Acoustooptic digital filter

Fariborz Salamat and Robert J. Marks I

Digital filters have three components: (1) unit delays, (2) multipliers, and (3) adders. These components
can be implemented by using (1) a Bragg cell as a tapped delay line, (2) optical multiplication using the
Bragg cell transmittance, and (3) photodetectors. Multiplexing techniques are shown to increase geometri-
cally the data handling capacity of such filters. An architecture for a 2-D digital filter using such techniques

is presented.

l. Introduction

Acoustooptic cells have been used extensively in op-
tical computing for the operations of matrix multipli-
cations and convolution-type operations.!-? Some
digital convolutions can be performed by digital filters8?
with the advantage of no required finite windowing.

Digital filters consist of three basic components: unit
delays; multipliers; and adders. Unit delay operation
can be performed by a Bragg cell identical in concept
to a tapped transmission line implementation of a unit
delay.® Multipliers can be implemented by conven-
tional optical multiplication using the Bragg cell
transmittance. Addition can be performed by photo-
detectors.

Using the above elements, we propose a basic archi-
tecture for both finite and infinite impulse response
(FIR and IIR) digital filters. The use of multiplexing
is addressed, and the filter’s potential is shown to be in
billions of operations per second (BOPS). Using mul-
tiplexing techniques, an architecture for 2-D digital
filtering is presented.

ll. Preliminaries

A. Digital Filter

A general expression for a 2-D digital filter is given
by .

J
ym) = ¥ awln =)+ Eby(n =),
P 2

where v(n) is the input, y(n) is the output, and a; and
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b; are weighting coefficients. From this expression it
can be seen that the filter is composed of the following
components: (1) delay elements; (2) multipliers; and
(3) adders. Therefore, any system that proposes to
implement a digital filter must contain these three el-
ements. Acoustooptic interactions provide us with first
two of these elements with the third implemented by
photodetectors in simpler cases. In more complicated
applications, summation together with bookkeeping
functions is left to the electronics of the system.

B. Acoustooptic Interaction

It has been shown that weak acoustooptic interaction
in the Bragg regime can be used to multiply numbers.10
Here we present a summary of this interaction (for a
detailed discussion see Rhodes?). -

Figure 1 shows an acoustooptic (AO) medium where
an acoustic wave with velocity V and frequency fo
propagates. This wave generates a strain wave in the
AO medium of the form

s(x — Vt) = ¢(x — Vt) cos[2nfolx — VT) + alx — Vi),

where c(x,t) and a(x,t) are the amplitude and phase of
the wave, respectively. x is the direction of the prop-
agation of the acoustic wave, ¢t denotes time, and x and
t are related by the velocity of the acoustic wave. If the
amplitude c(x,t) is sufficiently small, the effective
transmittance of the AQ medium in the Bragg regime
of operation is given by

t(x,t) = {1 + j Yoc(x — Vt) exp[ja(x — V)] expli2nfo(x — V)]

Now if the medium is addressed by an optical wave of
frequency v and amplitude /a, the resulting trans-
mitted wave u(x,t) will be

u(x,t) = {1+ jlhe(x — Vt) exp[j21|:fo(x — V)]V a exp(j2wwt)},

where we have set a(x — Vt) = 0 for convenience. The
corresponding intensity of the output will be

I =|ux,t)|?2=a+ Yc2a — ac sin2xfolx — Vi). 1)
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Fig.1. Acoustooptic medium: Acoustic waves are generated by the

acoustic transducer which is fed by the electrical signal v(t). The

acoustic wave is absorbed at x = w/2 to avoid reflections. Length of
the medium is w.

It can be seen that the last term is the product of the
acoustic strain wave and the square of the optical am-
plitude to within a phase difference. This term can be
extracted by bandpass/highpass filtering the intensity,
the other two terms having their frequency components
far removed.

Another feature of the AO medium is that it behaves
as a series of delay elements. That is, it not only con-
tains the current input signal but the previous inputs

up to W/V sec before, W being the length of the medi-

um (see Fig. 1).

