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Abstract -In this paper, we present a novel technique for signal synthe- 
sis in the presence of an inconsistent set of constraints. This technique 
represents a general, minimum norm, solution to the class of synthesis 
problems in which: the desired signal may be characterized as being an 
element of some Hilbert Space; each of the N design constraints generates 
a closed convex set in that space; and those N convex sets generate, or 
may be resolved into, two disjoint closed convex sets, such that at least one 
of the two sets is bounded. The synthesis technique employs alternating 
nearest point maps onto closed convex subsets of a Hilbert Space, and may 
be viewed as an extension of D. Youla’s “Method of Convex 
Projections”- which addresses the case in which the N closed convex sets, 
corresponding to the design constraints, possess a nonempty intersection. 
Section I provides a general introduction to the synthesis problem and to 
its solution. Section II contains the mathematical justification for the 
solution technique, while Section III presents an example of the synthesis 
of a data window for spectral estimation. In Section Iv, we discuss 
potential extensions of this technique within the area of signal synthesis, as 
well as to the more general class of constrained optimization problems. 

I. INTRODUCTION 

W ITH THE increasing complexity of modern informa- 
tion transmission and processing systems, there have 

been concomitant increases in the variety, and in the 
stringency, of design constraints imposed upon the signals 
which these systems will utilize. It may well be the case that 
the set of constraints corresponding to the ideal signal for a 
particular application is inconsistent, in the sense that the 
satisfaction of any one of the constraints will preclude the 
satisfaction of other constraints in the set. Examples of 
such inconsistent constraint sets are abundant, and may be 
found in even the most fundamental of information sys- 
tems. 

Consider a simple baseband digital communications sys- 
tem, in which a single binary value is to be transmitted 
every T seconds. In the (k + l)th bit interval, the presence 
of a “1” at the source is to be indicated by the transmission 
of a pulse p( t - kT)-where p(t) is identically zero for 
t @ [0, T]-while the presence of a “0” is to be indicated 
by the transmission of -p(t - kT). Hence, p(t) will be of 
infinite bandwidth, since any band-limited signal is ana- 
lytic and thus cannot be zero over any continguous seg- 
ment of the real line-unless it is identically zero for all 
values of its argument [l]. The channel over which the 
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pulse train travels will be band limited, due to physical 
laws, to some frequency Q2,. The filtering effect of the 
channel will thus cause a distorted version of the pulse 
train to be received, in which each transmitted pulse has 
spread into the following bit intervals; and the task of 
detection of the original binary sequence at the receiver is 
greatly complicated. The design constraints for the ideal 
p(t)-nonzero only for I E [0, T] and band limited to Q2, 
-form an inconsistent set. 

The same dichotomy of time and frequency constraints 
arises in the field of spectral estimation, where the ideal 
data window would be of finite duration in time and of 
vanishingly small bandwidth. A similar problem arises in 
two dimensions, as in the case of spectroscopy, where 
signals which are of finite extent in both the spatial and 
frequency planes would be desirable. In radar and other 
remote sensing systems, there may well be design con- 
straints imposed upon the magnitude, phase, and spectral 
content of sensing signals, in such a manner as to form an 
inconsistent constraint set. 

The objective of this paper is the presentation of an 
iterative signal synthesis technique, of general applicability 
in the presence of an inconsistent constraint set, which 
yields a signal most closely satisfying the various con- 
straints. In order to make the meaning of the preceding 
statement more precise, the mathematical setting of the 
synthesis technique must be described. It is assumed that 
any desirable signal may be characterized as being an 
element of a Hilbert Space- L2( - cc, co) and I,( - co, co), 
the spaces of all finite-energy continuous-time signals and 
discrete-time signals, respectively, are representative exam- 
ples when equipped with the usual, respective, norms and 
inner products. It is further assumed that each constraint 
may be phrased in such a manner as to generate a closed 
convex set in that space. A subset of a linear space is said 
to be convex if, for any two elements xi and x2 of that 
subset, the element Ax, + (1 - X)x, is also in the subset for 
each value of h in the interval (0,l). Subspaces, linear 
varieties (translates of subspaces), and the linear space 
itself are all subsumed under the category of convex sets, as 
well as many other subsets of the space which are meaning- 
ful in a signal synthesis context. In L2( - co, co): the set of 
all signals bandlimited to some frequency 52 is closed and 
convex-a subspace; the set of all signals taking on pre- 
scribed values in some interval [r,, t2] is closed and convex 
-a linear variety; the set of all signals whose energy does 
not exceed some fixed bound is closed and convex-a 
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sphere centered at the origin; and the set of all signals 
satisfying a given dynamic range constraint is closed and 
convex. This Ming is by no means exhaustive. 

The final general criterion which the inconsistent con- 
straint set must satisfy, in order that the synthesis tech- 
nique of this paper be applicable, is that the constraint set 
must be resolvable into two disjoint- closed convex sets. 
There are two types of constraint sets which will meet this 
criterion. The first type is that in which the constraint set 
consists of only two constraints, each generating a closed 
convex set in the space, such that the two sets are disjoint. 
The example of the ideal design constraints for a baseband 
digital communications system, presented earlier in this 
section, is representative of this first type of constraint set. 
The second type of constraint set which will satisfy this 
criterion consists of iV > 2 constraints each generating a 
closed convex set Ci, i = 1,. . . , N, such that the set 
{Cl, c,,- * *, CA,> may be represented by the two sets 
(C,,&- . -> G+,,, > and { Cl,, Cl,, . . . , GIN, >, where 

(a) C,,E {Cr;..,CN}, fori=l;..,N, 

c/, E {cI,*-,cN), for i=l;..,N, 

I Y 
foreach j=l;--,N 

\ I% \ 

Since the intersection of closed convex sets is itself closed 
and convex, the two disjoint sets {fl~,C,,} and {fl~,C,,} 
are each closed and convex. Furthermore, some portion of 
each constraint. set in {C,, . . . , C,} lies in at least one of 
the intersections. If two sets { Ck,; . . , C,+,} and 
{C,,; * -3 C,, } can be constructed from the elements of 
{C,,-*4$J such that conditions (a), (b) and (c) above 
are satisfied, then {f7,“dlCki} and {fl~~iC,,} will be a reso- 
lution of {C,; * -, C,} into two disjoint closed convex sets 
in the sense of the criterion. All following discussion of the 
synthesis technique of this paper will be phrased in terms 
of two disjoint closed convex sets, with the understanding 
that these two sets may have been generated by the resolu- 
tion of a constraint set with more than two elements, in the 
manner just de,scribed. 

A rigorous mathematical discussion of the iterative 
synthesis technique of this paper will be presented in 
Section II. A qualitative discussion is, however, in order at 
this point. It may be shown that to each closed convex set 
C in a Hilbert. Space H, there corresponds an operator, 
whose domain is H and whose range is C, which is the 
nearest point map from H into C. Applied to any x E H, 
this operator will yield the unique element of C closest, in 
the sense of the norm, to x. The more familiar class of 
orthogonal projection operators corresponding to sub- 
spaces of H is, in fact, subsumed by the category of nearest 
point maps into closed convex subsets of H. 

Consider the case of two disjoint closed convex sets C, 
and C, with respective nearest point maps P, and Pz; and 
form the composite operator P = PI 0 Pz (i.e., Px = 

c2 

---p 
2 

_-_--p I 
Fig. 1. Alternating nearest point maps between disjoint convext sets. 

P1(P2x) for x E H). Let x,, be some element of C,, and let 
x1 = Px,. P, and Pz are nearest point maps, so it must be 
the case that ]]xi - Pzxoll I [lx0 - P2xoll- x1 can be no 
farther from C, than x0. Similarly, if x2 = Px, = P’x,, it 
will be true that 

llxz - P*x1ll 5 II%- PA 5 11x1 - P*%ll 5 II% - PAI. 
The relationship between x0, xi, and x2 is displayed in 
Fig. 1. 

Proceeding on a purely intuitive basis, one might sup- 
pose that the sequence of iterates { P n~o }rcl will converge, 
or, since Px E C, for all x E H, that the sequence 
{ P”(Px)}~~~ will converge for an arbitrary element of x 
of H. If the sequence indeed converges, it will converge, by 
definition, to a fixed point of P. In order for some u E C, 
to be fixed point of P, u must be Pu = P1(Pzu)- P2u is 
the closest element of C, to u E C,, and u is the element of 
C, closest to P2u E C,. If u is a fixed point of P, then 
]]u - P,ull will clearly be a local minimum for the distance 
between elements of C, and elements of C,. 

