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A common pattern recognition problem is finding a library object which most closely matches a received
image. For additive white Gaussian input noise, optimal detection performance is obtained using a matched
filter for each of the N possible library objects. The use of composite matched filters (CMFs) (also called
synthetic discriminant functions or linear combination filters) is one technique of reducing the number of
filters required for the recognition problem. For two-level composite matched filter outputs, the reduction is
from N to Q = log2 (N) filters. The CMF's performance, however, can be suboptimum. Using CMFs with
bipolar (+1,-i) outputs, this paper examines the detection performance improvement obtained by using
error correcting codes. Use of varying levels of error correction is shown to allow trade-off between detection
probability and the number of bank filters. Also, we show that in the case of inexact processing, the CMF can
perform better than the conventional matched filter.

1. Introduction

Matched filters are commonly used in pattern recog-
nition for detecting the presence of a known object in a
received image. In many cases, the number of library
objects Nmay be quite large. Since the matched filter
system requires one filter for each library signals, the
number of filters grows linearly with the number of
objects to be recognized. For a large system, there is
some need for a suboptimal processing system to re-
duce the number of filters required. One manner of
accomplishing this is the composite matched filter
(CMF).1-7 Each CMF is a linear combination of li-
brary objects. These filters have been simulated and
implemented with some success.2 6,7

For additive white Gaussian input noise, the conven-
tional matched filter system is optimal in the sense of
maximizing detection probability. The CMF is thus
suboptimum in this same scenario. Its performance,
however, can be improved using error correction codes.
Marks and Atlas6 have applied a single-error correct-
ing Hamming code to a CMF bank and empirically
demonstrated improved performance.
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For an orthogonal set of library vectors corrupted by
additive white Gaussian noise, optimal CMF perfor-
mance can be obtained by using a bipolar (-1,+1)
output coding rather than binary (0,1). For bipolar
coding the optimal partitioning of the CMF bank out-
put can be performed by simply thresholding each
filter output at zero. For the binary case, thresholding
each filter output at one half does not result in optimal
CMF performance.'

In this paper, we extend previous results in three
ways. First, multiple-error detection block codes are
applied to the CMF. Even though the resulting CMF
bank does not perform optimally (the conventional
matched filter is globally optimum), further error cor-
rection improves the CMF performance. Second, we
demonstrate that for the bipolar case, standard block
coded CMFs still are optimally decoded by simple
thresholding when the orthogonal library vectors are
perturbed by zero mean additive white Gaussian noise.
Numerical examples are given of the performance of
such codes. Last, when inexact processing is used, the
conventional matched filter may no longer be opti-
mum. Indeed, we show empirically where CMFs with
and without error correction outperform the conven-
tional matched filter.

II. Preliminaries

The following is a common problem in pattern rec-
ognition: We have N library vectors {fnI0 < n < }
each of length L. Given a received vector g, which
library vector is closest in the mean square sense? If
each library vector has the same energy (norm), the
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matched filter bank provides good detection perfor-
mance. One simply finds the index corresponding to
the maximum of the inner product gTfn. Note that
this is equivalent to minimizing ig - f1, where Va112 =
aTa.

If g is equal to a library vector perturbed by zero
mean white Gaussian noise, use of the matched filter
maximizes detection probability. If the signal to noise
ratio of the received signal is SNR, the detection prob-
ability for the conventional matched filter is89

PD(conv) = 1/j J exp(-x 2 /2)[erfc(x + SNR)lN-ldx, (1)

where

erfc(x) = 1/4Irf exp(-y212)dy.

performance in Eq. (6) in the presence of additive '
white zero mean Gaussian input noise.

111. CMFs with Error Correction

The performance of CMFs can be improved by using
additional error correction filters.6 LetMbe the num-
ber of additional CMFs so that the total number of
filters in our CMF bank is now

Q+ = Q+ M. (7)

The resulting code will be able to correct up to E errors,
where E is the largest integer satisfying the inequal-
itylo'll

E (Q+)
(2)

(8)

The SNR can be written as SNR = NEP, where a2 is
the standard deviation of the input noise, and E is the
signal energy.