As we will see in the next section, the AO interaction
and AO medium provide us with the multipliers and the
delay elements of the digital filter.

lll. Basic System Architecture

Suppose an electrical signal u(¢) is to be filtered. It
first has to be preprocessed as shown in Fig. 2. A
sample and hold operation on the input signal u.(¢) gives
uln] = u(nT), with T the sampling period. Our
acoustic medium is geneally operable in a given fre-
quency range, so it is also necessary to put the sampled
signal on a carrier frequency fo in that range. Then the
electrical signal fed to the acoustic transducer will be
given by

v(t) = ¢[n] cos@nfonT + a[n]); nT<t<(n+DT,

where c[n] and «fn] are the amplitude and phase of
u[n], respectively.

At this point, for ease of presentation, let us assume
that a[n] = 0; then v(t) is a continuous signal of fre-
quency fo with amplitude ¢[r] lasting for one sampling
period T. For the next T sec v(t) will have an ampli-
tude c[n + 1] and so on.

Now if v(¢) is fed to an acoustic transducer which
converts the electrical signal v(£) to mechanical vibra-
tions, acoustic waves will be launched in the acous-
tooptic medium.

If the speed of the acoustic wave in the acoustooptic
medium is given as V, the signal appearing at x1 is the
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Fig. 2. Preprocessing of the input signal.
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Fig.3. Snapshots of the propagation of the signal in AO medium at
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Fig. 4. AO medium addressed by LDs of amplitudes: +/aq,
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signal that was at x; — Vi1, £ sec before. Therefore, if
we divide the AO medium into cells each of length VT,
we will have the configuration shown in Fig. 3. (Similar
techniques have been used elsewhere; for example, see
Ref. 5.)

Figure 3 shows the progress of the acoustic signal with
time in the AO medium. The signal v(n,t) which is in
the first cell at time ¢; will be in the second cell after T'
sec (length of each cell being VT), and for time t; < t <
¢1 + T it is partially in cell one and partially in cell two.
There is an attenuation of the signal as it travels
through the medium, which we will ignore since it can
be compensated for easily. Also, the medium is of finite
length so we have a limited number of cells to work
with.

Now let us position a number of laser diodes (LDs)
so that each of them addresses one of the imaginary cells
at the Bragg angle 0y (see Fig. 4). Considering the ith
a;, We can
see that, as discussed before, we get a product term of
av[n — i], where v[n — i] is the acoustic signal in the ith
cell. v[n —i]isv(t) when (n —i)T <t < (n—i+ 1)T.
An isolated cell is shown in Fig. 5. In this figure the
output of the photodetector (PD) is the intensity I(x,t),
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Fig. 5. One-cell operation.

and, as mentioned before, this is bandpass/highpass
filtered to give the product term.

At this point it must be obvious that this system can
be used as a digital FIR filter

y[n] = awln] + awln — 1] +agwln — 2] +...,

where v[n] is the input to the system, y(n) is the output,
and each product term corresponds to a given cell and
its LD.

Once we have the product terms, they can be summed
to give y[n]. An IIR filter follows naturally, as shown
in Fig. 6. Note that only one PD is needed since the
LDs are mutually incoherent and no cross terms appear
in the calculation of the intensity. In thisscheme, the
PD not only generates the intensity terms for each cell
but also adds the product terms at the same time. In
more complicated cases, however, we might need one
PD for each cell since it might be necessary to add the
product terms selectively, and the one PD technique will
no longer be sufficient. Of course, if the LDs are in any
way correlated the one PD technique can no longer be
used.

A. Filter Coefficients

Suppose that we want to implement the following
filter:

y[n] = awin] + awln — 1] + agwln — 2] +...
+by[ln— 1]+ boyln = 2] +....

Assuming the filter to be shift-invariant we can imple-
ment the coefficients with LDs together with appro-
priate neutral density filters. If our LDs are all iden-
tical, a LD without a neutral density filter corresponds
to the maximum amplitude available for a coefficient.
Therefore, if our maximum coefficient is a,, we write

yln] = apfae(n] + awln — 1] +...
+byln— 1]+ boyln — 2] +...},

where a; = a;/a, and b; = b;/ap, and the a, multiplier
can be easily realized in the electronics after the
summer.

