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Composite matched filtering with error correction

Robert J. Marks II and Les E. Atlas

Interactive Systems Design Laboratory, Department of Electrical Engineering, FT-10, University of Washington, Seattle, Washington 98195

Received March 24, 1986; accepted November 7, 1986

Information theory shows that one can communicate with arbitrarily low error probability over a noisy channel. By
recognizing that some types of computations can be cast as communications problems, it may be possible to compute
accurately with an inexact processor. Traditional analog optical processors, for example, offer advantages of
parallelism and speed but suffer from significant inaccuracies. We propose an algorithm whereby the accuracy of
matched filter processors can be improved significantly at the cost of a modest increase in computational resources.
Errors that are due to noisy data and/or inexact computing can be detected and in some cases corrected.

Inaccuracy has been a major obstacle to the wide-
spread adoption of optical processors. By trading dy-
namic range for accuracy, digital optical computing is
a promising solution to this problem. ' 2 By using cod-
ing concepts from communications theory we propose
a combination of analog processing and digital coding
to increase accuracy with a modest sacrifice in
throughput.

In his cornerstone papers on information theory,
Shannon3 demonstrated that one could communicate
with arbitrarily low error probability over a noisy
channel. In the same spirit, by using standard block
coding techniques4 it may be possible to compute ac-
curately with an inexact processor. Indeed, we dem-
onstrate that techniques used to communicate with a
high degree of accuracy over a noisy channel can be
applied directly to increasing the precision of an inex-
act composite matched filter5 (CMF) processor.6-8 In
a CMF processor, an input, g, represents one of N
possible library elements. When CMF's are used, the
processor output is a binary vector, which, when de-
coded (with error correction capability), will specify
the appropriate library element. With 26 CMF's, we
can recognize each of more than 106 library elements
with single-error correction capability. The need for
error correction and self-healing in optical processing
has been addressed previously.9' 10

To illustrate the CMF, assume that we have N = 16
real object vectors of length L: ff,10 < n < N = 16}.
For the moment, assume that the elements are ortho-
normal. That is, fnTfm = i[n-m], where b[p], the
Kronecker delta function, is 1 for p = 0 and is other-
wise 0. This orthonormality constraint will be re-
moved later.

In Table 1 there are four rows of numbers from 1 to
15. The so row contains numbers that, in binary,
contain a 1 in the least significant bit. Rows1 contains
those numbers containing 1 in the second least signifi-
cant bit, etc. Generalizing, row sq-1 contains those
numbers that, in binary, have a 1 in the qth least
significant bit. Thus (9)10 = (1001)2 is contained in
the first and last rows. Clearly, similar tables can be
formulated for numbers between 0 and 2Q - 1, where Q
is an arbitrary positive integer.

We formulate the CMF's (hm; mn = 0, 1, 2, 3) as sums
of vectors with indices in accordance with Table 1:

ho = fl + f3 + f5 + f7 + f9 + f1l + f13 + f15,

h,=f 2 + f3 + f6 + f7 + f10 + f1l + f14 + f15,
h2= f4 + f5 + f6 + f7 + f 2 + f13 + f14 + f 15,

h3 = f8 + f9 + f1 0 + f1 l + f1 2 + f1 3 + f1 4 + f1 5 (1)

Note that

fnThm =snp " a
n e sp
n $ S (2)

For example, if f9 is input to the processor, the inner
products are fgTho = 1, fgTh, = 0, fgTh2 = 0, and f9 Th3
= 1. The result, then, is (1001)2 = (9 )1o, which is the
index of the input. In general, for an input of fn the
inner products of the CMF's will yield the binary
equivalent of n. Thus, instead of N = 16 matched
filters, we require log2 N = 4 CMF filters.

Independent of the number of objects, a single addi-
tional CMF will permit single-bit error detection. For
our example, we choose an additional vector d4 so that
the number of l's at the output will always be even
(i.e., even l's parity). Since (l)1o = (0001)2 contains
an odd number of 1's, we must include f1 in d4. On the
other hand, (3)io = (0011)2 already contains an even
number of 1's. Thus f3 is not included in d4. In
general, the CMF d4 is the sum of all object vectors
whose indices, when represented in binary, contain an
odd number of ones:

d4= fl + f2 + f4 + f7 + C8 + f1l + f13 + f14.

