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One-dimensional linear coherent processing using a

single optical element

Robert J. Marks 11, Mike 1. Jones, E. Lee Kral, and John F. Walkup

A coherent processor is presented which is capable of performing a large class of 1-D linear space-variant op-

erations. The only components of the processor are a 1-D input, a mask whose transmittance is specified

by the desired linear operation, and an output plane. Compared with other 1-D processors, this processor

has advantages of real space compactness and total elimination of vignetting. Experimental results are pre-

sented for the specific operations of convolution and spectrum scaling.

1. Introduction

A generalized technique for coherent linear space-
variant processing was initially discussed by Cutrona.1
Alternate techniques for performing 1-D space-variant
operations have recently been reported. 2 -4 Each of
these processors requires a 1-D input, a mask (whose
transmittance determines the linear operation), and a
system of cylindrical and/or spherical lenses. In this
paper, we describe such a processor which requires only
a single optical element. Real space compactness and
vignetting elimination are achieved. An inherent as-
sumption in the design is that the processor's output
intensity (rather than phase and amplitude) is of in-
terest. As will be shown, however, the output's phase
and amplitude can be preserved by the simple inclusion
of a lens immediately prior to the processor output
plane.

11. Preliminaries

A linear space-variant operation can be described via
the superposition integral:

g(x) = I' u()h(x;)dt. (1)

Here, g(-) is the output of a system with line-spread
function (impulse response) h(-,-) corresponding to an
input u ( ).

We will show that the familiar Fourier transform
configuration shown in Fig. 1 is capable of performing
the general space-variant operation. 5 A 1-D input u)

is placed in plane P1, directly adjacent to a mask with
transmittance H(f& ;t) given by

H(f.;t) = S h(x;0) exp(j2rfxx)dx. (2)

The spatial frequency variable fx is measured by di-
viding the actual vertical spatial displacement in plane
P1 by Xe, where g is the focal length of the spherical
lens, and X is the wavelength of the coherent plane wave
illumination. Note, through Fourier transform inver-
sion, that

h (x, .;) = X H(f.;t) exp(-j2rfxx)dfx. (3)

The product u(Q)H(fx;t) is Fourier transformed by
the thin lens in Fig. 1 to give incident on plane P2 the
field amplitude6 7

g0 (x;v) = ff-'u()H(fx;*) exp[-j2ir(fxx + tv)Idfxdt, (4)

where v, the frequency variable associated with , is
measured identically to the method described for fx.

From Eq. (3), it follows that

go(x;v) = E u(Q)h(x;t) exp(-j2irv4)d4. (5)

Comparing with the superposition integral in Eq. (1),
we conclude
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g(x) = go(x;o). (6)

That is, the desired 1-D output lies along the x axis in
plane P2 of the processor. The familiar thin lens
Fourier transform configuration of Fig. 1 is thus seen
to be capable of performing a wide class of linear
space-variant operations.
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Fig. 1. A coherent processor for performing 1-D space-variant op-
erations. The desired output appears along the x axis in plane P2.
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Fig. 2. The generalized single optical element 1-D space-variant
processor requires only an input u(*), a mask T(fx;t), and an output

plane.

111. Single Optical Element Processor
If we are interested only in the intensity distribution

on plane P2 of Fig. 1, the input transmittance and mask
can be moved directly adjacent the spherical lens.8 The
lens transmittance can now be included on the mask to
give a revised mask transmittance of

T(f.;t) = H(fx;t) exp {-j [ 2 + (gfx)21} * (7)

(Recall x = Xgfx is the vertical displacement on plane
P1.) The resulting processor, pictured in Fig. 2, re-
quires only a 1-D transmittance placed adjacent a mask.
It is difficult to imagine a coherent processor in more
compact form. Note also that vignetting8 is totally
eliminated. The actual field amplitude incident on
plane P2 of this processor can easily be shown to be8

fto(x;v) = go(x;v) exp{Lxe [X2 + (Xgv)2]} - (8)

The intensity distribution on the output planes of the
processors in Figs. 1 and 2 are identical, that is,

Ig(x;v)12 = Igo(x;v)12.

IV. Examples

We now present two example applications of the
single optical element 1-D space-variant processor with
experimental results.

A. Convolution (Space Invariant)

The linear operation of convolution is defined as

g(x) = u()h(x - )d (10)

From Eq. (2) it follows that

H(fx;t) = V(f) exptj2wfxt), (11)

where ft(fx) is related to h (x) by a Fourier transform:

(fx) 3' h(x) exp(j2irfx)dx. (12)

The desired mask transmittance is thus

T(fx;t) = (fx) exp [A]i ( - Xfx)2* (13)

The exponential term is recognized as the transmittance
of a cylindrical lens with focal length e = e/2 rotated
450 in the (Q,fx)-plane. We thus can generate the T
mask by placing a 1-D transmittance of ft(fx) adjacent
to a rotated lens.

An interesting, although trivial, application of the
convolution processor is 1-D unit magnification imag-
ing. Since the corresponding R(fx) is identically one
for all fx, this operation can be achieved with only the
450 rotated cylindrical lens.

