited in t.) Such a condition holds when the system 
response to an impulse input is bandlimited irrespective of 
the location of the input delta function. Under this band- 
limited assumption, we can immediately express the im- 
pulse response in the. sampling theorem expansion: 

h(t;7)=~/r(t,;7)sinc2W,(t-t,) (14) n 
where t,, = n/2 W,. Substituting into (3), followed by sim- 
plification, leaves 

. exp ( -j2rft,JG 

Inverse transforming yields 

u(t)=x [h(t,;t-t,,)u(t-t,,)]*sinc2W,t. (16) 
” 

As before we have reduced the system characterization to 
a summation of convolutions. In this case, however, we do 
not have to place any bandlimiting constraints on our 
input. Note that due to the convolving sine, our output is 
bandlimited. 

We can interpret (16) as shown in Fig. 3. Our input is 
fed into a tapped delay line that serves as the shifti 
variance of the overall system. The outputs at various 
points along the delay line are then multiplied by the 
appropriate sample responses. All these products are then 
summed and passed through an appropriate low pass filter 
to give the corresponding system output. Kailath [l] has 
also utilized tapped delay lines in shift-variant system 
synthesis. ._ 
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TAPPED DELAY LINE 

Fig. 3. An implementation of the sampling theorem presented in section V. Delayed versions of the 
input are multiplied by corresp@ing sample impulse responses, summed, and passed through a 
low pass filter to give the output of the parent shift variant system. 

VI. DISCRETE CHARACTERIZATION 2 W, < 2 W,. In this case, (15) becomes 

-Two of the three sampling theorems thus far presented 
(1 I), (16) yield bandlimited outputs which also can be Y(f)=+ 7 %[w,~+40] 
expressed in a sampling theorem expansion. In these 
cases, we can thus completely characterize the system . exp (-j2rftJG - 
output by its sample values which, in turn, can be directly (2&)&J 
evaluated by the sample input and impulse response val- 
ues. 

1) Consider first the variation limited system prith band- 
= & T %[ h(4; MO] 

limited input. From (1 I), we define the low-passed system . exp (-j2rftt), w, < wt. (23) 
impulse response as Inverse transforming and evaluation at t = t,,, gives 

i(f--7,;~~) k 2W,h(t-T,;T,)*sinc 2W,t. (17) 
Equation (11) can now be written as 

(18) 

It follows immediately that 

From (9), y(t) has a bandwidth of 2 W,. Thus we require 
that I,,, = m/2 W,. Note that ‘(19) can be straightforwardly 
expressed in an infinite matrix form. 

Suppose we now make the additional constraint that 
h(t; 7) is bandlimited in t with bandwidth 2W,. If W, > 
W,, then the low-passed impulse response in (17) is the 
same as our actual impulse response: 

~(t-7,;7,)=h’(t-7,;7,); w,> w,. (20) 
Then, (19) becomes 

where t,, = r, = n/2 W,. 
2) Secondly, consider the sampling theorem expansion 

in (16) where the output has bandwidth 2 W,. The corre- 
sponding mth-output sample here is given by 

Y(~J= IX [:h(t,;t)u(t)*sinc2W,t]I,=r,-!, (22) 
n 

where, now, t,,, = m/2 W,. 
A more computationally attractive form of (22) occurs 

when, in addition to being bandlimited in t, the system is 
variation limited a:nd the input is bandlimited such that 

y(t,,,)= $ ~h(t/~~)u(7,), ’ W,< W, (24) 

where t,,=r,,=n/2W,. 
Inspection of the results of the two discrete characteri- 

zations above (21), (24) reveals computationally identical 
forms. Our assumptions in both cases are 1) ~(7) is 
bandlimited and 2) h(t,7) is bandlimited in both variables. 
We can combine these discrete characterizations into a 
single matrix-type expression: 

where 
Wk max(W,, Ws) (26) 

and t,, = 7, = n/2 W. We again stress that sampling of both 
the input and impulse response is here performed at a rate 
above the required minimum allowable sampling rate. 

VII. Z-TRANSFORM TREATMENT 
For shift-invariant systems, (25) takes on the form of a 

discrete convolution which is frequently treated tiih the 
Z transform [9]. We will now show that, due to our choice 
of impulse response notation, such treatment can be gen- 
eralized to the shift variant case. 