In some scenarios, the number of library vectors N
can become prohibitively large. The CMF then be-
comes an attractive alternate detection algorithm.1-3 6

The following example shows the construction of a
composite matched filter for a system of N = 16 library
vectors. We form the bipolar matrix corresponding to
the binary representation of the sixteen indices (+ = 1
and - = -1):

A= - - - - - - - - - - - - - - - -

_ _ _ _ + + + _ _ _ _ + + + +

t t t t t t t t t t t t t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We will assume that the library vectors are orthonor-
mal:

FTF = I, (3)

where the library matrix is defined by F = [f0lfl ... I
fN_1] and the CMF filter bank as

S = FAT. (4)

Then, for example, STf 9 = [+ +]T, and we have
identified the input by its index.

Note that each row of the A matrix is orthogonal to
every other row; that is, AAT = LI. Thus, if white
Gaussian noise is added to the input, the output will
also be accompanied by white Gaussian noise. The
optimal decoding procedure is then to threshold the
output of each filter at zero.' The probability of hav-
ing one filter output correct is

p = erfc(-SNR/1FN). (5)

Thus the overall probability of detection for the CMF
is

PD(CMF) = pQ. (6)

In the absence of noise, both the conventional and
CMF perform without error. Due to its established
optimality, the conventional matched filter detection
probability in Eq. (1) will always exceed the CMF's

The most efficient of the block error correcting codes
are the BCH codes. 0" l (Hamming codes are BCH
codes for E = 1.)

For general block codes, a bipolar vector of length Q
is coded into a vector of length Q+ according to a
bipolar generator matrix G.10 1" Let dn denote the nth
column of the A matrix. The corresponding coded
vector is

c = G ds (9)

where multiplication and addition in the matrix opera-
tion are performed modulo two:

@ -1 1 ® -1 1
-1 -1 1 -1 -1 -1.

1 1 -1 1 -1 1

Equivalently, Eq. (9) can be written as

a+= G o A,

(10)

(11)

where cn is the nth column of A+. Our augmented
CMF matrix follows as S+ = F +1. A received vector is
multiplied by S+. Each element of the resulting vector
is thresholded at zero to form a bipolar vector. The
bipolar vector is then analyzed for errors.

In the Appendix, we demonstrate that the A+ matrix
is composed of mutually orthogonal rows, i.e., AiTA+ =
LI. This result insures that if the input to the aug-
mented CMF bank is corrupted with additive white
Gaussian noise, the output will also be corrupted by
additive white Gaussian noise.9 The probability of
correct detection for a given filter in the bank is the
same as the probability of correct detection for a given
filter in the unaugmented CMF bank and is given in
Eq. (5).

To illustrate, the generator matrix for a (Q+,Q) =
(15,5) BCH code'0"' capable of correcting E = 3 errors
is

- - - - + - + - - + + -

The A and A+ matrices for a Q = 5 and the augmented
(Q+ = 15) CMF are
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- + + + +

--- --- + ++ + ++ +++ + + +++ + + -
- - - - - - - - - - - - - - - - ++++++ + +
- - - - - - - - - - - - - - - - - - - - +-++ +-

- - + - -++ + + + + + + +1
- + - + - + -+ -+ -+ -+ -+ -+ -+ - -+

- ..+ + + +
-+ + - - + +
+ -+ - +-

- -. + + - - + + + +
-+ - + + - + - + -

+ +

- + + - - + + - - -

+ - + - + + - + - +

- + +

+
-+ + - - + +

-+ - - + - +

- ..+ + + +
+ - - - - + +

- + - + + - +

+ + +
+ +

- + - - + -+

IV. Performance Analysis

We now contrast the performance between the con-
ventional and composite matched filter in three ways.
First, we compare the detection probabilities of the
detectors for inputs contaminated with zero mean ad-
ditive white Gaussian noise. Second, we examine the
same scenario for high SNRs. Last, Monte Carlo sim-
ulations are used to analyze filter performance of the
case where processing is inexact. Such inaccuracy, for
example, is characteristic of optical processors.

