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Two-dimensional coherent space-variant processing using
temporal holography: processor theory

Robert J. Marks 11

Using the temporal integration and summation properties of the conventional transmission hologram in con-
junction with some recently developed linear operator characterizations, a number of coherent processors
are developed which are capable of performing generalized 2-D linear space-variant operations.

1. Introduction
There have been many recent attempts to perform

generalized linear space-variant operations with co-
herent processors. Deen et al. have suggested angle
multiplexing a number of responses within the emulsion
of a volume hologram. This method has been shown
to be ineffective due to undesirable Bragg diffraction
geometry.2 A second multiplexing method, suggested
by Krile et al.,3 makes use of phase-coded reference
beams. In this scheme, a degree of diffuse background
noise due to crosstalk terms is always present in the
processor output.

Francois and Carlson4 have investigated the class of
space-variant operations achievable by N arbitrarily
spaced planar amplitude transmittances. They have
recently shown that all such processor operations can
be expressed in terms of a number of cascaded multi-
plication-Fourier transform stages.5 These are oper-
ations which can be achieved by conventional coherent
processors.

Many space-variant operations can be decomposed
into a coordinate distortion followed by space-invariant
or Fourier transform operations.6-8 Bryngdahl9 has
presented a scheme for performing a large class of such
distortions. The method, however, imposes a rather
severe space-bandwidth product on the input.7

If one is willing to sacrifice a dimension, the 1-D
processors of Rhodes and Florence,10 11 Goodman et
al., 12 and Marks et al. 13"1 4 are recommended.

This paper presents a number of generalized 2-D
space-variant coherent processors. Each makes use of
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the temporal field amplitude summation/integration
capabilities of the conventional transmission holo-
gram,15-18 which, for purposes of completeness and
continuity, are briefly reviewed in Appendix A. The
use of photosensitive media for performing summation
of incident light intensities has been utilized previously
in incoherent processing. The interested reader is re-
ferred to the excellent review paper by Monahan et
al. 19

11. Two-Dimensional Space-Variant Processors using
Temporal Holography

The output, g(xy), of a 2-D linear space-variant
system corresponding to an input, u(,q), can be written
as

g(xy) = ff u(4,-q)h(x - ,y - n;t,)ddn, (1)

where the linear operation's point-spread function
(impulse response) h is given by the system response to
an input Dirac delta point source. We here are using
the Lohmann-Paris point-spread function notation.20 2'
Three methods of characterization of the superposition
integral in Eq. (1) are discussed in detail in Ref. 22. A
brief review of these characterizations in two dimensions
is offered in Appendix B.

We now present a number of coherent processors that
are capable of performing Eq. (1). Each processor re-
quires a mask with real time transmittance changing
capability (either mechanically or electrically) as well
as a means of sequential data input. These processors
are not meant to be representative of all possible cases,
but rather are illustrative of a basic methodology.

A. Type 1 Processors
The recording and playback geometries for the pro-

cessor we shall refer to as type 1 are pictured in Fig. 1.
Both recording and playback geometries consist of the
conventional two-lens convolution (space-invariant
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Fig. 1. The (a) recording and (b) playback geometries of the type
1 processor.

operation) processor. The addition of the dimension
of time allows for performance of space-variant opera-
tions.

In the Fourier and filter planes of Fig. 1, the spatial
frequency variables, f and fy, are determined by di-
viding the corresponding spatial displacement by X,
where X is the wavelength of the coherent illumination
and g refers to the lens focal length.15

Implementation of some specific space-variant op-
eration characterizations follows.

1. Sampling Theorem Approach: Sequential
Exposure

To implement the sampling theorem for space-vari-
ant systems, sample input values, U( nf7m) ( - ,
- t7m), are sequentially input into the system. [ -
n7 o - m) refers to a unit Dirac delta or point source

located at coordinates (Q,, m,) on the input plane.]
Using a scanner, this can be achieved by either placing
the transmittance u( ,,7) on the input plane or by am-
plitude modulation of the scanner beam.

