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Methods of linear system characterization through
response cataloging

Robert J. Marks 11, John F. Walkup, and Marion 0. Hagler

Various methods of linear system characterization are presented. Each method requires cataloging the sys-
tem response to a set of input stimuli. The continuum orthonormal basis set response method, in principle
applicable to all linear systems, has as special cases point-spread function and frequency response superposi-
tion integral characterizations. The piecewise isoplanatic approximation, sampling theorem approach, and
discrete basis set response methods are three schemes whereby restrictive assumptions are placed on the sys-
tem and/or allowable input class. In each case, the number of system responses required for system defini-
tion is reduced to a countable number. Contrasting properties and applicability of the three schemes are
discussed. Last, shift-invariant and spreadless systems are briefly reviewed in the context of requiring only
one input-output relation for complete system characterization.

1. Introduction

In the treatment of linear (space-variant) systems,
a knowledge of the system point-spread function (im-
pulse response) is normally assumed.1'2 In practical
situations, this relation can be determined in sampled
form by probing the input plane with point sources and
cataloging the corresponding system responses. If,
however, the system is highly space-variant and the
response changes rapidly over a small interval in the
input plane, an enormous number of responses needs
to be cataloged. In such a case, an alternate method of
system characterization might be more appropriate.
Linear system characterizations also play an important
role in coherent linear processor synthesis. There have
been efforts, for example, to synthesize space-variant
processors through the multiplexing of sample point-
spread functions either angularly in a volume holo-
gram3 '4 or with phase coded reference beams.5 In both
cases, an appeal to a space-variant sampling theorem
characterization is made.

The purpose of this paper is to present and contrast
a number of linear system characterizations. In the
next section, we present the continuum orthonormal
basis set response method, of which the familiar
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point-spread function superposition integral is a special
case. Reduction of the number of required input-output
relations to a countable set is presented in Sec. III.
Here, restrictive assumptions must be made on the
system and/or allowable class of inputs. Systems re-
quiring only a single input-output relationship are
presented in Sec. IV. Section V contains some con-
cluding remarks. For clarity of presentation, analysis
will be performed in one dimension. Extension to two
or more dimensions is straightforward.

We model the system process by the operator S[-]
(Refs. 6, 7):

g(X) = S[UW)]. (1)

Here, g(x) is the system output corresponding to an
input u (y) 8 Henceforth, we restrict attention to the
case where S [-] is linear:

S[aui(y) + bu2(y)] = aS[ul(y)] + bS[u2 (y)J,

where a and b are y-independent constants.

II. Continuum Orthonormal Basis Set Response

A continuum set, {X'x ()1, is said to be orthonormal and
complete if7 9

f 4,.Q)TyQ)dt = (x -y),

where (.) is the Dirac delta, and the overbar denotes
complex conjugate. A signal u(y) can be expressed in
terms of this set by

U(Y) = SiQ)d, (2)

where
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a() = J: u(y)Ty(Q)dy. (3)

The proof follows straightforwardly from the sifting
property of the Dirac delta.6

Substituting Eq. (2) into the system characterization
in Eq. (1) and taking advantage of the operator's lin-
earity give

g(x)= a Q(t)S[4,y()]d#. (4)

Thus, our system is characterized by knowledge of the
system's responses to each element in the continuum
basis set. For a given input, one simply computes the
corresponding aQ() followed by evaluation of Eq. (4).

A. Line-Spread Function

Historically, the most popular choice of a continuum
orthonormal basis set is the Dirac delta: y () = 3(y -
0). Here, the functional coefficient a(-) is identical to
the input value at y = . The system response is the
familiar line-spread function: h(x - ;) = S[5(y -)].
We here have used the Lohmann-Paris line-spread
function notation.'0 '1l For the Dirac delta basis set, the
system characterization in Eq. (4) becomes the familiar
superposition integral:6

g(x) = J u()h(x - ;)d(. (5)

B. Frequency Response

An alternate choice of a continuum basis set is the
complex exponential: q,(Q) = exp(j27rv(). Here, v is
used instead of y due to the obvious frequency person-
ality of the variable. For this set, the functional coef-
ficient is recognized as the Fourier transform of the
input:

art,= J u(Q) exp(-j2rv)dt = Jju(Q)] = U(v).

Borrowing from the sister electrical sciences, we shall
call the system response to the complex exponential the
frequency response:

k(x - cv;v) = S[exp(j2rv()]. (6)

This notation is analogous to that used for the Loh-
mann-Paris line-spread function. The constant c
merely retains dimensional consistency between the
spatial variable x and the frequency variable v. The
input-output relation in this case is

g(x) = U(v)k(x - cv;v)dv.

Comparing with the superposition integral (Eq. (5)],
we conclude from the power theorem1 2 applied to the
spatial-frequency variables (Q,v) that

k(x - cv;v) = h(x - t) exp(j2irv()d4. (7)

The line-spread function and frequency response are
thus related by a Fourier transform.