If, for example, we find that fnThO = 0, fnThl = 1, fnTh2
= 1, fn2h,3 = 0, and fnTd 4 = 1, we know immediately
that there has been a mistake made since the number

Table 1. Coding Map for Four CMF's

sO 1 3 5 7 9 11 13 15
sI 2 3 6 7 10 11 14 15
s 2 4 5 6 7 12 13 14 15
s 3 8 9 10 11 12 13 14 15
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of l's is odd. Note that it is possible to have two-bit
errors go undetected.

Using additional CMF's, we can detect and correct
bit errors. The example presented here is based on
Hamming error-correction coding.4 To illustrate sin-
gle-bit correction, we first reorganize the labeling of
the four CMF's in Eq. (1):

TO = ti,

T1 =t2

ho= t3= f + f3 + C5+ f 7 + f9 + f1l + f13 + fi 5,
T2 =t4,

h= t5= f2 + f3 + f6 + f7 + f 10 + fl + f 14 + f 15,

h2= t6= f4 + f5 + f6 + f7 + f 12 + 13 + f14 + f 15,
h3= t7 =f8 + f9 + 10 + f1l + f 12 + f 13 + f 14 + f 15.

(3)
The three additional vectors, t1, t2 , and t4, are error-
correcting CMF's and have yet to be specified.

To determine the error-correcting CMF's, we make
use of Table 2, which is formulated exactly like Table 1
except that the maximum index number is 7. To
determine the first error-correction CMF, To = t1, we
consider from the table the CMF's t1, t3, ts, and t7 . We
require that each fn appear in these four CMF's an
even number of times. fl, for example, already ap-
pears in t3 but not in t5 and t7. Thus, to make the
number of appearances even, we require that t1 con-
tain fl. f7, on the other hand, appears in t3 and t5 but
not in t7. Since its number of appearances is already
even, f7 is not included in t1.

The elements of the second error-correction CMF,
'T = t2 , are similarly determined, except that, as is
given in Table 2, we consider only the CMF's t2 , t3, t6 ,
and t7. Continuing, our final result is

TO= t = fl + f2 + f5 + f6 + f8 + fCl + f 12 + f 15,

l= t2 = fl + f3 + f4 + f6 + f8 + f 10+ f 13+ f 15,
t3 =fl+f 3+f 5+f7 +f9+f 1l+f 13 + f 15,

T2 =t 4 = f2 + f3 + f4 + f5 + f8 + f 9 + f 14 + f 15,

t= f2 + f3 + f6 + f7 + f10 + fCl + f14 + f 15

t6= f4 + f5 + f6 + f7 + f 12 + f 13 + f 14 + f 15

t7= f + f9+ f 10 + fl + f 12 + f 13 + f 14+ f 15-
(4)

We now illustrate single-bit error correction. If f9 is
input, the result is

f9T [t 1 1t2 1t3 1t4 1t5 1t61t7 ] = [0011001].

Table 2. Error-Correction Coding Map for Four
CMF's

Suppose, however, that, because of input or processor
noise, there were a single-bit error and, instead of the
binary vector in Eq. (5), we had as an output

[00111011. (6)

Referring again to row 'T in Table 2, we see that there
is a mistake in the output of at least one of the CMF's
t1 , t3 , t5, or t7. Why? Because these CMF outputs
contain an odd number of l's. By design, the number
of l's should be even. The bits for row 'T, on the other
hand, are even parity, and there is no apparent mis-
take at the outputs of CMF's t2, t3, t6 , and t7. There is,
however, a second mistake corresponding to row T2.
Using a 1 for a detected error and 0 otherwise, we
conclude that our bit error occurred at the output of
CMF number (101)2 = 5. Equivalently, f5 is the only
element that is in 'o and T2 but not in 'T. Comparing
Eq. (5) with expression (6) substantiates our result.