In either case, the input is Fourier transformed, and
the field amplitude incident on the Fourier plane is

U( n.lm) exp[-j27r(fx t + fyq m )]. (2)

For the nmth exposure, we place a mask with the am-
plitude transmittance H(fxfy;nn7m) in the Fourier
plane, where

H(fxfy; n,21m) = h(xy;4n am) exp[-j2r(fx + f[y)ldxdy.

(3)

The mask is recognized as a sample transfer function
of the desired space-variant operation.

The field amplitude immediately to the right of the
Fourier plane is given by the product of H(fxjfy;4nNm)
and Eq. (2). This product is again Fourier transformed
to give incident on the photosensitive medium the sum
of the planar reference beam field amplitude and

U(.fnfjm)h(x - nY - ?7m;nt7m) (4)

After making a number of such exposures, the re-
sulting hologram is placed in the playback geometry of
Fig. 1(b). Upon illumination with the playback beam,
the diffracted term of interest (denoted by sI) is

E E u.(n,em)h(x - nY -m; Aim) (5)
n m

(We here and henceforth will assume that the unwanted
diffracted terms, S2 and S3 in Fig. 1, are propagating at
sufficiently steep angles to miss the transforming lens.
If such is not the case, they can be removed in many
cases by placing an appropriate aperture in the filter
plane.' 3 This assumption is made so as not to confuse
the filtering of s, from s2 and S3 with the low pass fil-
tering required in the sampling theorem.)

If low pass filtering is required [see Eq. (B2)], an ap-
propriate rectangular aperture is placed in the filter
plane. Otherwise [Eq. (B3)], no filtering is required.
In either case, the desired output appears on the pro-
cessor's output plane.

2. Second Sampling Theorem Approach: Raster
Input Scanning

In this scheme, u (y) is input into the system via a
raster scan. We denote the mth line scan by

U(V mtin.)6Q vt;n - tim), (6)

where v is the scanning speed. At time t, the field
amplitude incident on the Fourier plane is

u(ut;sjm) exp[-j2(fvut + fynm)]. (7)

We assume that the mask has real-time amplitude
transmittance changing capability, which, at time t, is
H(fxfy;vtiim). The field amplitude to the right of the
Fourier plane is the product of this transmittance and
(7). This product is again Fourier transformed to give
incident on the photosensitive medium the sum of the
reference beam, and

u(vt;nm)h(x - vt,y - 7m,;Vt,m). (8)

If the exposure time for a single scan is T, the corre-
sponding term in the resulting hologram is

f Iu(vt; im)hx-ut,y -_mh;Vt,ilm) + exp(jkay)j 2dt. (9)

A number of such scans are made corresponding to
various values of m. Upon illumination with the
playback beam, the resulting hologram will yield a dif-
fracted term (corresponding to s) of the form

E u(vt;h(x - vt,y - 2vtm)dt

- F. u(.,-qm)h(x- - fm~Viim)d, (10)

where we have made the variable substitution v = ut.
The desired aperture in the filter plane of Fig. 1(b)

again depends on the form of the sampling theorem
being implemented. If low pass filtering is required
[Eq. (B2)], an appropriately dimensioned vertical slit
is required. Otherwise [Eq. (B3)1, no aperture is
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Fig. 2. The (a) recording and (b) playback geometries of the type 2 processor.

needed. In either case, the desired operation output,
g(x,y), appears on the processor's output plane.

3. Third Sampling Theorem Approach:
Stationary Input Source

Here we consider the case where the input point
source is always at the origin of the input plane. That
is, the nmth input is of the form

U(4n, UMQM(t 77- (li)

The corresponding field amplitude incident on the
Fourier plane is simply ui(rnm). If we assume that the
ninth mask transmittance is

H(fxfy;nnm) exp[j27r(f.tn + fynrm)], (12)

the field amplitude incident on the photosensitive
medium is the sum of the planar reference beam and

u(Qn1Jm)h(x - nY - ?Irm;nd7m). (13)

This is the same relation as (4). The procedure for
playback is thus identical to that in Sec. I.A.1.