Section II is primarily concerned with the proof of two 
statements. Firstly, that if u E C, is a fixed point of P, 
then ]]u - P2ull is a global minimum for the distance be- 
tween elements of C, and elements of C,- thus u and 
Pzu are signals most closely satisfying the inconsistent 
constraints represented by C, and C,. Secondly, that with 
a simple modification of the operator P, denoted by PA, a 
form of convergence to a fixed point of P can be guaran- 
teed for the sequence of iterates { P~(Px)}~=~ for any 
x E H. 

Historically, distinctions have not been made between 
iterative signal synthesis algorithms and iterative signal 
restoration algorithms in a Hilbert Space setting [2]. In the 
presence of a consistent constraint set, the difference be- 
tween a synthesis problem and a restoration problem is 
merely one of the particular constraints which must be 
satisfied. In the former case the constraints represent the 
desired properties of the resultant signal, while in the latter 
they represent a priori knowledge of the characteristics of 
the signal to be restored. In light of the inconsistency of the 
constraint set which the technique of this paper employs, 
this technique will be primarily applicable to problems of 
synthesis. However, it does have two important antece- 
dents in the class of iterative synthesis and restoration 
techniques. 
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The first of these is the so-called Superresolution or Most of the important results presented here were culled 
Error Energy Reduction algorithm-initially presented by from articles which appeared in the mathematics literature, 
Papoulis [3]-[4] and Gerchberg [5], and later generalized and the accompanying proofs were often terse. In the 
by a number of researchers [6]-[9]. The value of the interest of an intuitively satisfying, Complete presentation, 
Gerchberg-Papoulis technique is that it provides a practi- an effort has been made to minimize the number of asser- 
cal algorithm for the reconstruction of a bandlimited signal tions stated without proof. 
solely from knowledge of its values over some interval, Section II is divided into eight parts. Section 2.2 dis- 
whereas a formal mathematical technique such as analytic cusses the idea of uniformly convex Banach Spaces, of 
continuation is primarily of pedagogical worth. which Hilbert Spaces are a subset. Section 2.3 deals with 

The second antecedent of the synthesis technique of this the properties of the nearest point maps Pr and P2, and 
paper is D. Youla’s “Method of Convex Projections” [IO]. with the composition operator P; and Section 2.4 describes 
Youla’s description of this technique was the first sys- the properties of the set of fixed points of P. Sections 2.5 
tematic presentation of signal synthesis and restoration and 2.6 treat the notions of asymptotic regularity and weak 
phrased in terms of closed convex sets in a Hilbert Space. convergence, respectively-both of which will be necessary 
The Method of Convex Projections is applicable to situa- for the convergence proof of Section 2.7. Section 2.8 is a 
tions in which a consistent set of N constraints generates N synopsis. 
closed convex sets, whose intersection is nonempty. Denot- 
ing the nearest point maps corresponding to the N 2.2. Uniform& Convex Spaces 

convex sets C,, . f *, C, as P,, . . . , PN, respectively, Youla The concept of a uniformly convex Banach Space is 
guarantees a form of convergence for the sequence central to the following development. The notion was first 
{(PI 0 Pz 0 . . * o PN)n~}~~l to an element of {nr=‘=,C,}, for introduced by Clarkson [ll] in 1936 and it has been 
any element of x of the respective Hilbert space [lo]. advantageously employed in a variety of contexts. The 

One of the most valuable aspects of the paper describing usual definition is as follows [12]: A Banach Space X is 
the Method of Convex Projections is the inclusion of a said to be uniformly convex if, for all z > 0, there exists a 
compilation of nearest point maps, for a number of closed 6 = 6(r) > 0 such that [lx]] ~1, ]]r]] 11 and ]]x - y]] > t, 
convex sets, which are of frequent interest within the taken together, imply that f]]x + y]] I (1- a), where x and 
context of signal synthesis and restoration [lo]. While the y are elements of X. An immediate consequence is that the 
orthogonal projection operator corresponding to a particu- boundary of the unit ball in such a space contains no line 
lar subspace may often be ascertained by inspection, the segments. All Hilbert Spaces are uniformly convex-this 
nearest point map corresponding to some more general may be observed in the “parallelogram law” which holds 
type of convex set may not, in general, be so simply in such spaces, 
determined. The generation of the nearest point map for a 
particular convex set will be mentioned again in Sections II lb + Al2 + lb - Al2 = 2(11412 + llrl12). 
and IV. The following Lemma describes some implications of uni- 

Section I has, hopefully, provided the reader with some form convexity. 
intuition for signal synthesis in a Hilbert Space setting, and Lemma I: Let X be a uniformly convex Banach Space. 
with an awareness for the synthesis techniques which have Let x and y be elements of X such that [lx]] I M, ]]y]] 5 M, 
been available to date. Although there are some important - for some fixed M > 0; and suppose that ]]x - y]] r e > 0. 
mathematical differences between the setting for Youla’s Then the following statements are true. 
“Method of Convex Projections” and that of signal synthe- A) There exists a 6 = S(c) > 0 such that 
sis in the presence of an inconsistent constraint set, the 
latter should be thought of as the natural conceptual 311~ + YII s Cl- %= { IW Ilvll>. 
extention of the former. In Section II, we will provide a B) For all cy E (0, l), there exists a 6 = B(E, a) > 0 such 
rigorous mathematical discussion of signal synthesis in the that 
presence of an inconsistent set of constraints. W + Cl- ~)YII 5 0 - a)m= {IM Ilvll>. 

II. THEORY Proof of A: 
Let P = mu { IM Ilrll>~ and consider ]]x/p - y/p]] 2 

2. I. Introduction E/P > 0. Now, ]]x/p]] I 1 and ]]r/p]] I 1, and our previous 
As in Section I, P will be defined to be the composition definition of uniform convexity yields 

P, 0 P2, where P, and P2 are the nearest point maps 
corresponding to the two disjoint closed convex sets C, 1 X+X <(l-6), 

II II 2P P 
a>0 

and C, in a Hilbert Space H. A detailed study will be or 
undertaken of the fixed points of the operator P and of the 
convergence properties of the sequence +llx + Al 5 O- QP = Cl- ~)max~ll~II~ Ilrll>. 

{(AI + (I- w)“(Px)}:+ = { K(P4}nm_I, Thus statement A is true. 
Proof of B: 

for arbitrary x E H. 
x E ((41) Case Z: ;=1/2: In this event, statement B reduces to 

statement A and is, therefore, valid. 
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Case 2, a <: l/2: We note that ax +(l- a)y = y + 
a(x-y) =(1/2)(y)+(l/2)(y+2a(x-y)), i.e., themidpoint 
of the line segment joining the point y to the point y + 
2a(x - y). Since J]x - y]] 2 c, then ]]y -(y +2a(x - y))]] 
= 1124x - YNI - 2 > (YE > 0. Applying statement A, there ex- 
ists a 6 > 0 such that 

Ilax+- 4yll= ~~/~~lly+~y+~~~~-y~~ll 

5 Cl- a)max { IIYIL Ily +24x - y)ll> 

Suppose llyll2 II.4, then 

Ily +24x - y)II 5 110-2~)yII+ ll2~-41 

s (=4llyll+24lyll 

= IIYII. 

Similarly, if ]]x]] r ]]y]], ]]y +2a(x - y)]l I ]]x]]. So, there 
exists a 6 > 0 such that 

Ilax +(I- ~I)YII s 0- ~)m={ll~ll, Ilxll>, a<1/2. 

Case 3, a > l/2: Making the identification ax + (1 - a) y 
= (1/2)(x -2(l- a)(~ - y))+(1/2)(x), and proceeding as 
in Case 2, we find that 

Ilax +(:I- ~)YII 2 (I--~)maxillyIL Ilxll>, 

a>1/2,6>0. 

So statement B is true, and the proof of the lemma is 
complete. 

In fact, statements A and B are each necessary and 
sufficient conditions for the uniform convexity of X. That 
this should be so is straightforward in the case of A, while 
the verification in the case of B is more involved-the 
proof, in terms of sequences in X, appears in a paper by 
Helmut Schaefer [13]. Lemma 1 will be adequate in the 
present context. 