The second problem we might have with the coeffi-
cients is that they might be negative. There are several
techniques that enable us to handle negative coefficients
(see, for example, Ref. 11). Two of these are considered
here: '

(a) We can have two summers, one for the positive
and the other for the negative coefficients. In this case,
the output of the PD (each cell has its own PD) can be
switched to either of two summers. If the coefficient
for the cell is negative, the PD corresponding to it is
switched to the summer for negative values and vice
versa. This is done for all PDs, and then the output of
the two summers is subtracted.

v(t)

v(nT)
Vo v[(n-0T]
e

y{(n-2)T
o Ty [(n-1)T)

[ feedback
electronics
Fig. 6. IIR filter: Output of the bandpass filter is y[n], which is

placed on a carrier frequency and fed back to another AO medium to
generate bjy[n — j] terms.

(b) We may have two time intervals in each period
T. Inthis method, we collect two sets of data; i.e., we
sum twice. During one interval we disable, say, the
negative coefficients; that is, we turn off the LDs cor-
responding to negative values so we get the equivalent
of positive output of method (a); then we disable the
positive LDs and get the negative output and then we
subtract the two. Note that while in method (a) we
have abandoned the one photodetector technique; in
method (b) we can still use it.

IV. Multiplexing

One of the best attributes of the acoustooptic digital
filters is the dimensions available for multiplexing.
These dimensions are (1) time, (2) space, (3) acoustic
frequency, (4) optical frequency, (5) angle, and (6) po-
larization.

(1) Time

By time we mean any changes in the system in real
time. This includes, for example, changes in the filter
coefficients for a shift-variant filter or a system that can
realize several filters and hence requires a change of the
coefficients. With time we could also change the
manner in which the electronics of the system operates.
For example, recall the one-summer handling of the
negative coefficients.

(2) Space v
For this dimension we just mention that we can have
a 2-D array instead of the 1-D one we have been con-

sidering and that a given cell may be addressed by sev-
eral LDs.

(3) Acoustic Frequency

Each AO medium has a given bandwidth, so we can
feed it with several, instead of one, acoustic frequencies
within that bandwidth. Since the Bragg angle is given
by 0 = ko/2K = A/2A, where A is the optical wave-
length and A is the acoustical wavelength, we see that
as A changes so does the Bragg angle, and, therefore,
each acoustic frequency generates a diffracted beam
which carries the information as covered before (see Fig.
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Fig.7. Acoustic frequency multiplexing.
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Fig.9. Angular multiplexing.

7). This makes it possible to filter several signals (Each
on a different acoustic frequency) at the same time.

The reader might note that since g is a function of
the acoustic frequency, just one of the acoustic
frequencies is addressed at its exact Bragg angle.
However, we maintain that there is a range of angles g
+ Afp that would still yield useful results. Also, we
could address the cell at different angles by using several
LDs [see (2) and (5)].

(4) Optical Frequency

This is quite similar to the acoustic multiplexing ex-
cept that we change the optical frequency and again get
different diffracted beams for each optical frequency
(see Fig. 8). This means that several distinct filtering
operations can be done on the same signal, since each
optical frequency can correspond to a set of coefficients
and hence different filtering operations.

Acoustooptic Frequency Multiplexing. The two
frequency multiplexing techniques, n acoustic
frequencies and m optical frequencies, can be combined
to result in nm useful diffracted components, which
may be employed to realize a wide variety of systems the
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user might want to implement. This is a tremendous
capability, as well be demonstrated in the realization
of 2-D filtering.

(5) Angular Multiplexing

Yet another dimension of the system is realized by
noting that the Bragg angle g in fact corresponds to a
cone, see Ref. 12. That is, a cell can be addressed at any
angle a which satisifies « = fg & Afg, where Afg is the
angular increment that still yields useful results al-
though the incidence angle is not exactly 0y (see Fig.
9).

With this constraint we get a cone to address the cell,
and this in turn generates a cone of diffracted beams
where each beam can carry a distinct information.

(6) Polarization

As the last dimension, we mention multiplexing by
polarizing the optical wave. We can distinquish two
diffracted beams by their polarization, and hence we can
address the cell by two mutually perpendicularly
polarized optical beams where they both could have the
same optical and acoustical frequencies and still be
distinquishable.