The stationary point source can also change contin-
uously in time. In this case, the input is u(vt,2m)3(,fl),
and the instantaneous mask transmittance for the mth
scan is

H(fxfy;vtnm) exp[-j27r(vtf + tmfy)l. (14)

The playback procedure is identical to that described
in Sec. I.A.2.

4. PIA Implementation
The processor in Fig. 1 can also be used to implement

the piecewise isoplanatic approximation (PIA) of Eq.
(1). Here, an input transmittance, u(t,,1), is placed on
the input plane. The nmth of the number of exposures
made corresponds to unit coherent plane wave illumi-
nation of the ninth isoplanatically modeled input patch.
The corresponding mask is H(fxfy;0n,27m), the same as
was used in the sampling theorem implementation in

Sec. II.A.1. The ninth field amplitude incident on the
photosensitive medium is the sum of the planar refer-
ence beam and

oW kn+o Jfir n

Jk 5 S J u(Qti)h(x - ,Y- #na m)dti. (15)

By making a number of such exposures corresponding
to all desired nm values, the resulting hologram, when
placed in the playback geometry of Fig. 1(b), will gen-
erate the PIA of the linear operation (Bi).

5. Sinc Response Implementation
The sinc response characterization in Eq. (B8) can

also be implemented by the processor of Fig. 1. The
scheme is identical to the sampling theorem imple-
mentation in Sec. II.A.1. except that (1) a Fourier mask
transmittance of

S 3 Sksinc2WxQ - tn) sinc2WY(n - )
X explj2'r(fxx + fyy)Idxdy (16)

is used, and (2) no filtering is required in playback. The
nmth Fourier mask corresponds to an input of
U(nn7m)Q -n,77 - lm)

One can also use a stationary input, U(tnl7m)W(021)
(as in the sampling theorem characterization in Sec.
II.A.2), if the corresponding mask transmittance in Eq.
(16) is multiplied by the phase term exp[-j27r(fxl, +
fylm )].

B. Type 2 Processors

The type 2 processor, pictured in Fig. 2, is similar in
personality to the type 1 processor. The only difference
is that recording and playback are performed on the
frequency (ffy)-plane rather than the spatial (xy)-
plane.

C. Type 3 Processors

The type 3 processor, pictured in Fig. 3, can be uti-
lized to implement either the sampling theorem or sinc
response linear system characterization.
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Fig. 3. The (a) recording and (b) playback geometries of the type 3 processor.

1. Sampling Theorem Approach
For sequential recording, our nmth input is

U(enfm)6(t,77). This yields a plane wave with field
amplitude u(n,72m) incident on the mask. The nmth
mask has a transmittance of h(x - nY - 1m;n,'m).
After a number of exposures, the diffraction term of
interest from the resulting hologram is thus

a, a uQ(inAw)h(x - n,Y-1mn,1m) (17)
n m

Filtering may or may not be required, depending on
which sampling theorem [(B2) or (B3)] is applicable.

If the mask has continuous real-time amplitude
changing capabilities, we could scan the input as was
done in Sec. II.A.3.

2. Sinc Response Approach
The sinc response is implemented in the same fashion

as the sequential sampling in the previous section, ex-
cept that the nmth mask transmittance is the sinc re-
sponse:

S[sinc2Wx( - ) sinc2Wy(? -7r)]. (18)

No filtering is required.

Ill. Conclusions
A methodology has been presented whereby 2-D

linear space-variant operations can be performed. A
temporal integrating/summing hologram and a specific
operation characterization are common to all.

There are three basic disadvantages to these pro-
cessors: (1) sequential data input; (2) the requirement
of changing masks; and (3) the decrease in SNR re-
sulting when a number of exposures are stacked on a
single hologram.

The processors do, however, demonstrate a feasible
combination of temporal and spatially parallel pro-
cessing which is capable of performing generalized 2-D
linear space-variant operations.

This work was supported in part by the University of
Washington Graduate Research Fund (project PSE-
517).