A. Performance with White Gaussian Input Noise

For the CMF bank augmented for error correction,
the probability of correct detection in a filter is still
given by Ref. 5. The number of filter banks, however,
has been increased from Q to Q+, and we now can
tolerate E errors by the constraint in Eq. (8). The
probability of detection immediately follows as10

PD(CMF+) = E(.) pQ+i(1 - Y. (12)

A plot of this expression is shown in Fig. 1 for N = 32
orthonormal library vectors and a composite matched
filter of Q = 5 output bits. The BCH codes used were
capable of correcting E = 3, 7, and 9 errors, correspond-
ing to Q+ = 15, 25, and 29, respectively. Clearly,
increasing E improves the overall performance at the
cost of additional filters. No matter how large we
make E, however, performance of the CMF will always
be below that of the conventional matched filter.

B. Performance for High SNR

Direct calculation of the performance measures in
Eqs. (1), (6), and (12) for high SNR results in numeri-
cal underflow. To get around this problem, we refor-
mulate those equations by using an asymptotic expan-
sions. In all cases, approximation of the probability of
erroneous detection, PE = 1 - PD, is expedient.

A bound corresponding to Eq. (1) can be found in
Van Trees 9 :

PE(conv) C [(N - 1)/JSNR] exp(-SNR 2 /4),

from which it follows that

logPE _ log[(N - 1)/JrSNR] - SNR2 /4.

(13)

(14)

For high SNR, this bound is sufficiently tight to use as
an approximation.

To approximate similarly the CMF performance for
high SNR, we rewrite Eq. (6) as

PE(CMF) = E ( i) pQiqi,
j=1E

where q = 1 - p. Keeping only the first term gives

PE(CMF) > QpQ-lq.

For high SNR, q << 1, and again the bound can be used
as a good approximation. A further simplification
results from recognizing that, for moderate Q, PQ-'
1. Thus PE Qq. From Van Trees9

q = erfc(SNR/N)

< N72r exp(-SNR2 /2)/SNR. (15)

Using this as a good approximation for a high SNR, we
obtain our final performance expression for the CMF

logPE(CMF) = log[(T7/2ir)(/SNR)]-SNR 2 /2N + logQ. (16)

The approximation for the error correcting compos-
ite matched filter can be similarly obtained. From Eq.
(12), we have

PE(CMF+) = Z (Q+) pQ+q.

Keeping only the first term gives

PE(CMF+) -( Q+ 1pQ+)E qE+
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Fig. 1. Performance comparison between the conventional and
composite matched filter for N = 32 library vectors. Performance of
the CMF is shown for E = 0, 3, 7, and 9, where E is the maximum
number of correctable errors. This corresponds to a total of Q+ = 5,
15, 25, and 29 filters in the CMF bank. The input was corrupted by
additive white Gaussian noise with variance A2. The SNR is .7p,

where e is the signal energy.

Making the approximation PQ+-E-1 1 and applying
Eq. (15) give

logPE(CMF+) log(+ 1 ) + log[(C7/27r)(1/SNR)]

- (E + 1)SNR2/2N.

As before, this bound becomes very tight for high SNR.
Plots of Eqs. (13), (16), and (17) are shown in Fig. 2

for the same parameters used in Fig. 1. (N = 32, Q = 5,
and Q+ = 15, 25, and 29 for E = 2, 7, and 9.)