V. System Capability

The limiting factor in the speed of the system is the
restriction on c¢(x — Vt) in Eq. (1) to be of lower fre-
quency than the acoustic frequency f, so that we could
use a bandpass filter to extract the product term. To
illustrate the speed of the system, we note that acoustic
frequency is generally between 1 MHz and 1 GHz, so for
purposes of illustration let it be 50 MHz. Then fre-
quency of ¢c(x — Vt) will be ~5 MHz, which implies a
sampling period of 200 nsec. Note that after each pe-
riod T we get an output so we have a device speed of 5
million operations or outputs per second (MOPS).

In support of this estimate, consider the following:

(1) The cell length will be of the order VT = 1 cm,
where we have used a typical velocity. This is quite
large, and, therefore, we have no problem accommo-
dating the LD and PD or other system components.

(2) It might be possible to use higher acoustical
frequencies, in which case the frequency of ¢(x — V¢)
can be higher too, and hence more MOPS will be reali-
zable.

(3) The phase-to-amplitude optics, specifically, the
lens shown in Fig. 10, can be realized by a fly’s eye (or
a phase hologram) and can be quite small, so there is no
serious problem in having smaller cells as far as the
optics of the device is concerned.

(4) Inthe manufacturing phase of production of the
system, it might be possible to have a much higher
density.

Eol

transparency

/N

=)

converging high pass
lens filter

Fig. 10. Detailed illustration of a one-cell operation.
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(5) In addition, we have the dimensionality of the
system. Let us assume that time, space, angular di-
mension, and polarization each doubles the MOPS.
Frequency multiplexing composed of optical and
acoustic multiplexing has a great potential, and let us
suppose that each of these just quadruples the number
of operations. This gives 1.28 BOPS, which is a
staggering number of operations, exceeding one billion
operations per second, which is 34 orders of magnitude
greater than the fastest digital filter implemented by
the computers.

As the above arguments suggest, the 5 MOPS are to
be considered a conservative estimate, and the MOPS
could go higher after multiplexing and using a tailor-
made system.

VI. Two-Dimensional Filtering
A 2-D filter is given by the following expression:
X blpglyln—pm—ql= 2z alk,ilv[n — k,m —i].
P q i

For the following presentation, we assume a and b
coefficients to be constant, although they need not be
50, as discussed for the 1-D case, but it simplifies the
presentation. Also, since the treatment of the IIR case
is an extension of the FIR case, we treat the following
2-D filter instead:

K I
ylnml= % ¥ alkilo[n — km —il.
k=0i=0
To understand how the system accommodates this
filter, we start with an illuminating example and then
present the general case.
Suppose k and i solely take the values zero and one;
then the y[n,m] outputs will be given as follows:

(a) ¥[0,0] = a[0,0]v[0,0],
¥[0,1] = a[0,0]v[0,1] + a[0,1]v[0,0],
v[0,2] = a[0,1]v[0,1];

(b) y[1,0] = {0,0]v]1,0] + a[1,0]v[0,0],

y[1,1] = a[0,0]v[1,1} + a[0,1]v[1,0]
+ a[1,0]v[0,1] + a[1,1]v[0,0],

¥[1,2] = a[0,1]v[1,1] + a[1,1]v[0,1];
(c) ¥[2,0] = a[1,0]v[1,0],

¥[2,1] = a[1,0]v[L,1] + a[1,1]0[1,0],

y[2,2] = a[1,1]0]1,1].

The reason we have grouped these outputs will become
clear as we proceed.

Let us consider Fig. 11, which generates outputs for
part (a). It can be seen that as v[0,0] comes into cell one
and is multiplied by a[0,0], we get y[0,0]. Next, as v[0,0]
travels to cell two and v[0,1] travels to cell one, we get
v[0,1] by adding the resulting products. Next, as x[0,1]
travels to cell two, we get y[0,2]. Note that we do not
get terms like a[0,0]v[0,2] because of our assumption on
k andi.