Appendix A: Temporal Holography
The foundation of the processors in this paper rests

on temporal holographic integration and summation
operations. If a time-varying field amplitude, a(x,y;t),
is incident on a photosensitive medium paced on the
(xy) plane and exp(joaky) denotes a planar reference
beam, the resulting intensity at time t is

I(x,y;t) = a(x,y;t) + exp(jaky)12 . (Al)

After processing, we make the conventional assumption
that the corresponding hologram will have a field am-
plitude transmittance proportional to15-1 7

b(xy) = f I(x,y;t)dt = b + b2 + b3,

where T is the exposure time, and

by(x,y) = f a(xy;t)dt exp(-jaky)

b2(sXY) = Tl(XY 

b3(x,y) = T+ T a(x,y;t)I 2dt

(A2)

(A3)

The overbar denotes complex conjugation. Upon
playback with the reference beam, three diffracted
terms will emerge:

sj(x,y) = bi(x,y) exp(jaky); i = 1, 2, 3. (A4)

The term corresponding to b is the temporal integral
of the original time-varying incident field amplitude:

T
s1(xY) = f a (x,yt~dt. (A5)

Alternately, we could have exposed the photosensitive
medium to N time-varying field amplitudes, a,(x,y;t),
n = 1, 2, .. , N. In this case the corresponding dif-
fracted term is of the form
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rTsl(xy) = E , fa,(xy;t)dt. (A6)n~l fo
Thus, the hologram can act as an integrator and/or
summer of incident time-varying field amplitudes.

Appendix B: Linear Space-Variant System
Characterizations

A. Piecewise Isoplanatic Approximation
In the piecewise isoplanatic approximation (PIA), the

input plane is divided into isoplanatically modeled
patches, the nmth of which is described by kn <
kn+l and m S < lm+i. Then

g(x,y) E E S I uQ(,n)h(x - ,Y - n;#nm)dtdn,
n m f,, In

(Bi)

where we choose the coordinate (Qn, n) such that kn <
tn < kn+, and Im < (,m S Im+ Here, the superposition
integral is reduced to a sum of convolutions. The cal-
ibration of the input plane is independent of the
input.

B. Space-Variant System Sampling Theory

Classical Shannon sampling theory is applicable to
linear system characterization. If certain bandlimited
constraints are placed on the input and impulse re-
sponse,

g(xy) = E u(Qn,77)h(x - n,Y - fr;{ns71m)
n m

* sinc2Bxx sinc2ByY, (B2)

where n = 7/2Bx, m = m/2By, sincx = sin7rx/rx, and
" *" denotes convolution. The sampling rates, 2Bx and
2By, are determined by both the input's and the impulse
response's bandwidths.

Under alternate bandlimiting constraints, the con-
volving sincs in (9) are unnecessary. That is,

g(xy) = ^f3 1f E E u(4n,1q)h(x -nY -1m;nnrm), (3)
4xyn m

where, now, n = n2Bx and m = m/2BY. The sam-
pling rates here, 2ix and 2y, are also dependent on the
input and impulse response.

C. Orthonormal Basis Set Response Characterization

Limiting our input to that class of signals spanned by
a 2-D orthonormal basis set [nm (Q, ) we can write

U Q, = E E rnOnm(J), (B4)
n m

where

anm = J' U(,-)nn(Qf)dtdn. (B5)

In this case, the system output is given by

g(x,y) = E anrS[Onm(4.u)I, (B6)
n m

where S[0nm (,ij)] denotes the linear system's response
to an input On( 0)0)

S[O5nm(Q,0)1 = f f nm(Q,?)h(X - ,y - n;t,)dtd-. (B7)

Note that this method of system characterization de-
pends only on the input class.

As an example, consider the case where the input
class consists of all finite energy signals with xy-band-
widths less than 2Wx and 2Wy, respectively. We can
apply the conventional Whittaker-Shannon sampling
theorem' 5 and write

g(Xy) = E E u(4n,1m)S[sinc2Wx(Q - n) sinc2Wy(n - 7n)],
n m I-)

where On = n/2W. and nm = m/2Wy. Thus the system
is characterized by its sinc response set and the sample
values of the input.
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