One implica.tion of uniform convexity, which will be 
invoked in the next lemma, is a theorem due to D. Milman 
which asserts that every uniformly convex Banach Space is 
reflexive [12]. The reflexive character of Hilbert Spaces 
may be ascertained without specific reference to uniform 
convexity, but in the case of more general Banach Spaces, 
this result, known as Milman’s Theorem, provides a defini- 
tive test for tht: reflexive property. 

2.3. Nearest Point Maps in Hilbert Spaces 

With the concept of a uniformly convex Space at our 
disposal, an examination of nearest point maps and com- 
positions of ne,arest point maps may be undertaken. Let C, 
be a closed convex set in a uniformly convex Banach 
Space, X. The nearest point map, P,, corresponding to C, 
is formally defined for any x E X as follows [14]: 

lb - PIxll = yiz$ Ilx - yll. 
1 

The following lemma addresses the questions of ex- 
istence and uniqueness for nearest point maps. 

Lemma 2: Let C, be a closed convex set in a normed 
linear space, E’. 

A) A corresponding nearest point map, P,, exists if E is 
reflexive. 

B) If P, exists and E is strictly convex, then P, is 
unique in the sense that P,x E C, is unique for any x E E. 
A normed linear space is said to be strictly convex if, for 
any two elements x and y such that ]]x - y(] # 0 and 
llxll = 1) yll = 1, IJhx + (1 - h) y(] < 1 for A E (0,l) [15]. Strict 
convexity is clearly subsumed by uniform convexity, as is 
the reflexive property by virtue of Milman’s Theorem. The 
result is that if C, is a closed convex set in a uniformly 
convex Banach Space, then the associated nearest point 
map, P,, exists and is unique (in the sense of B). The proof 
of’statement A is beyond the scope of this discussion and 
the reader is referred to two papers by Phelps [15], [16]. 
The proof of statement B relies upon the strict convexity of 
E, and will not be presented at this point, as a similar 
argument is made in the proof of forthcoming Theorem 3. 

The observation should be made that Lemma 2 provides 
no insight into the functional form of the nearest point 
map and that the construction of such a mapping operator 
for a particular convex set is usually a nontrivial task. In 
practical situations, nearest point maps tend to be nonlin- 
ear-some examples in the Hilbert Spaces L,( - co, cc) 
and L2( - cc, CO)X L2(- cc, co) are given in a paper by 
Youla [lo]. 

It is clear that in a uniformly convex Banach Space, X, 
the nearest point map P, corresponding to a closed convex 
set C, is a projection in the sense that Plx = P,( P,x) = Pfx 
for any x E X. The terms projection and nearest point map 
will be used interchangeably from this point on. 

The next lemma asserts that the projection operator 
corresponding to a closed convex set in a Hilbert space is 
nonexpansive. An operator T in a normed linear space is 
said to be nonexpansive if, for any two elements of the 
space in the domain of T, say wr and w,, the following 
statement is true: 

IL% - Tw2ll 5 IIT- ~211. 

The nonexpansivity of such projection operators in a 
Hilbert Space setting is an important result, but the proof 
will require the invocation of the fact that if P, is the 
projection operator corresponding to a closed convex set 
C, in a Hilbert Space H, and if x is any element of H, 
then Re(x - P,xly - P,x) I 0 for all y in C,-where Rep 
represents the real part of the, possibly complex, scalar /3 
v41. 

The truth of this statement may be verified by noting 
that the line segment Xy +(l- A)P,x, h E [O,l], lies in C, 
for all y E C, and all x E H. By the definition of P,, 

~~X-P1X11*IIIX-(Xy+(1-h)P~X)I12 

=II(X-P,x)+A(P,x-Y)ll* 

= IIX - P,xf + A{ (x - P,xlP,x - y>* 

+ (P,x - ylx - p,x)*) + A2llP,x - yj1* 

= 11x - P,xJl* +2XRe(x - P,xlP,x - y) 

+ A211PlX - y11*. 
so 

2Re(x - P,x(y - P,x) I XIIP,x - yll*. 
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Since this holds for all X E [O,l], it must hold for h = 0, 
yielding the desired result: 

Re(x - P,x)y - P,x) I 0, x E H, y E C,. (1) 

Lemma 3: Let Cr be a closed convex set in a Hilbert 
Space H with associated projection operator P,. Then P, 
is a nonexpansive operator with domain H [lo]. 

Proof: Let xi and x2 be any two elements of H. By 
(lh 

and 

Re( x1 - P,x,lP,x, - P,x,) I 0 

so 

Re( x2 - P,x,(P,x, - P,x,) I 0 

0 2 Re {(xi - P,x,l P,x, - P,x,) 

+(x2 - P,~*lP,~, - 4x2>) 

= Re {b#+* - p,xJ- (pAp,~* - 44 

+ (~2lPI~I - 4x2)- (4X*lPP1- PIX,>) 

=Re{ -(xlIP,x, - p,~2)+(4x,lp,~1- 4x2) 

+ b2lPIXI - PG*)- (p,~*lp,x1- p1x2)) 

= Re { (P,x, - P,x,(P,x, - P,x,) 

-(x1 - x*lP,x, - p,x*)). 

Thus 

IIPlx, - Plx2~~* -Re(x, - x,lP,x, - P,x,) 5 0 

and 

lb - x21PIx1 - &x2) I 2 Reb, - x2WI - PIx2). 
Therefore, 

IIP,x, - pI~2112 s lb1 - x2lP,x, - W2)l. 

Using the Cauchy-Schwarz inequality, 

IIP,x, - 4~2112 s 11% - x211. IlP,x, - PIX,ll 

whence llPlxl - Plx211 I ]]xi - x2]], completing the proof. 
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for almost all of the restrictions on the general applicability 
of the iterative signal synthesis technique must be ascribed 
to the results of this section, but, as will be seen, these 
restrictions imbue the fixed-point set of P with some very 
desirable properties. 

The following theorem provides a sufficient condition 
for the existence of a fixed-point set for P. 

Theorem 2: Let X be a uniformly convex Banach Space, 
C a bounded, closed convex subset of X, and T a nonex- 
pansive mapping of C into itself. Then T has a fixed point 
in C [17]. 

The proof of this theorem is beyond the scope of this 
discussion. What is salient, though, is the requirement that 
C be closed and bounded. As regards the composite oper- 
ator P = P, 0 P2, the restriction is that the convex set C,, in 
which the fixed points of P will lie, must be closed and 
bounded. The qualification that C, be bounded is, in a 
purely abstract setting, relatively severe. In a physical 
setting, however, there is always an ultimate power or 
energy constraint-corresponding closely, for instance, to 
a bound on the L, norm-upon a signal; and the limita- 
tion imposed by Theorem 2 upon C, is not a restriction in 
the sense of a physically realizable signal. The restrictions 
on C, remain those of closure and convexity, and C, may 
well be unbounded, as in the case of a subspace. In all 
following discussion, therefore, C, will be considered to be 
bounded as well as closed. 

The following lemma, due to Helmut Schaefer [13], 
concerns the structure of the set of fixed points of a 
nonexpansive operator, and leads to Corollary 1 which will 
be used in the proof of the convergence properties of the 
sequence { Pc( Px)}. 

Lemma 4: Let C be a bounded, closed convex set in a 
Hilbert Space H. Let T be a nonexpansive mapping of H 
into C, with fixed point set FT in C. Then FT is a convex 
subset of C. 

Proof: Suppose that FT has at least two distinct ele- 
ments, and let ui and u2 be two such elements. Let u0 be 
any element of the set 

The reader should note that no assumptions of linearity on 
the part of PI were required. 

{x:x~H,x=Az+ 

The next Theorem establishes the nonexpansive nature the line segment joining % 
of the composite operator P employed in the iterative 
synthesis procedure. 

z;=u,-24, 

Theorem I: Let C, and C, be two disjoint closed convex z; = u* - 240 

sets in a Hilbert Space H. Let P, and P2 be the respective Thus 

+(1-A)u,,O<Xcl} 
and u *; and define 

Z, = Tu, - a1 

Z, = u2 - Tu,. 

projection operators associated with these sets. Let P be z;+z;=z,+z,. 
the composite operator defined by Px = (P, 0 P2)x = Furthermore, 
P1(P2x), for all x E H. Then P is nonexpansive. 

