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A neural net capable of restoring continuous level library vectors from memory is considered. As with 
Hopfield's neural net content addressable memory, the vectors in the memory library are used to program the 
neural interconnects. Given a portion of one of the library vectors, the net extrapolates the remainder. 
Sufficient conditions for convergence are stated. Effects of processor inexactitude and net faults are 
discussed. A more efficient computational technique for performing the memory extrapolation (at the cost of 
fault tolerance) is derived. The special case of table lookup memories is addressed specifically. 

I. Introduction 
Hopfield's neural net content addressable memory 

(CAM)l has stirred great interest in the signal process- 
ing community. The net has been implemented both 
~pt ica l ly~-~  and electronically.6 For optical imple- 
mentation, intensive neural interconnects are possible 
since light paths can cross without interference. Pla- 
nar VLSI implementations, on the other hand, are 
restricted to nearest-neighbor interconnects. The in- 
terconnects in Hopfield's CAM are programmed by a 
set of binary library vectors. Given a noisy subset of 
one of the library vectors, the neural net ideally con- 
verges to the library vector closest to the initialization. 
The net can operate asynchronously or synchronously. 
It is also tolerant of both lumped and distributed 
 fault^.^*^ Thus, analog optical processor inexactitude 
is of less significance than usual. 

The neural net introduced in this paper allows for 
library vectors with continuous elements. The inter- 
connects are determined analogous to Hopfield's reci- 
pe. The net can also operate asynchronously and is 
fault tolerant. It differs from Hopfield's in that the 
initially known neural states are imposed on the net 
each iteration. That is, the known states act as the net 
stimulus and the remaining nodes catalog the re- 
sponse. A human memory analogy is our ability to 
recall a well-known painting by continuously viewing 
only a portion of,it. 
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After a brief introduction to the mathematics of the 
neural net, we specifically define the extrapolation 
neural net. Borrowing from some recent results in 
iterative signal recovery and s~nthesis,~-ll important 
insights into the net's performance are generated. 
These include sufficient conditions for convergence to 
the proper library vector and effects of known state 
perturbations. A short section on fault tolerance con- 
tains empirical evidence that the net still works well 
for both quantized and deleted interconnects. A table 
lookup net is one where the same P nodes are always 
used as the net stimulus. Neural net architectures for 
these specific memory extrapolation problems are pre- 
sented. Some final remarks tying the net's operation 
to some other well-known iterative algorithms are 
made in the conclusions. 

11. Preliminaries 

Consider a neural net of L nodes. The transmission 
from the kth to the ith node is tik. We will assume a 
symmetric net (tki = tik) and will allow for autointer- 
connects (tkk # 0). The state sk of the kth node will be 
assumed to be a function of the sum of its inputs. For 
synchronous operation (i.e., all delays between node 
pairs are identical), we have at time M, 

where SM is a vector of the L neural states at time M, iM 
is the vector of the L input sums at time M, and T is the 
matrix of the t;k terms. Let JV denote the node opera- 
tor that determines the next set of states from the 
input sum: 

Since the state of the kth node depends only on its 
input sum, JV must be a pointwise operator. That is, 
the kth element of s ~ + 1  depends only on the kth ele- 
ment of iM. 
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Substituting Eq. (1) into Eq. (2) gives the state itera- 
tion equation: 

We illustrate with two short examples, saving our 
memory extrapolation net for a more detailgd treat- 
ment. 

A. Solving Simultaneous Equations 

Consider the L linear equations g = Kf. Given g 
and K, we wish to find f. Design a neural net with T = 
I - K and let the neural operator be defined for an 
arbitrary vector i by [see Fig. l(a)] Ni = i + g. Thus, 
the kth node adds g k  to the sum of the node's inputs. 
Then with initialization so = g, Eq. (3) can be induc- 
tively shown to be equivalent to 

If [IT[ < 1, we can use a generalized geometric series 
and write 

The net thus ideally converges to our desired result.12 

B. Hopfield's Neural Net 

Let (bnl 1 5 n 5 N) denote N library vectors each with 
only f 1 elements. Define the library matrix B = [bl : 
b2 : . . . : bN]. From this, we form the interconnect 
matrix T = BBT - M, where the superscript T denotes 
transposition. (Note that t k k  = 0.) Let the node 
operator be [see Fig. l(b)] JV = sgn, where sgn performs 
a signum operation on each vector element. The re- 
sulting neural net is Hopfield's CAM. For an initial- 
ization g and N << L, the net's state many times will 
converge to the library vector closest to g in the Ham- 
ming sense. 