The experiment chosen to illustrate the convolution
processor is the performance of an autoconvolution of
a single pulse [Fig. 3(a)]. The result is shown in Fig.
3(b). The squared modulus of the result is pictured in
Fig. 3(c). This is the intensity distribution we should
observe along the x axis of the processor output.

The line-spread function pictured in Fig. 3(a) can be
expressed as

(a)

u(x) = h(x)

-a a

(9)

The desired modulus squared of the space-variant op-
eration result can be viewed along the x axis of the
processor's output plane. Note that the phase term in
Eq. (8) can be removed simply by placing a convex lens
of focal length immediately prior to the processor
output. Since we are interested in only the field am-
plitude along the x axis, a cylindrical lens would also
suffice. In either case, the processor output would yield
the desired result both in amplitude and phase. This
condition, for example, would be required if further
processing were to be performed on the system
output.

(b) 

(c)L

-2a

x

g(x)=u(x)* h(x)

x
Ig(x)12f _2 T

"I I

20
X

Fig. 3. Convolving the pulse in (a) with itself gives the result in (b).
The output of the 1-D convolution processor will give the intensity

distribution shown in (c).
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Fig. 4. A scheme for recording the mask required for the convolution

processor. The transforming cylindrical lens has twice the focal
length of the rotated cylindrical lens.

h~x = 1; lxj a (14)

w r 2a It>a'

where 2a is the pulse width. It follows that the desired
mask transmittance is

T(f;t) = 2a sinc (2af,) exp[ Aj ( - Xef.)2 (15)

where sincex = (sin'7rx)/irx.
The mask transmittance is generated as shown in Fig.

4.9 This impulse response h(x), pictured in Fig. 3(a),
is placed on P1 and is Fourier transformed by a single
cylindrical lens. Thus, the desired H(f ) is incident on
plane P2, where it is multiplied by the transmittance
of the rotated cylindrical lens. Note that in order for
f, to be measured in the previously discussed manner,
we require that the transforming lens have twice the
focal length of the rotated lens.

Except for coordinate reversal, the field amplitude
which exits plane P2 is the desired relationship for
T(fX ;t). To holographically record this relation,
spherical lenses La and Lb perform a conventional
imaging operation onto plane P3, which is also illumi-
nated by a planar reference beam eij. The photosen-
sitive medium in plane P3, when processed, will then
serve as the holographic mask for the processor in Fig.
2.

By using the same pulse in Fig. 3(a) as the processor
input, convolution is performed. A picture of the pro-
cessor output is shown in Fig. 5, and a 1-D scan of the
x axis is shown in Fig. 6. As can be seen, the result
compares favorably with Fig. 3(c).

B. Spectrum Scaling (Space Variant)

A second example application of the single optical
element processor is in the scaling of the Fourier
transform or spectrum of a 1-D signal. The input-
output relationship here is given by

g uI) exp -j27rXdt,g(X) = EJu~ x~xJ~ (16)

where M is a dimensionless scaling factor. The spec-
trum of u(-) can be written as

U(v) = s: uQ) exp(-j27v0)d0.

Comparing with Eq. (16), we conclude that

g(x) = Ulx/(MXe)].

Fig. 5. The output of the convolution processor for a double pulse

input. The intensity distribution along the x axis should be the same
as Fig. 3(c).

Fig. 6. A scan of the x axis of Fig. 5. The results compare favorably
with Fig. 3(c).

x
Y
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(17) -f -
(18) Fig. 7. A processor for performing spectrum scaling. The slope of

the slit is equivalent to the spectral magnification.
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The desired mask is thus the product of a Dirac delta
and a spherical lens transmittance. The Dirac delta
term can be interpreted as an impulse sheet lying along
the line t = MXgfX in the (Q,f&)-plane. Recalling again
that X~f. is a measure of spatial displacement, we con-
clude that the slope of this line is the spectral magnifi-
cation M.

The single optical element coherent processor for
performing spectral magnification is shown in Fig. 7.
The input u(Q) is placed in plane P1 directly adjacent
a thin slit, which corresponds to the Dirac delta term.
A spherical lens is also placed on plane P1.

Experimental results of the spectrum magnifier
output plane are shown in Fig. 8 for the case of a single
pulse input for two values of M. The corresponding

Fig. 8. Outputs of the spectral magnifier in Fig. 7 for a single pulse x -axis scans are shown in Fig. 9.
input corresponding to two magnifications. V. Conclusions

Fig. 9. x-axis scans of Fig. 8.

The scaling operation is now more clearly seen. The
parameter M can be interpreted as the spectral mag-
nification.

The impulse response of the spectrum magnifier is

h(x;0) = exp[(-j2-rxx)/(MXg). (19)

After some computation, it follows that

T(f.;t) = - 6fX) expt-ir( 2 + f2)]. (20)

We have presented a coherent processor capable of
performing generalized 1-D linear space-variant oper-
ations with the use of only a single optical element. The
advantages of this over previously presented 1-D
space-variant processors include superior real space
compactness and total elimination of vignetting. The
performance of the processor was illustrated through
implementation of the specific operations of convolu-
tion and spectral magnification.
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