Proof: Let xi and x2 be arbitrary elements of H. P, IMI = II% - Nl = II% - WI < lbo - 41 = ll~;ll~ 
and P2 are nonexpansive, therefore, Similarly, llZ211 I IIZJI, yielding 

II% - Px2ll = IIP,(P*x,)- P1(P*x*)Il IIZ, + Z,ll s llz,ll+ IIZZII 5 llz;ll+ ll~;ll~ (2) 

2 llP*x1- P2~2ll s II% - x*II* Substituting for u,,, 

2.4. Fixed Points 
ll~~ll+ ll~;ll = IIO- w2 - 411+ Il7+42 - 411 

This section is primarily concerned with the structure of 
= lb42 - %ll 

the fixed point set of the composite operator P. The onus = lIZi + Zdll = Iv-1 + Z2ll. 
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Combining this with (2), 

IIZ, + Z2ll = ll~1ll+ llz2Il = lIzill+ IIGII = IK + Gil. (3) 

Since lIZill < ]];~;I], i =1,2, it must be the case that lIZill = 
IlZ;ll, i = 1,2. FTor any two elements, x1 and x2, of H it is 
true that 

lb1 + x211* = 11~1112 +2RebIlx2)+ 11~2112 

s llx1112 +2l(~,l~*)l+ 11~2112 

2 11~1112 +211~111*11~211+ 11~2112 

with equality if and only if x2 = yx,, where y is an element 
of the scalar field over which H is defined. 

By virtue of (3), then, Z, = yZ, and Z; = y’Z;, for some 
nonzero scalars y and y’. From the definitions of the Zi’s 
and Z;‘s, 

or 

z 
1 

= l+Y’z’ 
1+y l’ 

But IMI = Ilk + ~‘))/(l+ YWI = llZ;ll # 0, therefore, Y 
= y’ and Zi = Z/, i = 1,2. It is now readily observable that 
uo=FT as 

Z, - Z, = 2Tu, - ( u1 + u2) = 224, - ( a1 + u2) = Z; - Z; 

which yields Tu, = r.+,. Since a particular value of h was 
not specified in the definition of uO, FT is proven to be 
both closed and convex. 

The following corollary of Lemma 4 characterizes sub- 
sets of FT in terms of the limit point of the sequence 
{ T”x }, where .x is any element of H and T is the operator 
of Lemma 4. The corollary will be invoked in Theorem 5, 
the convergence theorem for the sequence { P:( Px)}. By 
the nonexpansivity of T, the sequence { IIT”x - ull} is 
monotone nonincreasing for any u E FT, since 

IIT”x - uII = IIT”x - Tull I IIT”-‘x - ~11, n =1,2, *. *. 

Thus for any u E FT, there exists the non,negative limit 

d(u)= lim IIT”x-~11 
n+ca 

for each x E H. Consider the .following subset of FT, for 
some fixed x i:n H, 

Fd= {.EF+d(u)sd} 

for some fixed nonnegative constant d. 
Corollary I: Let T, C and H be as in Lemma 4. Let Fd, 

a subset of FT, be that of the preceding definition, where x 
is any fixed element of H [18]. 

A) For any a’ 2 0, Fd is a bounded, closed convex subset 
of FT, nonempty if d is large enough. 

B) Let A be the smallest value of d such that Fh is 
nonempty; then the set Fh consists of a single element. 

Proof of A: 
As C is closed and bounded, F, will be nonempty by 

virtue of Theorem 2. FT and Fd, subsets of C, are clearly 
bounded. Suppose that Fd consists of more than one 

element for some d > 0, and let ur and u2 be any two 
distinct elements thereof. Consider, for any (Y E (0,l). 

IIT”x - @I + Cl- 4 u2> II 
= ]]a(T”x-u,)+(l- a)(T”x-u2)ll 
I a(IT”x - uJ+ (1 - c~) I(T”x - ~~11, all n. 

Therefore, 
lim IIT”x - ( au1 + (l- a)u2)II I d. 

n+m (4 

It was established in Lemma 4 that FT was convex, thus 
((GUI + (1 - (Y)u*) E F= and it is thus an element of Fd, by 
(4). Hence, r;h is convex and closed; and statement A is 
verified. 

Proof of B: 
Case 1, A = 0: 
If A = 0, u E FA if and only if limn+m IIT”x - uII = 0, 

i.e., { T”x} converges strongly to u. For a given x E H, 
there can be only a single distinct element of FT satisfying 
this condition, and FA = { u }. 

Case2, A>O: 
In this case, the proof is by contradiction. Suppose that 

FA consists of more than one distinct element, and let ui 
and u2 be any two such elements. Then ]]ur - u2]] > 0. By 
the uniform convexity of H, there exists a S = I > 0 for 
all (Y E (0,l) such that 
Iltx(T”x--u,)+(l-a)(T”x-.u,)ll 

I (1-G)max{]]T “x - qll, IIT”x - u,ll} 7 all n 

since ui - u2 = (T”x - u,)-(T”x - ul). Hence, 
]]T”x-((~~i+(l-a)u,)]]1(1-6)A, asn+co. 
Thus d(oz++(l-a)U2)cA, O<a<l. FA is convex, 

and so ((GUI +(l- o~)i(*) E F,, but the existence of some 
u E F, for which d(u) < A contradicts the definition of FA. 
Whence, FA consists of a single element, and corollary is 
established. 

The goal of the iterative signal synthesis technique, as 
stated in Section I, is to generate ordered pairs of points, 
each pair containing one element from C, and one from 
C,, such that the distance between the elements of each 
pair is a minimum. The following theorem addresses this 
issue. One should note that the statement of the theorem 
assumes that the Hilbert Space H is defined over the scalar 
field of real numbers. This is the second restriction im- 
posed upon the synthesis technique in Section 2.4., as H, if 
it is interpreted as a function space, must then be com- 
posed entirely of real-valued functions or of imaginary-val- 
ued functions, but may not contain complex-valued func- 
tions. The synthesis technique may still be employed to 
generate complex-valued functions, however, if an ap- 
propriate product space- HI x H2, where HI consists of 
real-valued functions and H2 consists of imaginary-valued 
functions-can be constructed with a real-valued inner 
product. 

There are two additional concepts which will be required 
in the proof of the theorem. The first is that of the distance 
between the sets C, and C,, 

d(C,v Cd = xec lk- ~211 
1 1 

x2 E c, 
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Equivalently, 

11~2112 ’ 11x2 - WI2 

= 11~2112 -2(x*lW+ 11~412 
or 

2Wx2) ’ ~*1141* 

x < 2(4x2) 

11412 * 
(9 

Since ]]z]]* > 0, values of X such that (1- X)x, + hz lays 
in the interior of S will exist if (z]x2) > 0. Consider the 
projection of z onto the subspace spanned by x2, and 

Fig. 2. Distance between the members of each element of 4. denote this element as OLX*. An application of the Projec- 
tion Theorem yields [19] 

which is well defined since C, and C2 are closed. Fp, the 
set of fixed points of the composite operator P = P, 0 P2, is 
a subset of C,; and the set of dual fixed points of P is 
defined as 

Dp = {(x1, x2) : x1 E Fp, x2 = P,x,}. 

In light of Lemma 2, for each (xi, x2) E Dp, x2 is uniquely 
determined by x1. Each element of Fp corresponds to a 
single element-an ordered pair-of D,. 

Theorem 3: Let H be a Hilbert Space defined over the 
scalar field of real numbers; and let C, and C, be two 
disjoint, closed convex sets in H. Furthermore, let C, be 
bounded. Define P, and P2 to be the respective projection 
operators for C, and C,, and define the composite oper- 
ator P = P, 0 P2. Denote the set of fixed points of P by Fp 
and its set of dual fixed points by D,. Then, for each 

(XI, ~2) E Dm 

11% - x2ll = W&2). 

Proof: By Theorem 2, D, and Fp are not empty. 
Referring to Fig. 2, let xi be an element of Fp and (xi, x2) 
be the corresponding element of D,. xi may be assumed to 
be the origin, +, with no loss of generality, since that 
assumption only implies a translation in H. 

There exists a hyperplane Pi = {x E H: l(x) = 0} con- 
taining xi, where 1 is a linear functional on H, such that 
(x2 - xi) is orthogonal to l?, and [(x2) > 0 [19]. Now, C, 
lies entirely in the closed halfspace {x E H: l(x) s 0}, a 
claim which will be substantiated through a proof by 
contradiction. 