Ill. Memory Extrapolation Net 

Consider a set 3 of N continuous level linearly inde- 
pendent vectors of length L 1N: 3 = {frill < n < N) 
and the corresponding library matrix: F = [fl : f2 : 
. . . : fN]. We form a neural net with interconnects5 

Given a portion of one of the library vectors, a mem- 
ory extrapolator, using the library, will reconstruct the 
remainder of that vector. For our net, we will divide 
the nodes into two sets: one in which states are known 
and the remainder in which the states are unknown. 
This node partition may change from application to 
application. That is, any node may be used to stimu- 
late or to respond. Without loss of generality, assume 
that states 1 through P < L (corresponding to the first 
P elements in some given E 3 )  are known for a given 
application. Define the node operator by 

'k sgn i k  
w 

Fig. 1. Three types of nodes used in this paper. The input into the 
kth node ik is the sum of the contributions of all L nodes through 
transmittances t i k .  (a) A node useful for linear equation solution 
and table lookup nets. (b) The node used in Hopfield CAM nets. 

(c) Nodes useful for our extrapolation net. 

where i f k  is the kth element of jf [Fig. l(c)]. That is, for 
1 5 k 5 P, the node state is kept at i f k .  Otherwise, the 
node state is the input sum. The P known states thus 
act as the input or stimulus to the net and the remain- 
ing steady state node states are the response. 

In summary, the algorithm is this: 
(1) Initialize with all unknown states set to zero. (If 

convergence is unique, any initialization will converge 
to the correct result.) The known states are equated 
to the known portion of the library vector. . 

(2) Multiply the state vector by T in Eq. (4). 
(3) Replace states 1 through P with their known 

values. 
(4) Go to step (2) and repeat. 
In many cases of interest, we claim that this iterative 

procedure will converge to the desired library vector. 
The uniqueness of convergence to the proper library 
element is addressed in the next section. 

IV. Performance Analysis 
In this section we derive important convergence 

properties of the memory extrapolation net and ana- 
lyze the effects of input uncertainty on the net's per- 
formance. Some empirical results on the net's fault 
tolerance are also discussed. 

Insight into the net's performance is gained by view- 
ing the corresponding iterative algorithm in an L di- 
mensional Hilbert space H. Consider first, the N di- 
mensional subspace T (also called a closed linear 
manifold) spanned by the N library vectors (i.e., T is  
the closure of 3). The matrix T in Eq. (4) (orthogonal- 
ly) projects any vector onto that subspace.l3 That is, 
for any h E H, 
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where nail2 = aTa. Specifically, note that T2 = T, TF  
= F, and that, for any element b orthogonal to T, Tb  = 
0 where 0 is the zero vector. 

To similarly analyze the N operator in Eq. (5), we 
adopt the vector partitioning notation 

h = [.;.I 3 

where hp is a P and h, is a Q = L - P dimensional 
vector. Then, for example, the zero vector can be 
written as 0 = [OP : 0,IT and Eq. (5) becomes N h  = [fp i 
h,] T. Note that the operator 

Sh = [O, I h,] * (6) 

(orthogonally) projects h onto the Q dimensional sub- 
space S, spanned by the unit vectors eq = [Op i &] T; 1 I k 
I &, where the vector 8k is 1 in its kth position and is 
otherwise zero. Thus, our operator N h  = [fp : OqIT + 
Sh projects h onto the linear variety N which is the 
translation of S by the vector [fp i OqlT. 

