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Abstract. A linear coherent optical technique for restoration of images altered
by a multiplicative periodic degradation is considered. By proper choice of a
multiplicative grating, restoration can be performed using conventional linear
coherent optics techniques. Specific attention is given to the case of continuous

sampling in which the image is periodically set to zero in strips.
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1. INTRODUCTION

In this paper, we present a linear coherent optical processor capable
of restoring images degraded by multiplicative periodic degrada-
tions. Nonlinear coherent processors have been used to perform such
restorations using homomorphic filtering.!-? Here, the degradationis
processed after a logarithm has been taken. This transforms the noise
from multiplicative to additive.

The coherent processor described herein is applicable to a large
number of periodic degradations—even when identically zero over
some subinterval of the period. This latter case will be considered as a
specific example. The noise sensitivity of the restoration also will be
addressed.

2. PRELIMINARIES

Our development will be for one-dimensional periodic degradations,
although the restoration algorithm and its corresponding optical
implementation are straightforwardly generalized to two dimen-
sions. Let p(x) denote a periodic function with unit period and
Fourier series,

p(x) = E cpexp(j2mnx) , (n
where
¢, = / p(x) rect(x) exp(—j2mnx) dx |, (2)

and rect(y) is unity for |y| <1 and zero otherwise.
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Let f(x,y) denote an image. For a given period T, we define the
degradation

g(x.y) = f(x,y)p(x/T) . (3)

The image is assumed to be band limited in x with maximum spatial
frequency W. That is,

w

fix,y) = / l.:(u_,y)cxp(jiarrux}du. )
-W

where
F(u,y) = F,1(x.y)

/ f(x,y)exp(—j2mux)dx , (5)

—o0

with %, denoting the (one-dimensional) Fourier transform operator
in x.
The spectrum of g(x,y) is

G(u,v) = F(u,v)*TP(Tu) , (6)

where * denotes convolution with respect to u, P(u) =%,p(x),and
F(u,v) =§yF(u.y). From Egq. (1), we have

-]

3 ¢ b(u—n). (7

n=—o

P(u) =
Thus, Eg. (6) can be written as

Guw= 3 an(u—-;— , v) . @®)

n=-—0

Thus, the net effect of a multiplicative periodic degradation is repli-
cation of spectra in the frequency domain. The weight of the nrh
replicated spectrum is equal to the nrh coefficient of the Fourier
series of p(x).
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3. RESTORATION METHODOLOGY

The coherent optical generation of the spectrum in Eq. (8) is shown in
Fig. 1. In Fig. I(a), an amplitude transmittance f(x,y) is Fourier
transformed by a thin lens with focal length £. The field amplitude in
the back focal plane is then proportional to F(u,v), where

X

() = (M%&) ©

with A being the wavelength of the unit amplitude coherent plane

wave illumination.?

We can conceptually construct g(x,y) in Eq. (3) by placing ampli-
tude transmittances of f(x,y) and p(x/T) back to back. As shown in
Fig. 1(b), the corresponding spectrum is replicated in accordance with
Eq. (8). The cross section of this spectrum is shown in Fig. 2. The
component spectra are separated by 1/T. Note that if 1/ T >2W, the
spectra do not overlap. Thus, f(x,y) can be regained by isolating the
middle spectra and inverse transforming. This can be done optically, as
shown in Fig. 1(b), by masking out all but the zeroth-order spectrum in
the (u, v) plane, followed by Fourier transforming with a second lens.

We are interested in the case in which the spectra overlap, i.c.,
where the data are aliased. In Fig. 2, we have first-order aliasing since
only the spectra labeled c; and c_, overlap the ¢, spectrum. If T is
large enough so that, in addition, the ¢, and c_, labeled spectra also
overlap, we have second-order aliasing, etc. In general, the order of
aliasing is

M= <o2wT> | (10)

where <a>> denotes the greatest integer not exceeding a.

How can we extract the zeroth-order spectrum from the overlap-
ping spectra? In many cases, this can be done by appropriately
replicating the replications. If the coefficients of the superimposed
spectra are chosen correctly, the spectra overlapping the zeroth-
order spectrum can be totally canceled.