Suppose that there exists a z E C, such that l(z) > 0, 
and consider the closed sphere 

S = {x E H: 11x2 - XII I 11x2 - x,II} 

= b E H: 11x2 - XII 5 Ilx2ll) 

since xi = 9. S is the collection of all points in H which 
are no further from x2 than xi. Since C, is convex, it 
contains the segment (1 - X)x, + hz = Xz, for 0 I X I 1. It 
will be shown that a subset of this segment lies within S, 
violating the condition that x2 = P2x1. 

If, in fact, some subset of that segment is contained in 
the interior of S, it will be the case that 

11x2 - XIII ’ 11x2 - (0 - A)% + w. 

(2 - ax*Ix*) = 0, hence (y= .@d 
11~2112 

is a maximal proper subspace, and since x2 is orthogonal 
to Pi by construction 

z-ax2=xy, forsomex,EIi. 

Furthermore, S is a linear functional, so 

(4x2) ~(z)=s(cux,+~,)=s(~~*)=- llx2ll* l(x*)* (6) 

The range of l is the real numbers, {(x2) and l(z) are 
strictly positive, thus (6) implies that (z]x2) > 0. By (5) 
there must then exist points along the segment (1 - A)x, + 
AZ, contained in C,, in the interior of S and hence closer to 
x2 than x,-violating the definition of P2. Whence, C, is 
contained in the halfspace {x E H: l(x) I O}. 

Now consider the hyperplane 
r2=rl+x2= {xEH:~(x)=~(x~)}. 

Proceeding as above, and noting that xi = P,x,, it may 
shown that C, is contained in the halfspace {x E H: S(x) 
2 Z(x2)). 

Pi and I’, are parallel by construction, thus 

dw,, c,) = w,, r2) = 11x1 - x211 
where x1 was an arbitrary element of Fp, and the proof of 
Theorem 3 is complete. 

2.5. Asymptotically Regular Operators 

At this juncture, aspects of the structure of the com- 
posite operator P and of its set of fixed points Fp have 
been established, and the discussion now turns to the 
convergence behavior of the sequence of iterates { P{( Px)}, 
for an arbitrary x E H. The requisite arguments rely to a 
significant extent upon the concepts of asymptotic regular- 
ity and weak convergence. 

An operator T in a normed linear space X is said to be 
asymptotically regular if, for each x E X, IIT”“x - T”xll 
= ]](I - T)T”xll converges to zero as n + cc [20]. Thus the 
sequence { T “x } is convergent for each x E X. The follow- 
ing theorem asserts that any nonexpansive operator in a 
uniformly convex Banach Space can be “converted” to an 
asymptotically regular, nonexpansive operator [20], [13]. 
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Theorem 4: Let X be a uniformly convex Banach Space, 
T a nonexpansive, self-mapping of X with a nonempty set 
FT of fixed points. For any fixed X E (0, l), define S, = XI 
+ (1 - AjT. Then the following statements are true. 

A) FT is the set of fixed points of Sh. 
B) S, is nonexpansive. 
C) S, is asymptotically regular. 

Proof of A: 
Suppose that u E X is a fixed point of S,. Then S,u = 

Xu+(l-X)Tu=u, or (l-X)Tu=(l-Xju. So Tu=u, 
therefore, u E FT, and statement A is verified. 

Proof of B: 
Let xi and x2 be arbitrary elements of X, and consider 

IISXXI - SAX,ll. 

II&xl - %dl = II% - x,1+ (I- A)(% - Txdll 
I Xllx, - x21( + (1 - X) IITxl - Tx,ll 

2 w% - x,ll+ 0 - Mllx, - xzll 
by the nonexpansivity of T. Therefore, ]]S,x, - S,x,]] < 
(Ix1 - xZ]] for arbitrary xi and x2. in X and statement B is 
established. 

Proof of C: 
Define x, = ,S{x for some x E X. Then 

IlS,“+x - S;xll = IISAx, - x,11 = ll(A -1)x, + (1- X)TxJ 

= (1- X)]]x, - TxJ 

Since h E (O,l), the fact that ]]x, - TxJ converges to zero 
as n + cc will suffice to establish the asymptotic regularity 
of S,. Let u be an arbitrary element of FT, and note that 

IIX n+1- 41 := II&x, - WI s II% - 49 all n 2 1 

by the nonexpansivity of S,. Clearly, the sequence 
c lb, - 4ll~-“-, is monotone nonincreasing with n, and it 
therefore converges to some nonnegative limit d,. Hence, 

IIX n+1- 4I+ 43 and lb, - 4l+ 4,, asn+co. 

Suppose that d, > 0. Suppose further that [Ix, - TxJ does 
not converge to zero. Then there exists an c > 0 such that 

fim 11% - WI = nFm ll( x,-u)-(TX,-u)ll>~>O. 
n-co 

By Lemma 1, statement B, however, there exists a 6 > 0 
such that 

lim IN% -u)+(l-X)(Tx,-u)]] 
n+ca 

since IITx, - uII = IITx, - Tull I IIx, - ~11, where the A is 
that in the definition of Sh. Inasmuch as (x,+i - u) = h(x, 
- u)+(l- h)(Txx, - u), the convergence of (Ix, - TxJ to 
some value other than zero implies that 

lim II%+1- n+m 415 0 - 6) [ n$ym II5 - ull] 

which is false, as ]]x,+i- u]] and ]]x, - u]] must converge 
to the same limit as n + co. Therefore, by contradiction, 
the convergence of ]]x, - TxJ to zero as n + cc is estab- 
lished, whence S, is asymptotically regular, completing the 
proof. 

It is worth noting that in a slightly different context, the 
choice of A in an operator of the form XI + (1 - A )T has 
been shown to have a direct effect on the rate of conver- 
gence of the sequence {(AI+(l- X)T)“x} [lo], [21], and 
is likely to have a similar effect here. 

2.6. Weak Convergence 

The last general notion which must be introduced prior 
to establishing the convergence properties of { Pi( Px)} is 
that of weak convergence. As a preface, the Reisz-Fr6chet 
Representation Theorem [19] will be stated: “If 5 is a 
bounded linear functional on a Hilbert Space H, there 
exists a unique vector y E H such that for all x E H, 
S(x) = (xly). Furthermore, we have ]]!J] = ]]y]] and every y 
determines a unique bounded linear functional in this 
way.” Since the dual of a normed linear space X is the 
space of all bounded linear functionals defined on X, the 
foregoing theorem may be interpreted as saying that a 
Hilbert Space is its own dual in the sense of the correspon- 
dence between bounded linear functionals defined on that 
space and elements of that space. As will become apparent, 
weak convergence involves considerations in both a normed 
space and its dual; and, if that space is a Hilbert Space, the 
Reisz-Fr6chet Theorem allows the criteria for weak con- 
vergence to be phrased in terms of a single space. 

Let X’ denote the dual of a normed linear space X. A 
sequence { x, } in a normed linear space X is said to be 
weakly convergent if a finite limn+a, {(x,) exists for each 
{ E X’; {x, } is said to converge weakly to an element 
x,EX if limndm ~(x,)=~(x,) for each c E X’ [12]. 
Restated in terms of the Reisz-Frechet Theorem: A se- 
quence {x, } in a Hilbert Space H is said to be weakly 
convergent if a finite lim,,, (x,]r) exists for all y E H; 

is said to converge weakly to an element x, E H if 2’. 
.+,(~,IY) = (-LIY) for d Y E H. 

While strong convergence, i.e., convergence in the norm, 
of a sequence {x”} to an element x, in a normed space 
implies weak convergence of { xn} to x,, the converse is 
not true; and examples of sequences which converge weakly 
to some weak limit x,, but not strongly to that limit, may 
be constructed [19]. The following example demonstrates, 
however, that the notion of the weak limit is meaningful in 
practical situations. 