A. Algorithm Convergence 

As illustrated in Fig. 2, by alternately projecting 
between the subspace T and linear variety N, one 
expects convergence to a point common to both.6 Of 
principal concern is whether our net's iteration, 

will converge to f E 3. A sufficient condition for 
unique convergence is that 

and the matrix 

FP = [flp I f2, i . . i fNp] @I ' 

is full rank. 
Proof: A fundamental contribution of Youla and 

Webbg states that alternating projections between two 
(or more) convex sets converge to a point common to 
both (all) sets. (A set Cis convex if aa + (1 - a)b E C 
for all a, b E C and 0 I a I 1.) Since both N (a linear 
variety) and T (a subspace) are convex, the theorem is 
applicable here. Furthermore, since both of these sets 
are linear varieties, convergence is ~ t r o n g . ~  That is, a 
vector h exists in both sets (i.e., h E Tand h E N) such 
that 

Clearly, we would like to have h = f .  We can be 
assured of this if T and N intersect only at a single 
point. Let us explore this notion. If h E T, an N 
dimensional vector a exists such that h = Fa. Similar- 
ly, if h E N, then hp = fp. Any h common to both sets 
must then satisfy 

Fig. 2. Illustration of the iterative convergence to the library vec- 
tor. Beginning with so = [fp i O,], we alternately orthogonally 
project between Tand N a s  shown with the dotted lines. Note that 

so is orthogonal to the subspace. 

If P < N, there is a continuum of solutions. If P 2 N, 
there is at least one solution. If f = fm, the solution is a 
= 6,. A sufficient condition for this to be the unique 
solution is that Fp be full rank. 

A more general approach to the question of the 
degree of subspace intersection, in which our theorem 
is subsumed, is given by Youla7 and by Stark et a1.8 

B. ~ela>)cation Parameters 

The speed of convergence of the net iteration can be 
painfully slow. (Consider, for example, when the an- 
gle between T and N in Fig. 2 is very small.) One 
technique to offset this slow convergence is use of 
re1axatio.n pararne te r~ .~J~J~  Specifically, we select 
two constants, AT and AN, both of which lie on the 
interval [0,2] and redefine the interconnect and node 
operators by 

The autointerconnects are now (tr)kk = A~(tkk + 1) - 1 
and the remaining interconnects become (tr)jk = ATtjk; 
k # j .  

C. Effects of Input Node Operator Error 

Consider the perturbed node operator Ne defined by 
Neh = [fp + Ap : hqlT, where Ap is a P dimensional 
error vector corresponding to faulty library informa- 
tion or processor inexactitude. Define A = [Ap : 0,]T. 
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If A E T, a perturbed fixed point is clearly at & + A. 
Otherwise, we ask whether the linear variety N, inter- 
sects T. If it does, convergence will be to a common 
point in each set. If not, we can appeal to a result of 
Goldburg and Markslo who proved that iteration be- 
tween two nonintersecting finite dimensional convex 
sets strongly converges to a cycle between two points in 
each set-each, a closest point in its set to the other 
convex set. In either case, the fixed point of iteration 
is not affected by translation of the linear variety in a 
direction orthogonal to both sets. 

D. Fault Tolerance 

To obtain an empirical feel for the fault tolerance of 
the extrapolation net, we used N = 5 orthogonal sam- 
pled sine wave vectors of length L = 40. Each vector 
had norm If,[ = @. In all cases, we deleted half of a 
library vector's elements. With only single precision 
computing error, the mean-square error e~ = \IsM - f1l2 
reduced in ten iterations from eo = 10.5 to el0 = 0.3. 
Quantizing each element of the T matrix to seven 
quantization levels yielded surprisingly similar results. 
Doubling the quantization interval resulted in diver- 
gence. 

A number of simulations were performed wherein a 
percentage of the elements in T were randomly set to 
zero. Convergence was strongly dependent on the 
chosen library vector. Under the scenario above, for 
example, for 10% of T set to zero, el0 typically varied 
from 0.4 to 0.7. For 20%, 0.7 < el0 < 2.8. A more 
exhaustive analysis of the fault tolerance is in order. 

E. Trade-off of Fault Tolerance with Operations per 
Iteration 

The extrapolation net requires L2 multiplications 
per iteration. Note, however, that R = FTF is a non- 
negative definite (correlation) matrix, and thus its in- 
verse can be written as R-l= DTAD, where the diago- 
nal matrix A contains the eigenvalues of R-l and D is 
the corresponding matrix of eigenfunctions. There- 
fore, Eq. (4) can be written as T = (P(PT, where 

is an L X N matrix. As was done by Marks and Atlas,16 
one iteration can be performed by first, multiplying SM 
by (PT and second, multiplying this vector result by (P. 
Each step costs NL multiplies and, if N << L, a signifi- 
cant number of multiplies per iteration is saved using 
this outer product technique at, of course, the loss of 
fault tolerance and the neural net structure. 