Similarly, part (b) is generated by the arrangement
in Fig. 12. To generate part (c) outputs, we propose a

v[o, ]
v[0,0]
-
a|0,0
| ]\ cell |
O[O’I]\ cell 2

Fig.11. Generation of part (a) outputs. (The square root factor is

not shown for clarity.)

v[l,0

. .
[I'O]\ cell |
O[l,l]\ cell >

Fig. 12. Generation of part (b) outputs.

v[o,1] vin]
v[0,0] v[1,0]
1% l V‘l

a[1,0] a[0,0]
al1,1] af0,1]

Fig. 13. Generation of part (c) outputs.

simple extension of the system as shown in Fig. 13,
where for purposes of illustration the coefficients are
placed over the cell they address. The system works as
follows: First v[0,0] and v[1,0] travel to first cells of
their respective mediums and are multiplied by the
coefficients addressing them, yielding y[1,0] as they are
added. After one period elapses, v[0,0] and v[1,0] are
now in cells marked two, and v[0,1] and v[1,1] are in cells
marked one, and we get y[1,1], and after another period
T we get y[1,2].

Together the above schemes give us all the outputs.
But note that the last scheme could also give us all the
outputs if we use acoustical frequency multiplexing, as
shown in Fig. 14. Specifically,
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v[O, 1] v[1,1]
v[o,0] v[I,0]
v[I1] v[O,I]
v(1,0] v[0,0]

array | array 2

Fig. 14. Acoustical multiplexing for a simple 2-D filter.

v[o, 1] v[i1]
v[0,0] v[I,0]
]
o[0,0]* ZZ2772722
°[|,O]&_ cell |
alo, 1]
0[',|]\ cell 2

Fig. 15. Simple 2-D filter.

faz and array 1 are equivalent to Fig. 11,

fa2 and array 2 are equivalent to Fig. 12, and

fa1 and both arrays are equivalent to Fig. 13.

Now we take this one step further, and by using op-
tical frequency multiplexing we attempt to use just one
array. This is illustrated in Fig. 15.

It can be seen that

(fa1,f1) is equivalent to Fig. 11,

(fa2,f2) is equivalent to Fig. 12, and

(fa1,f2) and (fa2,f1) are equivalent to Fig. 13.

Now that we have seen how the system accommo-
dates 2-D filtering for a simple case, we treat the general
case

Ni1—1 Na—1
ylnml= ¥ ¥ alkilvin —km—i].
k=0 (=0
Let v[i,j] be given by the acoustic frequency for i and
time for j as in Table I, and let a[i,j] be given by the

optical frequency for ; and x dimension for j as in Table
II. Then, as is illustrated in Fig. 16,
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Table I. Inputs of the Two-Dimensional Filter

N, -1
0 1 1
fa _f_a fa
t=0 v[0,0] v(1,0] v[N]-l,O]
t=1 v[0,1] v[1,1] v[N1—l,]]
t=Ny-1 | v[0N,-1] vTLN,-1] VN -1,N,-1]
Table ll. Coefficlents of the Two-Dimensional Filter
N, -1
f0 fl ... fl
x=0 a[0,0] af1,0] a[N]-'l,O]
x =1 a[0,1] al[1,1] a[N]-1,1]
X = N2-1 a[O,Nz-l] a1 ,N2—1] a[N]-l ,NZ-I]

Fig. 16. General 2-D filter.

N1~1Ng—1

yln—ml= ¥ % alftxiolfikem—i],
k=0 i=0

where x? refers to position x = i,t™~itotimet = m —

i, and f2~* and f* are as given in Tables I and IL.

Note that the output y[n,m] is generated in the fol-
lowing order: y[n,0],y[n,1],...,y[n,No— 1] withn =
0,1,..., Ny — 1, which is the order of inputing y[n,m]
in the IIR case. So all the variables necessary will be
available for IIR implementation of the filter.

It can be seen that the general 2-D filtering becomes
very involved as N1 and N3 become large; yet it does so
in an orderly fashion, and it is tractable. Also most of
the additions and which terms are to be added together
are left to the electronics of the system.

It must be mentioned that acoustical and optical
frequency multiplexing are not the only dimensions



available for implementing the 2-D digital filter. We
could as well use several Bragg cells (space dimension),
each accommodating a portion of the acoustical fre-
quency multiplexing necessary. Inaddition, we could
use time dimensions, i.e., during the period At < T that
the v[n — i] can be addressed in cell ¢, we could divide
At to several smaller time intervals; during each we
enable only a portion of the optical frequencies.