This example is set in the real L2( - co, co) Hilbert 
Space. Consider a weakly convergent sequence {x, }r=i 
with weak limit x0, all in L, (- co, co); and suppose that 
the limiting behavior of x,, as n + co, on the compact 
interval [0, T], 0 < T < co, is of primary interest. A count- 
ably infinite set of orthonormal basis functions, {e,}, for 
L,[O, T] is then selected (for example, the basis func- 
tions for the Fourier Series, {(l/T), (2/T)cos(2at/T), 
(2/T) sin (2/7rt/T);. ., (2/T) cos (2nrt/T j, 
(2/T)sin(2nlrt/T), . * . }j. The functions ei(t) are then 
extended into L2( - oo, 00) by defining the new functions, 

t E 10, T] 

tE (-co,O)u(T,co). 
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Now, the L,( - oo, co) inner product of any element in 
L,( - co, co) with any one of the ej2)‘s will equal the 
L,[O, T] inner product of that element with the correspond- 
ing ei. Furthermore, with respect to the L2( - co, co) inner 
product, lim n+oo(~ (e!2)) = (x,(e$2)) for all i. It is well 
known that a genirahzed Fourier Series of the form 
Cy=i(x]ei)ei, where x E L,[O, T] and the L,[O,T] inner 
product is employed, converges strongly to x on [0, T]. 
Since x0, restricted to [0, T], is in L,[O, T], strong conver- 
gence of {x,} to x0 on [0, T] has been established. In 
general, weak convergence in L2( - co, co) implies strong 
convergence on any compact (i.e., bounded and closed) 
subset of the real line. 

In a somewhat analogous manner to the definition of a 
complete normed linear space-a Banach Space-in terms 
of Cauchy sequences, a normed linear space is said to be 
sequentially weakly complete if every weakly convergent 
sequence from that space converges weakly to an element 
of that space. It may be shown that all reflexive spaces, and 
thus all uniformly convex spaces, are sequentially weakly 
complete [12]; and this result will be employed in the proof 
of Theorem 5, in which the convergence properties of 
{ P;( Px)} are established. 

An immediate result of the definition of a weakly con- 
vergent sequence and of a weak limit is that of the follow- 
ing lemma. 

Lemma 5: If in a Hilbert Space H the sequence { xn}FZ1 
is weakly convergent to x0, then for any x # x0 [18], 

liminf ]]x, - xl] > liminf [Ix, - x0]]. 
n+cc II-S% 

Proof: By definition of the norm, both limits are 
finite. Consider, 

II&I - XII2 = 11x, - x0 + xg - XII2 

= II&# - x,,l12 +2Re(x, - xO]x,, - x)+ ]]xO - xl]’ 

Since x0 is the weak limit of {xn}~=i, (x,/x,,-x)--, 
(xo]xO - x) as n + 00, and (x, - x,,]x,, - x) + 0 as n --f 00. 
II% - xl] > 0 and the Lemma is established. 

One more lemma will be required for the proof of 
Theorem 5; and, towards this end, the notion of a demi- 
closed operator will now be introduced. Let C be a closed 
convex set in a Banach Space X, and A a mapping from C 
into X. If for any sequence { xn} in C with weak limit x,, 
in C, the strong convergence (i.e., in norm) of the sequence 
{Ax,} to some y, E X implies that Ax, = y,, then the 
operator A is said to be demiclosed [18]. 

Lemma 6: In a Hilbert Space H, for every nonexpan- 
sive mapping T of C, a closed convex set, into H, the 
mapping (I - T) is demiclosed [18]. 

Proof: Let {x, } be a weakly convergent sequence in 
C with weak limit x0 E C, and let the sequence {x, - TX,} 
converge to some y,, E H. By the nonexpansivity of T, 

liminf ]]x, - x0]] 2 liminf IITx, - Tx,ll. 
n4cc n-+m 

Noting that TX, = x, - y, in the limit as n + 00~ the 
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preceding inequality may be rewritten as 

liminf ]]x, - x,,lJ 2 liminf J]x, - y,, - Tx,JI 
n+m n-w 

and since {x,}~~i converges weakly to x0, x0 = y0 + TX, 
or (I - T)x, = yO, by virtue of Lemma 5. Therefore, 
(I - T) is demiclosed. 

2.7. Convergence Theorem 

Our final theorem may now be stated and proven. 
Theorem 5: Let C be a bounded closed convex set in a 

Hilbert Space H, and let T be a nonexpansive, asymptoti- 
cally regular mapping of C into itself with a nonempty set 
of fixed points FT. Then, for any x E C, the sequence of 
iterates { T”x} is weakly convergent to an element of FT 
WI. 

Proof: The sequence { T”x} will first be shown to be 
weakly convergent. Let u be an element of FT, by the 
nonexpansivity of T it is true that 

IIT’WI- Ilull 5 IIT “x - ull I IIT”-lx - uI[ I . . . I [Ix - ~11. 

Thus IIT”xll < ]]x - u]]+ ]]u]] for all n. Letl be any bounded 
linear functional defined on H, and let y E H be the 
corresponding element of H in the sense of the 
Reisz-Fr&het Theorem. Then ]]y]] = ]]y]] < co, and 

,)$nrn Il(T”x) I= n5m I@WY) 1 

5 fim IIT”~~AY~~ “-CO 
s (Ilx - ull+ Il4l)~llrll 
COO 

where the Cauchy-Schwarz Theorem has been invoked. 
Hence { T”x } is weakly convergent and has its weak limit 
in H, since Hilbert Spaces are weakly sequentially com- 
plete. 

Recalling the definitions of d(u) and FA from Corollary 
1, let F& = { uO} which implies that d( uO) = A, where the x 
of d( *j is that of the statement of this Theorem. Through a 
proof by contradiction, { T”x } will be shown to converge 
weakly to uO. 

Suppose that { T”x} converges weakly to some z E H, 
z z u,,. T is asymptotically regular, by definition, and the 
sequence { T”x - T .+lx} = {(I - T)T”x} must therefore 
converge strongly to the origin as n --, co. By Lemma 6, 
(I - T) is demiclosed, so it must be the case that (I - T)z 
= $I as well. Hence, z E FT. The result of Lemma 5 is then 

A = d( ZQ,) = ,‘izl, JIT”x - u,,ll > nvw IbT”x - zll = d(z) 

since the limit infimum of a sequence equals the limt of the 
sequence if that limit exists (the existence of the above 
limits was established in the discussion preceding Corollary 
1). This inequality violates the definition of A, generating 
the necessary contradiction and completing the proof. 

2.8. Synoposis 
Each of the results of the preceding seven sections was 

presented in the most general context possible, with the 
intent of providing points of departure for further study 
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and development of the iterative synthesis technique of this 
paper and of other similar techniques. Those results will 
now be reiterated explicitly in terms of signal synthesis in 
the presence of inconsistent constraints. 

The setting is a Hilbert Space H defined over the scalar 
field of real numbers. C, and C, are disjoint, closed convex 
sets in H-e,ach one composed of the class of signals 
satisfying some given constraint, or set of constraints. 
Furthermore, C, is bounded. Lemma 2 guarantees that the 
respective nearest point maps P, and P2 exist, and that 
they yield unique points in these sets for every x E H. 

The composite operator P = P, 0 P2 is then nonexpan- 
sive by Theorem 1; and Theorem 2 assures that the fixed- 
point set Fp o’f P, and hence the set of dual fixed points 
D,, are not empty. Theorem 3 warrants that 1(x1 - x2(] = 
d(C,, C,) for all (xi, x2) E D,. 

Theorem 4 states that any operator of the form P, = AI 
+ (1 - X) P, X E (0,l) is a nonexpansive asymptotically 
regular operator with Fp as its set of fixed points. Theorem 
5 is thus applicable, and the sequence of iterates { P:x} 
will converge weakly to an element of Fp for any x E C,. 
More generall.y, { P;( Px)} will converge weakly to an 
element of Fp for any x E H, as Px E C,. 

It is worth noting that PI, P2 and P are not, at any 
point in this section, assumed to be linear-this synthesis 
technique will always be appropriate, so long as C, and C, 
are of correct form. 

III. EXAMPLE 

As an example of signal synthesis in the presence of an 
inconsistent set of constraints, the technique developed in 
Section II will now be applied to the generation of a data 
window for spectral estimation. A data window is a time 
function which is necessarily of finite duration, and whose 
spectral energy is, ideally, concentrated about the origin in 
the frequency domain. By virtue of its finite extent in time, 
the window will be of infinite bandwidth; and, in practice, 
the design of such a window may be viewed as an attempt 
to attain a narrow, high amplitude, spectral concentration 
about the frequency origin, while simultaneously minimiz- 
ing that window’s spectral energy for nonzero frequencies 
-in the parlance of spectral estimation, the desire is to 
maximize resolvability while minimizing leakage. 