V. Table Lookup 
An assumption thus far is that any set of P known 

values in a vector & E 3 can be used to drive the 
remaining Q nodes. Due to this generality, every node 
must be connected to every other node. If, on the 
other hand, the same P nodes are always used as in- 
puts, the number of interconnects can be reduced. 
Indeed, the states of the P input nodes are not deter- 
mined by their inputs. Thus, the interconnects to 
these nodes can be discarded. As we shall see, such 

table lookup nets can be reconfigured to Q < L nodes. 
As with the extrapolation net, the number of opera- 
tions per iteration can be reduced at the cost of fault 
tolerance. 

A. Table Lookup Net 

Again, without loss of generality, assume that the 
first Pelements of some 8 are our input. Since the first 
P elements of SM and & are the same, Eq. (1) can be 
written as 

where we have partitioned the T matrix. For the node 
operator in Eq. (5), we need not be concerned with iM,, 
since the nodes will transform it to i f p .  Thus, the T1 
and T2 partitions have no contribution to the final 
result. Such don't-care portions in extrapolation ma- 
trices have been noted elsewhere.17 Setting SM+~,, = 
iM,,, the informational part of Eq. (12) is 

where g = T3fP can be computed from the library and 
the memory address fP. A net for this operation using 
Q nodes can be formed akin to that discussed in Sec. 11. 
Our interconnect matrix is T4 and the node operator is 
defined by Ni =, i + g. If the sufficient criteria in (8) 
and (9) are applicable, s , ,  = &, with Q2 multiplications 
per iteration. The node used in this net is that in Fig. 
1 (a) 

B. Outer Product Equivalent 

The matrix in Eq. (11) can be partitioned as 

where ( P p  contains the first P rows of and 4 the 
remaining Q. Then T4 = and Eq. (13) can be 
written SM+~,, = g + (Pq(P;sM,,. Performing the itera- 
tion in this non-net format requires 2NQ multiplica- 
tions per iteration. 

VI. Final Remarks 
(1) A summary of the operations per iteration for 

each of the four extrapolation techniques is in Table 1. 
(2) The analysis of the extrapolation net drew 

strongly from results previously derived for signal syn- 
thesis and recovery p ~ r p o s e s . ~ - ~ ~ J ~ ~ ~ 5  In these cases, 
the equivalent of a library set was chosen either due to 
a design or constraint motivation rather than for mem- 
ory purposes. The celebrated Papoulis-Gerchberg al- 
gorithm7y8*12J4J7-20 (in discrete form), for example, 
used a similar JV as ours, but chose as a library those 
vectors whose DFTs were identically zeros in specified 
bins. The extrapolation net performs this algorithm 
when the library vectors are the inverse DFTs of the 
corresponding complementary rows of the DFT ma- 
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Table I. Multiplications per Iteration for Four Memories 
- - - - - - - 

Recall techniaue Multiwles/iteration 

Extrapolation net L2 
. . . Outer product technique 2NL 
Table lookup net Q2 

. . . Outer product technique 2NQ 

Note: For each, there are N library vectors of length L. P 
elements of one of these elements are used to regenerate the remain- 
ing Q = L - P. Each memory scheme executes the same restoration 
algorithm. Thus, in the absence of processor inexactitude, all per- 
form identically. 

trix. The continuous form of the Papoulis-Gerchberg 
algorithm has been performed o p t i ~ a l l y . l ~ , ~ l - ~ ~  

(3) We have applied the powerful results of convex 
set projection in our analysis. Any net with a corre- 
spondingly convex JV can be similarly analyzed. Also, 
two or more convex operations can be combined at a 
node. If, for example, we knew that the library vec- 
tor's elements were between minus and plus one, the 
output nodes could perform an additional convex op- 
eration which for P + 1 < k I L is defined by 

For 1 5 k 5 P, JV is as before. One can view this as a 
projection onto a (convex) hypercube centered at the 
origin. 