The frequency response characterization has an in-
teresting physical interpretation. Instead of cataloging
the system response to various input point sources, we

here are cataloging the system response to a continuum
number of tilted input plane waves. Thus instead of
decomposing the input into a number of point source
Huygen's wavelets, we are characterizing the input by
its angular spectrum.6

Frequency response system characterization has been
used to widen the class of operations achievable by 1-D
coherent processors.13-16

C. Discussion

The point-spread function and frequency response
lend themselves to an intuitive and physically realizable
method of system characterization. They also are
coupled by a Fourier duality. There do, of course, exist
alternate continuum basis sets. Other basis sets,
however, do not seem to lend themselves to easy im-
plementation or intuitive interpretation. This is not
to say, however, that better continuum basis sets do not
exist for specific applications.

Ill. Countable Discrete Characterizations

By placing certain limiting assumptions on the sys-
tem and/or input, it is possible to reduce the required
number of cataloged input-output relations to a coun-
table number. In this section, three such basic methods
are reviewed and contrasted.

A. Piecewise Isoplanatic Approximation
The concept of the isoplanatic patch is well estab-

lished with regard to imaging systems. 617"18 Marks and
Krile19 give a more extensive treatment with regard to
general linear systems.

The basic assumption of the piecewise isoplanatic
approximation (PIA) is that the system impulse re-
sponse varies slowly as a Dirac delta explores an input
interval I < < u,. In this case, the system output
can be approximated by

g(x) Y Sl u()h(x - ;#nd.

The limits (lnu") describe the boundaries of the nth
isoplanatic patch. The point in is chosen to lie some-
where within the nth patch. To assure no patch over-
lap, we further require that Un = n+1.

The goodness of the approximation of the PIA is a
relatively difficult quantity to measure in general.
From the specific examples given in Ref. 19, however,
we conclude that neither pointwise nor rms convergence
can generally be assumed.

Note, however, that we have reduced the required
number of input-output relations to a countable set.
To apply the PIA, we need knowledge of only one
sample impulse response per isoplanatic patch. Loh-
mann and Paris10 have offered a definition of the iso-
planatic patch, which is wholly dependent on the system
impulse response (line-spread function). We thus
conclude that the PIA is essentially an input-indepen-
dent method of linear system characterization.

As is the case with all the characterizations presented
in this paper, the PIA has a Fourier dual. Here, the
input spectrum is divided into frequency-invariant
patches, and we make the approximation
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g(x) u Efn U(v)k(x - cv;vn)dv,
n

where n and (In describe the patch's endpoints, and n
< Vn < On = n+,. The sample frequency responses are
obtained by cataloging the system response to a coun-
table number of tilted plane wave inputs. Here again,
the method of characterization is primarily input-in-
dependent.

B. Sampling Theorem Characterizations

Classical Whittaker-Shannon sampling theory is
applicable to system characterization when certain
bandlimited constraints are placed on the system input
and line-spread function. For a detailed treatment with
Fourier duals, see Refs. 16, 20, and 21.

A signal u (y) is said to be bandlimited if its Fourier
transform U(v) has compact support, i.e., U(v) 0 for
I vi> Wu, where Wu is some finite number. Similarly,

we say that a linear system described by the impulse
response function h (x;t) is variation-limited if its
Fourier transform with respect to t has compact sup-
port. In other words, if Ht (x;v) is the Fourier trans-
form of h(x;S), then H (x;v) Ofor vI > WV for all x,
where WV is finite. Then, for a variation-limited system
with a bandlimited input, the input-output relationship
can be written as

g(x) = E u(Q.)h(x - n;n) * sinc2Wx,
n

where * denotes convolution, sincx = sin7rx/7rx, W =
Wu + W,, and Sn = n/2W. Note that the sampling
rate 2W, is dictated by both the system and the input.
As with the PIA, however, we only require the countable
set fh(x;Wn)I for complete system characterization.

A second sampling theorem requires h (x - ,) to be
bandlimited in t for all x. In this case

1
g(x) = E u(0n)h(x - n;W,

2Wdn

where, now, n = n/2Wd. The minimum required
sampling rate 2Wd is equal to the sum of the input
bandwidth 2Wu and the supremum support of the
Fourier transform of h(x - ) in t. The same set
fh(x,Wn)} is here required for system characteriza-
tion.2 2

In both sampling theorems, desired sampling rates
are dictated by both the input and the system. These
characterizations are thus both input- and system-
dependent.

C. Discrete Basis Set Response
Here we describe a method of linear system charac-

terization, which places a constraint only on the allow-
able input class.4 16 Let {p,(y)) denote a complete or-
thonormal basis set dense in a signal class A. A is as-
sumed to be contained in the class of finite energy sig-
nals.2 3 Then, for all u(y) in A, we can write2 4

u(y) = anOn (Y),
n

where an denotes the inner product

an= Sf U(Y)0n(y)dy.