The two disjoint closed convex sets from L2( - co, oo), to 
which the synthesis technique of this paper will be applied, 
have been selected as follows. C, will be the set of all time 
signals which ~bt~; identically zero outside of the interval 
[ - T/2, T/2], where T is the duration of the desired data 
window. C, will be the set of all signals whose Fourier 
transforms are real, nonnegative, bandlimited to some 
frequency a, and have a prescribed area p. Elements of C, 
will be real, even time functions, and their projections into 
C, will thus be even as well. Denoting the Fourier transform 
of some f(t)EL2(-co,co) as F,(w)+jF,(w), where Fl 
and F2 are re.al-valued functions of w, Youla has shown 
that the projection of f(t) into C, is given by 9-l 
{ r& w)( Fl( wj-t c)+ } [lo], where 9-r denotes the inverse 

Fourier transform, 

bJE[-i2,Sl] 
w6+52,Q] 

G(w)20 

G(w)<0 

and where the real constant c is chosen such that 

j-~;F&)+c)+dw=p. 

The projection of some f(t) E L,( - co, co) into C, 
rT12(t)f(t), where 

T T 
lE -2’7 [ 1 

T T ’ 
t4 -y,y [ 1 

is clearly 

It should be noted, before proceeding with this example, 
that there are many available techniques for estimating the 
spectral content of a signal. The generation of such an 
estimate by the transformation of the product of an ob- 
served segment of the signal and a data window is but one 
method. The intent of this discussion is not an in-depth 
analysis of spectral estimation-the reader is referred to a 
paper by Kay and Marple [22] for an overview of the 
subject, and to a paper by Harris [23] on the topic of data 
windows. 

An iterative technique, such as the one of this paper, 
must be implemented on a digital computer to be of 
practical worth. Time and frequency axes, as well as func- 
tion amplitudes, must be discretized. Since the sets C, and 
C, were defined in terms of L2( - co, co), instead of 
1,( - 00, oo), all the usual caveats concerning approxima- 
tions to the continuous world by the discrete one must be 
heeded. An attempt has been made to minimize aliasing 
effects by setting the Nyquist Frequency to be more than 
seventy times the value of St in the definition of C,, and 
any integrals which must be approximated will be calcu- 
lated using the trapezoidal rule. It is assumed that a 
discrete approximation to the projection operator corre- 
sponding to C, will be appropriate, although, for reasons 
of practicality, the area p will now become a range of areas 
p + A, where A I 10e5p. Perhaps the most important aspect 
of this discrete approximation is that the use of a finite- 
length Discrete Fourier Transform (DFT) will implicitly 
generate periodic functions. 

The specific example to be presented is that of the design 
of a 64 point data window for spectral estimation. It is 
assumed that all signals of interest have negligible frequency 
content above 10 Hz-the selected Nyquist Frequency, 
FN. The sampling frequency, F,, will be 20 Hz, yielding a 
sampling period T, of 0.05 s and a spacing of A?) = F,/64 
= 0.3125 Hz for the frequency samples of the associated 
DFT. 

The data window will be designed on a 1024-point 
sequence with the same spacing in time, T,, as the 64 point 
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sequence, and, hence, with a spacing of A:‘) = F,/1024 = 
0.01953125 Hz for the frequency samples of the associated 
DFT. Now, Ay)/Ay) = 16; and the advantage of this factor 
of 16 density increase in frequency samples for the design 
sequence, over the sequence whose length is that of the 
data window, will be that C1 may be meaningfully defined 
with values of Q less than A:‘). 

In order to provide the most realistic emulation of the 
continuous case, the time origin for the 1024-point se- 
quence was defined to be the 513th point of that sequence. 
Any sequence of 1024 points which is real and displays 
even symmetry about the 513th point will have a real and 
even- about the frequency origin-DFT. With the time 
origin so defined, the span of the truncation window 
rT,2(t) will be an odd number of points. In what follows, 
then, the C, functions which have been generated by the 
iterative synthesis technique will have been produced by a 
65-point rectangular window of height one, centered at 
point 513. The data window, whose performance will be 
subsequently evaluated, will be composed of the final C, 
sequence from the point whose time abscissa is - T/2 up 
to, but excluding, the point whose time abscissa is T/2 
yielding a sequence of length 64. 

A modular, Fortran 77, program named CONVEX was 
developed to carry out iterations of the form {Pi}. The 
program was supplied with the projection routines for the 
C, and C, of this section. C, was parameterized as follows: 
p =1.3*1.3x10-5, and Q = 7A$?’ = 7/16A:” = 0.13671875 
Hz. The single parameter for C,, T/2, was set to 32T, = 1.6 
s. The fixed points of P were specified to lie in C,, thus 
P = P, 0 P2; and the value of X, in the definition of P,, was 
chosen to be 10e3. For this example, CONVEX was in- 
structed to carry out 50 iterations and to make the results 
of the 3rd and 50th iterations available for inspection. 

To aid in the evaluation of the convergence properties of 
the sequence of iterates, the following measure of conver- 
gence was defined 

+> = IIp,“w4-w’wll 
IIPd w- WI ’ 

n=1,2;-.. 

Since P, is nonexpansive, c will be a monotone non- 
increasing function of n. Moreover, the asymptotic regular- 
ity of P, would lead one to expect E to be a decreasing 
function for sufficiently large n. 

The starting point for the iterations, the “x ” of 
{ P{( Px)}, is displayed in Fig. 3. This function is neither 
an element of C, nor of C,. In the process of developing 
CONVEX, it was observed that the point to which the 
sequence of iterates converged was essentially invariant 
with respect to its starting point. 

Figs. 4 and 5 are plots of r(n) versus n on two different 
ordinate scales. The technique is observed to converge 
rapidly. With these two sets, convergence is typically 
achieved within forty iterations for a wide range of 
time-bandwidth products generated by particular para- 
meterizations of C, and C,. The oscillatory behavior of E, 

Fig. 3. 
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above n = 32, may be ascribed to the fact that the p for C, 
was defined to be a range of values, rather than a single 
value. 

Figs. 6 and 7 depict the C, function after three iterations 
in the time and frequency domains, respectively. In the 
time domain, the function is observed to be radically 
different from the initial function of Fig. 3, and to be 
periodic-a result of time discretization and the use of the 
DFT in the associated projection routine. The time func- 
tion also displays even symmetry about the time origin, as 
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is expected. Fig.. 7 shows that the function is composed of 6 
cosinusoids and a constant. Although the inclusion of a 
component at 7A, c2) Hz is allowed, its presence is difficult to 
observe in either the time or frequency plots, as the time 
plot displays a total of twelve peaks and dips. One should 
note that the definition of C, implies that Fig. 7 is the 
entire DFT of Fig. 6, since elements of C, have real, 
positive transforms. 

The C, function, after three iterations, is displayed in 
Fig. 8, while its DFT appears in Fig. 9. The time function 
is the product of r,,,(t) and the C, function after two 
iterations. The function is evenly symmetric about the 
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origin and real. Its DFT is, therefore, real. The appearance 
of Fig. 9 is typical of the result of the application of a time 
truncation operator to a bandlimited signal. 