C. Effects of Processor Inaccuracy

Monte Carlo simulations were performed on a Q = 4
(N = 16) CMF using single-bit-error correction (Q+ =
7). The inputs were vectors of length L = 16:

fn = 6,n+1; < n < 16,

where 6 has a 1 in its nth position and is otherwise zero.
White Gaussian noise was added to both the input and
each element of the augmented CMF matrix, S+ =
FNAT. The signal-to-noise ratios are SNRS and SNRf,
respectively. Since E = 1, we have SNRS = 1/as, where
a, is the standard deviation of the input noise. Simi-
larly, SNRf = 1/af.

Results are shown in Figs. 2 and 3. Each point
estimate was generated by 800 trials; 90% confidence
intervals were computed under the assumption that
each simulation was a Bernoulli trial.'2

Figure 2 (SNRS = 10) shows performance much like
that observed with exact processing. The convention-
al matched filter outperforms both CMF banks and
single error correction outperforms simulation with no
error correction.

As seen in Fig. 4 (SNRS = 3.33), however, the perfor-
mance becomes significantly different as the SNR
of the processor is reduced. The CMF, with and with-

-6.0

-10. 0

-14. 0

-16. 0

-22. 0 - i i / | I l I l I h 1 / | I
-20. 0 -18. 0 -16. 0 -14. 0 -12. 0 -10. 0

I/SNR ( dB )

Fig. 2. Performance comparison between the conventional and
composite matched filters for high SNRs. The parameters are the

same as those in Fig. 1.

1a0

59
0.3

/SNRf

Fig. 3. Monte Carlo performance simulation results for the CMF
and conventional matched filter when inexact processing is used.
For N = 16 library vectors, the CMFs require Q+ = 4 and 7 filters
corresponding to E = 0 and 1 error correction capability. 90%
confidence intervals are shown. To simulate inexact processors,
white Gaussian noise with a standard deviation of a, = 0.1 (SNRS =

10) was added to each element of each filter vector.

out error correction, outperforms the conventional
matched filter for a high SNR.

V. Conclusions

Matched filters are commonly used in pattern recog-
nition for detecting the presence of a known object in
the presence of noise. In this paper, the technique of
composite matched filtering has been augmented to
include error correction. This has been shown to im-
prove the performance of the composite matched filter
bank in the presence of additive white Gaussian noise.

Second, we have shown that the introduction of
multiple error correcting linear block codes does not
affect the optimal decoding of the bipolar CMF bank
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Fig. 4. Monte Carlo performance simulation results. The parame-
ters are the same as were used in Fig. 3, except that a, = 0.3 (SNRS =
3.33). Here the CMF with and without error correction outperforms

the conventional matched filter at high input SNRs.

by simple thresholding. Additionally, the composite
matched filter has been empirically shown to perform
better than the conventional matched filter in condi-
tions of inexact processing.
Appendix A: Independence of Error Correcting
Composite Matched Filter Output

Here we demonstrate that the rows of the bipolar
matrix A+ are orthogonal. Specifically, we show that
if the bipolar vector u contains the same number of 1
and -1 terms, then, for any other bipolar vector v, the
bipolar vector w = v @ u is orthogonal to v.

This theorem relates directly to our problem. From
Eq. (11), each row of A+ is a modulo 2 sum or difference
of the rows of A. The rows of A are orthogonal.' The
only vector in the set of mutually orthogonal bipolar
vectors that does not have the same number of 1 and
-1 terms is the vector that contains all 1 terms (or -1
terms). This vector does not appear as a row in A. By
induction, then, the modulo 2 sum of a number of
orthogonal bipolar vectors must result in a vector ei-
ther orthogonal to each summand or proportional to a
summand. (Note that the proportionality constants
are limited- to 1 and -1.) In a coding scheme, we
clearly avoid proportional rows in the A+ matrix since
inefficient redundant bit information results.

To prove our theorem, we write

L

E~ = 

*k=1

L

=E(Vk 6) Uk)Vk-

k=l

Since

(Vk @) Uk)Vk = -Uk; Vk =

and there are the same number of 1 and -1 terms in u,
we conclude that

L

WTV =- U-
k=1

= 0,

and the proof is complete.
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