Substituting the expansion into Eq. (1)
vantage of the operator's linearity give

and taking ad-

g(X) = E anS[On(Y)J
n

From this relation we conclude that the system is
completely characterized for the signal class A by
knowledge of its response to each element in the basis
set. Note that the members of the response set
IS[¢kn(y)] need not necessarily be orthogonal.25 This
scheme can, of course, be generalized by only requiring
k10n(Y)} to be a complete (not necessarily orthogonal)

basis set in A. Note that no restrictions (except lin-
earity) have been placed on the system.

An obvious choice for On(Y) is the set of eigenfunc-
tions resulting from solution of the corresponding in-
tegral equation from Eq. (5).26-28 The fabrication of
these eigenfunctions to input into the system, however,
would in general be an extremely difficult undertaking
and furthermore would require a priori knowledge of
the system impulse response. We will thus focus at-
tention solely on the input class.

One common signal class consists of all finite energy
bandlimited signals with bandwidth less than 2W.
That is, if u(y)EA, then

w
u(y) = J U() exp(27rry)dv.JW

Such signals can be expressed via the conventional
cardinal series expansions

u(y) = E u(Yn) sinc 2W(y - Yn),
n

where Yn = n/2W. We thus conclude that a linear
system is characterized for this class of inputs if we have
knowledge of {S[sinc 2W(y-Yn)]1 for all n. The system
output is then found simply by weighting these re-
sponses by the input's sample values:

g(x) = Eu (yn)S[sinc2 W(y-Y)].
n

The input sinc basis set is one which can be straight-
forwardly generated by coherent optical means.

An alternate input signal class consists of finite en-
ergy signals of finite spatial width. We here consider
the case where the input is identically zero outside of the
interval Iy I <a. The input can then be expressed in the
Fourier series

u(y) =-L U(Pn) exP(j2rVnY) rect I-I'2an 2a),

where vn = n/2a and

rect(x) = 1;IX I < 1/2

For this signal class, we can characterize the system by
cataloging the responses

S[exp(j2irvny) rect(y/2a)].

These elements can be easily generated by probing the
system input with appropriately tilted plane waves
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through a rectangular aperture. The system output is
gained by weighting these responses by the sample
values of the input spectrum:

g(X) =-1 E U(V,) S exp(j2-rvny) rect -2a , I()

D. Discussion

In this section we have presented and reviewed three
methods of linear system characterization with con-
trasting properties. In each case, the number of
input-output relations required for characterization is
countable.

The PIA is a characterization scheme which is only
system-dependent. Sampling theorem representation,
on the other hand, requires limiting assumptions on
both the system and input. The third method requires
cataloging the system response to each element in a
basis set and was shown to be only input-dependent.

IV. Single Response Characterizations

To complete our discussion, we now briefly review
three restrictive system assumptions that allow system
characterization by knowledge of only one system re-
sponse.

By far the most common linear system assumption
is that of shift-invariance. A system is said to be
space-invariant (isoplanatic) if h(x - t;t) - h(x -).
In this case the superposition integral in Eq. (6) becomes
a convolution integral. Only a single impulse response
h(x) is required to completely define a linear space-
invariant system. Many optical systems and, in par-
ticular, imaging systems are thus modeled.29 30

In a Fourier dual sense, we can call a system fre-
quency-invariant3' if k(x-cv;v) -k(x-cv). Thus,
the only system response required for system definition
is k (x). This corresponds to cataloging the system re-
sponse to a single normally incident input unit ampli-
tude plane wave. A second response, however, may be
required to determine the c parameter. One can easily
show that a linear system cannot be simultaneously
space- and frequency-invariant.

An example of a frequency-invariant system is the
common thin lens Fourier transformer with an input-
output relationship of6

g(x) = u) exp-j2r x dt,

where is the focal length of the lens, and X is the
wavelength of the spatially coherent illumination. The
corresponding frequency response is k (x - cv) = X)b (x
- xev). Note that the constant c = Xg is here specified
by system parameters.

One final linear system class that can also be con-
sidered as a dual of the shift-invariant system is the
"spreadless" system",27 with the input-output rela-
tionship defined by g(x) = u(x)t(x). A simple mask
with transmittance t(x) is an example of such a system.
The temporal analog of the spreadless system is the
linear "memoryless" system. Like the frequency-in-
variant system, the spreadless system can obviously by
characterized by its response to a single normally inci-

dent plane wave. The corresponding system response
is t(x).

The shift-invariant and spreadless systems impose
severe limitations on applicable linear system classes.
They do, however, require only one input-output rela-
tionship for complete characterization.

V. Conclusion

We have presented a number of methods by which a
linear system can be characterized by cataloging its
response to a set of input stimuli. These methods can
either be used in the analysis or synthesis of linear co-
herent systems. In the latter case, we require a method
of storing the system responses in such a manner that
they are able to be appropriately accessed by an arbi-
trary input.

The best characterization method for specific appli-
cation is determined by the system and/or allowable
class of input. For example, a highly space-variant
system would best be characterized by limiting the
input class and using the discrete orthonormal basis set
response method. If, on the other hand, our system is
quasiisoplanatic (quasi-space-invariant), application
of the PIA is more appropriate. In this case, no re-
strictive assumptions are made on the input.
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