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The storage capacity of any viable artificial neural network classifier
increases with the number of available neurons. Assuming that each neural state is in
some sense uncorrelated with those remaining, each neuron represents a computational
degree of freedom available to the network. The number of degrees of freedom can be
artificially increased through the use of neurons in a hidden layer, the states of which can
be almost any nonlinear combination of the stimulus neural states. In this paper, such
nonlinearities are generated with stochastically chosen interconnects between the input
and hidden neural layers with a sigmoidal nonlinearity at each hidden neuron. The
hidden to output interconnects are chosen to be a (trainable) projection matrix whose
values are a function of the stochastically chosen interconnects and the training data.
Preliminary simulations of such networks show an approach to fixed generalization
boundaries as the number of hidden neurons becomes larger.

Although the use of hidden neurons with arbitrarily determined nonlinear
states is potentially applicable to a large number of artificial neural networks, we limit
our investigation here to the projection artificial neural network. In this section, we
briefly review the network. A more detailed explanation can be found elsewhere[1].

A set of stimuli vectors {s,| 1 S n <N } is to be made to correspond to a
set of response vectors {r,| 1 Sn <N }. Thatis, we wish to design a classifier that will

output, say, r3 when the input is s3. We define the stimulus and response matrices
respectively as

R=[rilrl.lryl
and
S=[s1ls]...1sy1
The hidden states will be denoted by { h,| I <n <N } where
hn=¢s,; 1<n<N.
where @ is some nonlinear operation. The hidden layer matrix follows as
H=[hilhy|...lhy]

In an artificial neural network architecture, the number of input neurons is
equal to the length of a stimulus vector. Each input neuron is connected to each hidden
neuron in order to achieve a nonlinear mapping. The interconnects between the hidden
and output neurons are given by elements of the projection matrix

C=R[HTH]-1HT. (1)
In practice, the hidden to output interconnects are trained using an updating rule that
requires examination of the training data only once [1].
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_ Once trained, the network output, o, corresponding to an input vector, i, is
given by

o=Coi @
A nonlinearity ¢ that is useful in artificial neural network architectures is
¢sy,=mT Sp
where T is the matrix of input-to-hidden interconnects and 7 is a nonlinear pointwise

vector operator (e.g. sigmoid). A hidden neuron adds the contribution from all of the
inputs and adopts a state equal to that sum passed through the hidden neuron

nonlinearity. Equation (2) then becomes
o=CnTi

Almost any nonlinearity will allow the trained artificial neural network to
respond correctly to training data. The manner in which the network responds to data
outside of the training set (i.e. how the network generalizes) is determined by the choice
of nonlinearity. This is illustrated in the following example.

EXAMPLE 1: Consider the two bit parity problem with

[ 1-11-1
S = 1)
L 11-1-1
and
]
R = 1-1-11 2)

The parity problem is geometrically depicted in Figure 1. The coordinate pair (1,1),
for example, is assigned a value of 1 shown as a small square. The small circles
denote a value of -1. In order to perform the parity operation, we require a minimum
of four hidden neurons corresponding to the four columns of both S and R. We
choose the input-to-hidden interconnect matrix

1111
T = 3
aaaa
(where a = 3/2) and the four hidden layer nonlinearities
N1(z) = exp(z) N2(2z) = exp(-z) @
N3(z) = tanh(2) N4(z) = sech(z)

The resulting network generalization is shown in Figure 2. The plot, is that of the
sign of the single output neural state, o, versus the two input neural states i; and i.
Note that the response to the training data is at the comers of the square and is
correct. Note also that the partition in the generalization plot is parallel to the 450
line i} = -a i2. This is due to our choice of the T matrix in (3). The input to each of
the hidden neurons is i1 + a i2. A plot of this function on the (i1,i2) plane results in
equal potential contours parallel to the line iy = -a i2. Any function of i; + aiy will
have these same contours (with, of course, different values on each contour). Thus,
independent of our choice of functions in (4), our generalization is restricted to have
partition boundaries parallel to the line iy = -ais.
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EXAMPLE 2: We repeat the parity problem using the interconnect matrix

1111
T = (3

aa-a-a
and the nonlinearities T3(z) = exp(z) and TM4(z) = exp(-z). The remaining two
nonlinearities remain as in (4). Two of the hidden neurons now see an input of ij -

aip. The resulting generalization, shown in Figure 3, is now close to being a least-
mean-square partition of the training data.

The preceding two examples clearly illustrate the consequences of the
choice of the input-to-hidden interconnects on the resulting generalization. The highly
regularized structure in (¥) gave an architecturally constrained generalization. The
interconnects in (4) would generate similar artifacts in a more complex partitioning
requirement. In the next example, we empirically explore the use of a larger number of
hidden neurons and a stochastically chosen T matrix and its effects on the network’s
generalization.

EXAMPLE 3: We continue with our running parity example as defined by the training
matrices in (1) and (2). We will use a total of P hidden neurons and a P by 2 input-
to-hidden interconnect matrix, T, the elements of which are uniform random

variables over the interval (-1/2,1/2). The nonlinearities at each of the neurons were
chosen to be

Np(z) =exp(-z)-1 ;1<p <P (6)

Generalization results are shown in Figures 4 a, b, ¢, and d for of P = 4, 10, 18 and 50

respectively. As in our other simulations, the generalization reached a steady state
for large P.

EXAMPLES 4 and 5: Shown in Figure 5 is the generalization of parity training using
50 hidden neurons with input-to-hidden interconnects chosen from a zero mean unit
variance normal distribution. The nonlinearity in (6) was used at each hidden neuron.
The result of using a uniform distribution on (0,1) to solve the same problem is
shown in Figure 6.

EXAMPLE 6;: The P = 50 hidden neuron network was trained on the data

corresponding to
1-11-10
T =
1 11-1-10

R = -1-1-1-1 1]

and

This is geometrically illustrated in Figure 7 with the small circle denoting -1 and the
square +1. Using interconnects randomly chosen from a uniform distribution on
(-1/2,1/2) and the neural nonlinearity in (6), the generalization in Figure 8a was
obtained. The same simulation was repeated for

R = [-1 -1-1-1 4]
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L-1)

In other words, the square at the origin in Figure 7 was given a more dominant value.
This dominance is reflected in Figure 8b where the area of the resulting
generalization for +1 is shown to be significantly increased.

The examples in this paper illustrate the potential use of stochastically
chosen interconnects to increase the storage capacity and the discrimination ability of
classification artificial neural networks. Future research should be directed at
understanding the effects of the interconnect probability distribution and the hidden layer
nonlinearities on the network’s generalization characteristics.
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