Therefore, we can see that although 2-D digital fil-
tering is.very involved, the dimensions of the system are
a powerful tool for realizing this filter.

VII. Conclusion

This paper introduced a new technique for imple-
menting digital filters. We wanted a system that would
be faster than its computer counterpart and have sug-
gested an optic-acoustic—electronic hybrid device which
combined the inherent characteristics of each of these
fields into a system for implementing digital filters.

We have shown that the system is capable of 1- and
2-D filtering or mathematically equivalent operations
like solving differential equations or implementing
convolution without the windowing effect. These op-
erations can be FIR or IIR, shift-variant, or shift-in-
variant. Several filtering operations can be done on a
signal, or the same filtering operation can be done on
several signals. For the general case, several filtering
operations can be done on several signals.

The enormous capability of the system using its di-
mensionality and one of its applications, 2-D filtering,
was discussed.
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Books continued from page 738

We were happy to see work on the nascent question of the rela-
tionship between the nonlinear phenomena of chaos and solitons.
Two papers tell us that soliton interactions and soliton imperfections
give important contributions in models of the transition to chaos.
Another of our questions addressed was whether the canonical fluid
equations for Taylor-Couette flow are truly consistent with observed
chaotic behavior. In contrast to Rayleigh-Bénard convection, how-
ever, the subharmonic bifurcations or lack thereof seem to still be a
theoretical puzzle. Other articles in the general area of fluid dynamics
are on methods for determining scaling exponents in vortex stretching,
the role of computer graphics in 2-D flows, scalar magnetohydrody-
namic models, the Painlevé criterion for integrability/inverse scat-
tering theory, and the dominance of nonlinearity for low viscosity
(small Prandtl number).

It should be emphasized that this Springer tract is largely numer-
ical/analytical theorizing with limited experimental discussion. How
well the ideas are doing and how broadly they can be applied to tur-
bulence are problematic, as is the question of whether any proceedings
reports fast-moving or fast-ending progress. In addition to the
confined flows already mentioned we do find detailed success for the
1-D map model of a complex chemical reaction. Also, there is the
possibility that higher degrees of freedom can be studied and may be
successfully modeled in optical turbulence; this is important in our
quest for a statistical mechanics of dynamical systems. Further
nourishment will come, no doubt. For example, recent news about
volcanic solitons may lead to another tract on geophysical applications
of these exciting ideas.

ROBERT W. BROWN

Transmission Electron Microscopy. By L. REIMER.
Springer-Verlag, New York, 1984. 521 pp. $46.00.

This is an excellent book. The explosive growth of the field of
transmission electron microscopy in recent decades has resulted from
the extraordinary versatility of the instrument and now means that
any book on the subject must cover a vast range of scientific disci-
plines, from microbiology, materials science, channeling, and electron
optics to scattering theory, crystallography, spectroscopy, and ra-
diation damage. To chart a course through such an ocean of material
for a book of limited size is a treacherous task requiring a brave spirit;
it is almost certain to overlook entire subdisciplines and offend many
through neglect. Yet the writer of a text such as this, which provides
a unified coherent treatment of the subject and which is pedagogically
sound, performs an invaluable service. This book manages to cover
a large amount of material in a unified formalism and to pick out the
essential physical ideas and equations for each topic. The book
contains brief but adequate accounts of electron lens theory, electron
guns, electron detectors, electron interferometry and energy loss
spectroscopy, multiple incoherent scattering, dynamical theory for
perfect crystals and defects, phase contrast imaging and linear transfer
theory, inelastic scattering, crystal structure imaging, analytical mi-
croscopy, microdiffraction, and radiation damage.

As with much of the German School, the treatments of electron
optics, transfer theory, and interferometry are particularly extensive.
A particularly good feature of the book is the incorporation of
worthwhile sections on analytical TEM, so that the earlier sections
on the physics of multiple incoherent scattering in STEM can be re-
lated to the sections on analysis and diffraction contrast. The modern
electron microscope must be viewed as a scattering chamber and
high-quality electron source fitted with a variety of electron, ion, and
photon detectors and spectrometers. This book is the first to even
begin to treat the resulting multitude of modes available and physical
mechanisms which must be understood on recent analytical TEM/

continued on page 850
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