Figs. 10 and 11 represent the C, function, after fifty 
iterations, in the time and frequency domains, respectively. 
The most noticeable difference between this time function 
and the C, function after three iterations is the inversion of 
the central lobe about the time points -4 s and 4 s. The 
function now has a total of 14 peaks and dips, and, as is to 
be expected, the frequency corresponding to 7Ay) Hz is 
now in evidence in the frequency plot. The ordering of the 
relative amplitudes of the various frequency components 
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has also been reversed from that at the third iteration; and Fig. 15 is the magnitude of the DFT of the 50th C, 
the relative amplitudes of these components has equalized iteration, on an expanded abscissa; and Fig. 16 is the 
somewhat. magnitude of the DFT of a 65-point rectangular window, 

As evidence of the propriety of the discrete implementa- whose amplitude in time was normalized to yield the same 
tion of the iterative technique in the program CONVEX, main frequency lobe amplitude. The main frequency lobe 
Fig. 12-the imaginary part of the C, function after 50 of the C, function appears to be slightly wider than that of 
iterations-has been included in this section. The peak the rectangular window. The side lobe amplitudes of the C, 
amplitude in Fig. 12 is more than 90 dB below the peak of function are, however, approximately 2/3 of the values of 
the corresponding real function, Fig. 10, and is well within those of the rectangular window. 
the limits of computational “noise”. The fact that this data The efficacy of the fiftieth C, iterate as a data window 
appears to have some structure is not surprising in light of will now be evaluated. As stated earlier, the window will be 
the iterative nature of the synthesis technique. formed by retaining the values of this C, function whose 

Figs. 13 and 14 depict the C, function, after 50 itera- 
tions, in the time and frequency domains, respectively. The 

time abscissas run from - T/2 up to, but excluding, the 
point corresponding to time T/2. The performance of this 

primary differences between this time function and the C, window will be compared with that of the rectangular 
function after three iterations are its negativity-corre- window, the Harming window and the Hamming window 
sponding to the inversion of the central lobe in the fiftieth [24]. These particular windows were selected because they 
iterate in C, -and its increased curvature. In the frequency form a representative collection of frequently used windows. 
domain, the key change is the increased ratio of the main The rectangular window is known for its good resolvability 
lobe amplitude to the amplitudes of the sidelobes. For the -narrow main lobe-and poor leakage properties-high 
third C2 iterate, the ratio of the main lobe’s amplitude to side lobe amplitudes. The Hanning window has just the 
that of the first sidelobe is approximately 6.0, while for the opposite properties-low leakage,, but poor resolvability. 
50th iteration this ratio is about 7.2. The Hammin g window attempts to attain a balance of 
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leakage and re:solvability and is, in fact, a weighted average RMSFORM IN FREOIJENX HZ) DOWIN OF DATA UlWOL+D II -1IIIE E-7 

of the Harming and rectangular windows. For a sequence Leakage Performance 

of length N, the Harming and Hamming windows are, 
. . 1.L . . . . ..-- c-- .--... ~ _.......__,.__ - .^... ._~.. .--... I . . . .._.._...__.........._______.__..._.._.. 

j : : / : : : : : 
respectively, defined to be 

and 

O<n<N-1. a. IO- --....------ . . ..--- L ---- --1.-. -_ .- . . . . ..-.. -.- .._ -....... - . . . . . . . . .._. -... , 

To aid in comparisons, the windows were normalized so 
that their main spectral lobes were of equal amplitude. 

The four windows will first be compared on the basis of -I# -a -6 -4 -2 2 6 
leakage performance. By applying the windows to a single 
sinusoid of frequency 16.5 A:‘) = 5.15625 Hz, with unit 

Fig. 17. 

amplitude, the main spectral lobe for each window will be gular window, the Harming and Hamming windows, re- 
centered between adjacent frequency sample points of the spectively. A comparison of the peak amplitudes among 
64-point DFT, and the peaks of the side lobes will be the four plots reveals that the Hanning window most 
approximately aligned with the sample points. Figs. K-20 effectively confines the energy of the sinusoid, followed by 
depict this example for the generated window, the rectan- the Hammin g, the generated and the rectangular windows, 
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respectively. On the basis of the lobe widths at the 0.050 
amplitude level, the generated window may be observed to 
have better performance, with respect to leakage in the 
vicinity of the main lobe, than the rectangular window. In 
this respect, the generated window may also be seen to 
have performance equal to that of the Hanning window, 
and nearly so good as that of the Hamming window. 

The resolvability of the various windows is contrasted 
in Figs. 21-24 (generated, rectangular, Hanning and 
Hamming, respectively). The windows were applied to two 
closely spaced, unit amplitude, sinusoids-one at 10.62Ay) 
= 3.31875 Hz and the other at 11.38Ay) = 3.55625 Hz. The 
generated window may be observed to perform nearly so 
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well as the rectangular window in this respect, while the 
Hanning and Hamming windows both fail to distinguish 
the two frequencies. 

The third comparison among the windows combines the 
considerations of leakage and resolvability. The windows 
were applied to’ a data sequence comprised of an amplitude 
10 component, at 11.5Ay) = 3.59375 Hz, and another 
sinusoid of amplitude 1.25 at 14Ay) = 4.375 Hz. The results 
of this test appear in Figs. 25-28 (generated, rectangular, 
Harming and Hamming, respectively). It is apparent that 
the window generated by the iterative synthesis technique 
is the only one of the four to clearly distinguish the 
presence of a (discrete lower amplitude frequency compo- 
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nent. Of the remaining three, the performance of the 
Hamming window is the most appealing, as would be 
expected. 

It is hoped that this example has demonstrated the 
utility of the synthesis technique of this paper. By satisfy- 
ing a constraint of finite time duration, while nearly satis- 
fying a constraint upon the spectral content of the signal, a 
data window was generated whose ability to resolve prox- 
imal frequencies of greatly varying amplitudes is superior 
to that of three commonly employed windows. 

IV. REMARKS 
In the course of any research endeavor, the treatment of 

certain germane topics will be precluded by limitations 
upon the available time and space. The intent of Section IV 
is to remark upon some of those topics and to mention 
aspects of the synthesis technique of this paper which may 
benefit from further research. 

The reader may recall that Theorem 3 of Section II 
established that for each (xi, x2) E Dp, llxl - xzll = 
d(C,, C,)-with the assumption that the underlying 
Hilbert Space was defined over the scalar field of real 
numbers. It would clearly be desirable to extend the Theo- 
rem to Hilbert Spaces which are defined over the scalar 
field of complex numbers and, hence, to make possible the 
synthesis of complex-valued functions within the context of 
a single space. In its present form, Theorem 3 necessitates a 
product space structure, of the type mentioned in the 
discussion preceding that theorem, in order that it be 
applicable to complex-valued functions. To effect such an 
extension, it will be, in the authors’ opinion, necessary to 
change the manner in which the Theorem is proven. The 
current proof relies, to a significant extent, upon the sign 
of the inner product of certain elements in the space-a 
notion which becomes tenuous when the inner product is 
allowed to assume complex values. Theorem 3 is the only 
result of Section II which is dependent upon the scalar 
field over which the underlying space is defined. 

It is the authors’ belief that the utility of the synthesis 
technique of this paper will be conditional upon the con- 
struction of a more extensive collection, than that which is 
currently available, of convex sets corresponding to 
meaningful signal constraints, and of their corresponding 
nearest point maps. Although the presentation of this 
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paper was phrased in terms of signal synthesis, the tech- 
nique may find application in the more general class Of 
constrained optimization problems, in which the severity Of 
the various constraints generates an inconsistency. Some 
examples might include the design of control systems and 
the design of manufacturing processes. As in the case Of 
signal synthesis, however, the identification of convex sets 
corresponding to meaningful design constraints, and of 
their associated nearest point maps, will be a prerequisite. 

The discussions in this paper were confined to the case 
of two, disjoint, closed convex sets. Consider the case of N, 
mutually disjoint, closed convex sets {C,, . . . , C,}, with 
respective projection operators Pi,. . . , PN. Suppose that 
C, is bounded, and form the composite operator P = 
P, 0 f * * 0 PN. Then, by Theorems 2 and 4 of Section II, 
respectively, the set of fixed points of P is nonempty and 
P, = XI + (1 - A)P,O < A < 1, is asymptotically regular. 
Furthermore, by Theorem 5, the sequence { P!( Px)},",~ is 
weakly convergent to a fixed point of P for an arbitrary 
element x of the underlying Hilbert Space. Thus the for- 
mal mathematical extension of the technique of this paper, 
to any finite number of mutually disjoint, closed convex 
sets, is feasible. The questions which must be resolved, in 
this case, are those of a physical interpretation for the 
results of an application of the technique. Specifically, the 
relationship of the fixed points of P to the elements of the 
remaining N - 1 sets must be ascertained. In the case of 
two disjoint sets, if xi was an element of the set of fixed 
points of P = P, 0 P2, it was demonstrated that 11x1 - P2xlll 
was minimized. In the general case, preliminary results 
have shown that 

II%- pAI+ IlPNXl -(p,-, o P,)x,ll+ * * * 
+ll(Pp * *. o P,)x, -(P, 0 * *. 0 PN)X,ll 

where xi is a fixed point of P = P, 0 . . . 0 PN, is not 
necessarily equal to the minimal length of a closed polygo- 
nal path with a single vertex in each set. 
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