We define two Z transforms of a two variable discrete 
sequence s(m,n) by 

Zn[ s(m,n)] = zzz-“s(m,n) 
n 

(27) 
and 

Zm[ s(m,n)] = 2 z-“s(m,n)* 
m (28) 
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Note the similarity of the spirit of these definitions to the 
Fourier transform operation? in (4) and (5). Denote the Z 
transform of y(m/2W) by Y(z). From (25), it follows that 

(29) 

This is the Z-transform treatment of a discrete shift- 
variant process. We present it here primarily to point out 
a generalization. Applicability of (29) to discrete analysis 
has yet to be established. Note, however, as was in the 
case of (3), the result reduces to the more familiar product 
form for the shift-invariant case. 

VIII. FOURIER DUAL SMLING THEOREMS 

The sampling theorems thus far presented can also be 
applied in a Fourier dual sense to the frequency domain. 
The corresponding constraints here take on a physically 
different meaning and thus widen the class of systems 
which can be characterized in sampling theorem type 
expansions. 

To change the computational form of the superposition 
integral, we apply Parseval’s theorem to (1): 

y(r)=S_mmk(t-cv;v)U(v)du (30) 

where U(Y)=‘%~[U(‘T)] and 

k(t--cv;v)=lm h(t-7;~) exp (j27rv7)&. (31) 
--m 

The kernel k(. , .) is recognized as the system frequency 
response: 

k(t-cv;v)=S[exp (j277vf)]. (32) 
The constant c is included simply to maintain dimensional 
consistency between the time variable t and frequency 
variable v. 

1) Consider first the Fourier dual of the sampling theo- 
rem for variation limited systems presented in Section III. 
Here; we require that 

%;‘[k(t;v)]=~m k(t;v) exp (j2nw)dv (33) 

be identically zero outside tmhe interval IQ-] < T,. Also U(v) 
must be “bandlimited.” That is, our input U(T) must be 
nonzero only over the interval IT]< T,. The resulting 
sampling theorem, then, is simply the Fourier dual of (11): 

r(t)= + TW- cvn; v,) U(v,)*sinc (2T,t/c) (34) 

where 2T, = 2T,, + 2T, and v, = n/2T,. 

2) Consider next the Fourier dual of the sampling theo- 
rem in Section IV. Here, we require F;‘[k(t- cv; v)] is 
zero for IT]> Th and, again, that u(7) is zero for IT]> T,. 
The Fourier dual of the sampling theorem in (13) follows 
immediately as 

y(t)=& ~kk(t-cv,;v,JU(v,) (35) 
d n 

where 2Td = 2T, + 2T,, and v,, = n/2Td. 
3) Lastly, we inspect the Fourier dual of the sampling 

theorem presented in Section V. Our constraint in this 
case is that k(t,v) is bandlimited in t with bandwidth 2W,. 
Note that this constraint is the same as requiring h(t ; 7) to 
be bandlimited in t. The resulting sampling theorem ex- 
pansion corresponding to (16) is 

r t-t 7 

where t,, = n/2 W,. 
The three sampling theorems presented here can obvi- 

ously be placed in discrete form as was done in Section 
VI. For brevity, these discrete cases will not be presented 
but can be straightforwardly derived utilizing previous 
notions. 

IX. CONCLUSIONS 

We have presented several sampling theorems applica- 
ble to various classes of shift-variant systems involving 
certain bandlimiting constraints on the system impulse 
response and/or input. The system output, in certain 
instances, is bandlimited and the computational form 
required to evaluate the values for its sampling theorem 
expansion was shown to result in an infinite matrix rela- 
tion. The computational forms in the two cases considered 
are identical differing only in sampling rate. The matrix- 
type relationship was shown to be able to be evaluated in 
a generalized Z-transform treatment. Fourier duals of the 
sampling theorem, where sampling is largely performed in 
the frequency domain, were also presented. Possible areas 
of application of the sampling theorems include signal 
and image processing as well as shift-variant system 
synthesis with a number of shift-invariant systems and/or 
tapped delay lines. Investigation into implementation of 
the sampling theorems with coherent optical processors is 
also presently under way [lo]. 
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