(4) One advantage of the Hopfield CAM net is that a 
finite number of iterations can result in the exact cor- 
rect answer, whereas the extrapolation net generally 
only gets iteratively closer and closer. A step toward a 
multilevel net, however, can be obtained from the ex- 
trapolation net by requiring each library vector to 
contain only integers. In lieu of Eq. (7), we perform 
the iteration 

where the vector operator 9 rounds each vector ele- 
ment to the nearest integer. Geometrically, 9 projects 
onto the nearest vector with all integer components. 
Although Eq. (14) generally converges in a finite num- 
ber of iterations and gets us close to the desired library 
element, convergence can be to an element not con- 
tained in our library. Consider, for example, Fig. 3 
where, as in Fig. 2, the subspaces T and N are shown. 
The lattice of dots denote vectors with integer compo- 
nents. Beginning with the so in the lower right corner, 
in accordance with Eq. (14), we project onto N and 
then onto T and finally onto the nearest lattice point. 
Continuing, we eventually converge to s ,  shown as the 
vertex of the steady state (s,,b,c) triangle in Fig. 3. 
Although the process has converged in a finite number 
of iterations, the result is not our desired if. Note 
similar steady state triangles (e.g., t in Fig. 3) exist 
closer to if. 
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Pnttcr continued from page 1997 

phase, the heater is lowered to cover only the evaporator, and a 
shutter is placed in the open ball joint to mask off the ampoule. The 
charge in the evaporator is warmed until its vapor pressure is --lo-' 
N/m2, so that moisture and other volatiles are driven off. The third 
phase is initiated by removing the shutter, closing the ball joint, and 
raising the heater so that the top of the free volume in the ampoule is 
just inside the top of the heater. In this configuration, the charge in 
the evaporator is melted and heated until the vapor pressure is 
several hundred N/m2, and the distillation process is started. As the 
distillation proceeds, the heater is moved downward, so that the top 
of the ampoule cools, thereby causing a crystal of purified material to 
start growing. 

Because the crystal grows down from the top of the ampoule into 
the heater until it passes the melting-point isotherm, the solid mate- 
rial always has a drop of melt a t  the bottom end that is held up by 
surface tension. There is a segregation of impurities as the molten 
raw material is distilled to thisdrip and a second segregation as the 
material in the drop is solidified. When the growing drop reaches a 
certain size, it falls back into the evaporator, carrying with it  impuri- 
ties rejected in the solidification process. In this way, the solid 
growth face is constantly washed by fresh molten distillate. Thus 
the material is effectively purified by multiple zone refining and by 

Strong adhesive tape for cold environments 
An improved tape devised for repairs in space may also find use on 

earth in polar regions and in superconducting applications. The 
tape retains its adherence and strength at  extreme temperatures, 
where conventional tapes would fail. Experience on the Space 
Shuttle had shown that ordinary duct tape loses most, if not all, of its 
stickiness at  the.orbita1 temperatures. Kapton (or equivalent) po- 
lyimide tape, for example, maintained adequate adhesion but had to 
be layered for sufficient strength to resist inadvertent tearing by 
crew members. Multiple layers, however, make the tape stiffer. 
The improved tape (see Fig. 7) consists of two layers of the polyimide 
tape with a reinforcing intermediate layer of thin, open-weave Kev- 
lar (or equivalent) aromatic polyamid. Other mesh materials may 
also be suitable. 

This work was done by Thomas G. Woods of McDonnell Douglas 
Corp. for Johnson Space Center. Refer to MSC-20924. 

Polyimlde 
'Tape 

distillation. 
TAPE LAYUP 

This work was done by Lawrence R. Holland of the University of 
Alabama, Huntsville, for Marshall Space Flight Center. In accor- 
dance with Public Law 96-517, the contractor has elected to retain 
title to this invention. Inquiries concerning rights for its commer- 
cial use should be addressed to: University of Alabama, Huntsville, TOP Tape Layer ~oided Under 
AL 35899. Refer to MFS-26004. TO Provlde Nonsticky Tabs for 

Ease of Handling 

Fig. 7. Strong tape for low temperatures consists of two layers of TYPICAL APPLICATION 

polyimide tape with a layer of reinforcing mesh. continued on page 2015 
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