The parameters of our single-bit error correction
revolve around M = number of error-correction
CMF's. For the example above, M = 3. The total
number of CMF's, including error-correction CMF's,
is P = 2M - 1. The total number of (nonerror-correct-
ing) CMF's that would be used if there were no coding
is Q = P-M = 2M-M-1. Finally, the number of
objects cataloged for detection is N = 2Q. As we
claimed above, for N = 106 objects a total of P = 26
CMF's (corresponding to M = 6) is needed for single-
bit error correction. However, in the presence of ei-
ther input or processor noise, the uncertainty (vari-
ance) of the processor output increases with the num-
ber of library elements. The effect of this increased
uncertainty has yet to be studied.

Here we extend the error-correction results above to
the case when the N objects are not orthogonal. For N
objects, we form the P CMF's

N

sp = 7 apmfn
n=1

1 < p p, (7)

where the apm coefficients are determined by

Sp =m {I

APM.

fm 6 tp

fm ' tp

(8)

As an example, for M = 3 (P = 7, N = 16), the matrix,&
containing the elements Apm is, from Eqs. (4),

0110011010011001
I 0101101010100101

0101010101010101
A= 00111100110000111.

0011001100110011
0000111100001111
0000000011111111

Substituting Eq. (7) into Eq. (8) gives

(5)
(9)

To 1 3 5 7
71 2 3 6 7
72 4 5 6 7

apnrnm Apm, (10)
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where rmm = fmTfC. In matrix form, Eq. (10) can be
written as AR = A, where R is the N X N correlation
matrix. The apm coefficients can thus be found from

A = AR-'.

Use of these coefficients in Eq. (7) will yield spTfC = 1
when fC e tp and is zero otherwise. The same single-
bit error-correction algorithm previously presented is
applicable. Note that when the object vectors are
orthonormal, this algorithm reduces to that above.

To illustrate CMF single-error correction, we per-
formed a Monte Carlo simulation for N = L = 16. The
library entry fm had a 1 as its m + 1st element (0 • m <
15) and was otherwise 0. Zero-mean white Gaussian
noise was added to each element of the input and each
element of the A = A matrix. The respective noise
variances are denoted by aj and aA

2. For a given
noisy input, detection was also performed without er-
ror correction by examining only the original four
CMF outputs.

The fraction of correct results (with and without the
error-correction processor) versus aF is shown in Fig. 1.
Each of the four curves consists of six linearly interpo-
lated points. Each point was generated by 800 simu-
lations. The dashed curves are for single-error correc-
tion, and the solid lines are for no error correction.
The vertical lines represent 90% confidence intervals
computed under the assumption that each simulation
was a Bernoulli trial. 1' Clearly, in each case error
correction improved performance.
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Fig. 1. Monte Carlo simulation of CMF performance with-
out (solid line) and with (dashed line) error correction. The
plots are percent of correct results versus input noise stan-
dard deviation aF. Error bars represent 90% confidence
intervals.

Processor inaccuracies are a fundamental problem
for optical computers. We have illustrated a tech-
nique whereby accuracy can be increased by a modest
expansion of throughput. For example, as shown for
N = 106 objects, increasing the number of CMF's by
30% can allow for single-bit error correction. This
behavior is in contrast to digital techniques in which
dynamic range is sacrificed. Ideally, any technique to
increase the accuracy of optical processors should be
formulated in such a manner as to preserve the com-
putational advantages inherent in the processor phys-
ics.

We believe that the techniques of correcting errors
in CMF's can also be applied to problems of very large
wafer scale integration in which errors can result from
a distribution of defects. The advantage of this tech-
nique over those conventionally used12"13 is that the
overhead of special control or testing would be greatly
reduced. The unavoidable occurrence of defects
would cause processing errors, yet the error-correction
capability would reduce or eliminate these errors with
only a small amount of added hardware and computa-
tion. The effects of generalizing the error-correction
algorithm to multilevel and multiple errors still needs
investigation, as does performance comparison be-
tween the resulting CMF's and the (sometimes opti-
mal' 4) conventional matched filter.
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