The replicated spectrum can be replicated as shown in Fig. 1(c),
where, back to back with our degradation g(x,y), we have placed a
1-D grating, with period T and amplitude 6,,(x/T). The Fourier
series of the grating is

M
Bm(x) = 3, bpexp(j2mmx) , (11

m=—M

where the coefficients have yet to be specified and, as we shall see
shortly, 2M + I terms suffice. Since the processor is linear, a grating
transmittance of C6),(x) is also acceptable. The processor output is
then simply multiplied by the constant C. The constant should be
chosen such that the grating is passive, i.¢., has a transmittance that
everywhere lies within the unit circle on the complex plane. This can
always be done if all the b, coefficients are finite. C can also be
chosen to assure maximum dynamic range for the passive grating.
Proceeding in a manner similar to that used before, the product

has a 2-D spectrum of

H(u,v) =

M
2 b, G (u—%.v)

m=—M

n+m
\) (13)
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Fig. 1. lllustration of the restoration methodology: {a) an amplitude trans-
mittance and its spectrum, (b) the duplicated spectrum formed by multiply-
ing the amplitude transmittance by p(x/T) to form the degradationg(x,y}=
t{x,y)p(x/T}. and (c} isolation of the zeroth-order spectrum by replicating
the replications with the grating 8y (x/T).

Fig. 2. Cross section of G(u.vl, [from Fig. 1(b)]. The spectrum F(u,0} is
triangular. The replicated spectra overlap in first-order aliasing.

where, in the second step, we have used Eq. (8) and reversed summa-
tion orders. Setting p = n + m in the n sum gives

H(u,v) = Z

p:—m

3 P

S Bm Cp—m F(u—T,v). (14)
m=—M

We desire to isolate the zerorh-order spectrum. Thus, we require that

H(u.v)rect(u;2W) = F(u,v) . (15)
This occurs in Eq. (14) when

M
2 Bulsm =&, . -M=p=sM . (16)

m=—M

where &,. the Kronecker delta, is one for p = 0 and zero otherwise.
The b, are found through solution of these 2M + 1 linear equations
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Fig. 3. Coherent processor for restoring objects aitered by multiplicative
periodic degradations.

[assuming that Eq. (16) is not singular]. Once isolated, we can block
the nonoverlapping spectra with a 1-D low-pass filter slit and re-
image, as shown in Fig. 3.

4. EXAMPLE: CONTINUOUS SAMPLING

As an example application, consider the case in which the periodic
degradation is of the form of a Ronchi ruling transmittance with duty
cycle a:

-

px)= 3 e =) ¢ (17)

n=-—co

The image is thus known within eT-width strips placed T units apart
and otherwise is set 1o zero. Restoration here is thus an interpolation
problem. This specific case of the restoration algorithm has been
considered elsewhere in more depth.4-* Consider first-order aliasing
for which Eq. (11) becomes

6;(x) = b, [1 + a(e)cos2mx)] , (18)
where we have recognized that b, =b_, and

2b
a(a) = -b—’ . | (19)

(o]

If 6, (x) has the same sign for all x, the grating is not bipolar. This is
equivalent to requiring that

la(e)| =<1 . (20)
Solving Eq. (16), we find that

—2c,

a(a) = C_O:E d 21

where ¢, = asincen. A plot of |a(a)| is shown in Fig. 4. Equation
(20) is satisfied only for duty cycles in excess of « =0.68. Otherwise, a
bipolar grating is needed, i.c., one that is holographically recorded.

5. NOTES

Of paramount importance is the sensitivity of our restoration tech-
nique 1o data perturbations. A detailed analysis has been made for
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Fig. 4. Function used for determining the polarity status for restoring con-
tinuously sampled objects. For o >0.68, the sinusoidal amplitude grating is
positive and real. Otherwise, a bipolar grating is required.

the case of continuous sampling.’ The performance of the algorithm,
in general, will improve with decreased order of aliasing and degrade
as the condition of the M XM matrix of ¢ coefficients corresponding
to Eq. (16) increases.® For example, if

p(x) = 3 8(x—n), (22)

n=-—o

then, for M >0, Eq. (16) has no solution. Indeed, here we would be
trying to recover aliased spectra in the classical Whittaker-Shannon
sampling theorem.3.” The corresponding cp are all equal. Thus, the
matrix of ¢'s in Eq. (16) is singular, and restoration is not possible.
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