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Optical-processor architectures for various forms of the alternating-projection neural network are considered.
Required iteration is performed by passive optical feedback. No electronics or slow optics (e.g., phase conjugators)
are used in the feedback path. The processor can be taught a new training vector by viewing it only once. If the de-
sired outputs are trained to be either ±1, then the network can be configured to converge in one iteration.

Optical neural network architectures have been pro-
posed by a number of researchers.-- 5 Using the alter-
nating-projection neural network (APNN) algorithm
developed elsewhere,6 -9 we propose two architectures
for a corresponding optical implementation. (A con-
trast of APNN performance to other neural network
architectures is in Ref. 9.) Required iteration is ac-
complished by using only guided or free-space propa-
gation. No electronics or slow optics such as phase
conjugators are used in the feedback path. Learning
can be performed by viewing each training vector only
once. The network has been shown to scale well.6 -9
The number of training vectors that can be stored is of
the order of the total number of neurons minus the
number of floating (or output) neurons. The APNN's
storage capacity can be increased by the use of addi-
tional neurons in the hidden layer. If the output takes
on only values of &1, then the network can be config-
ured to converge in one iteration.

We begin by presenting a terse overview of the
APNN. More-detailed explanations are available
elsewhere.6-9 Consider a set of N continuous-level
library vectors of length L > N: (fnlI < n • N). We
form the library matrix F = [flIf2l ... IfN] and the inter-
connect matrix T = F (FTF)-1FT. The L neurons are
divided into two sets: one in which the neural states
are known and the remainder in which the states are
unknown. Let Sh(m) denote the state of the kth neu-
ron at time m. If the kth neuron falls into the known
category, then its state is clamped to the known value.
Otherwise the state remains floating and is equal to
the sum of the neural inputs. Assume without loss of
generality that the states of neurons 1 through P < L
are known and the remaining Q = L - P are not. Let f
denote a library vector of which we know the first P
elements. Define the corresponding node operator, ,
on an arbitrary vector i by

n= qi i .. .. *P'~ .. T

= (V f 2, * * * fpliP+l ... iL )T,

where fk is the kth element of f. Then, in synchronous
form, the network performs the operation

S(m + 1) = -TS(m), (1)

where S(m) is the vector of neural states at time m.
Convergence to f is ensured if the first Prows of F form
a matrix of full column rank. Subsumed in this is the
criterion that P > N.

In a layered neural network the same neurons are
always used to stimulate the network, and the same set
is always floating. In addition, there can be a hidden
layer of neurons whose principal purpose is to increase
the storage capacity and classification diversity of the
network. Use of a hidden layer also increases the
convergence rate of the network and decreases its sen-
sitivity to the inexactitude of analog multiplication.9

In order for the APNN to converge to the proper
solution, the number of clamped states must equal or
exceed the number of stored library vectors. The
number of clamped neural states, however, can be
artificially increased by using new hidden neurons, the
states of which are a function of the known portion of
the input library vector. The hidden states can, in
general, be any nonlinear combination of the clamped
states. A technique commonly used with neural net-
works is to run a linear combination of the clamped
states through a sigmoidal nonlinearity to determine
the hidden states. Alternately, products of clamped
states could be used.'0 Once established, the hidden
states are treated as clamped states in the previously
discussed analysis, Although the choice of the nonlin-
earity does not affect the response of the network to
training data, it does affect the manner in which the
network generalizes.

A basic architecture for optical implementation of
the layered APNN is shown in Fig. 1. The point-
source array elements corresponding to the clamped
and hidden layers provide the input to a Stanford
matrix-vector multiplier (astigmatic focusing optics
are not shown).'1 The point source array for the float-
ing layer is used only when one is training the network.
The same is true for the detector array at the output.
Indeed, the only neurons of interest are the floating
ones. The states corresponding to the floating neu-
rons are introduced at the right to a fiber bundle.

0146-9592/88/060533-03$2.00/0 © 1988, Optical Society of America



534 OPTICS LETTERS / Vol. 13, No. 6 / June 1988

source
SLVI

Fig. 1. An architecture for performing a layered APNN.
In practice, the architecture requires augmentation as in
Ref. 11 to allow for the required bipolar operations. The
states of the hidden layers are nonlinear functions of the
clamped layers and are generated electronically.

These intensities are fed back to the input as shown,
and the process corresponding to Eq. (1) is repeated
iteratively until convergence. Alternately, mirrors
can be used to provide the feedback.12

The astute reader will have noticed two implemen-
tation problems associated with the architecture in
Fig. 1. First, there is no provision to detect the out-
put. Second, there is no apparent provision for com-
pensating for absorptive, coupling, and other losses in
the feedback path. Each of these problems has a
straightforward solution. To detect the output, we
simply place a highly transmitting pellicle in the feed-
back path and focus the reflected portion onto a detec-
tor array (not shown). This contributes more to the
problem concerning losses in the feedback path.

The magnitude of the elements of T is generally
quite small when N << L. For example, if the library
matrix consists of only +1's and the library vectors are
orthogonal, then the maximum value of the magnitude
of the elements in T is NIL. (We would expect such
orthogonal library vectors in the statistical sense if all
elements of F were chosen by a 50-50 coin flip.)
When each element of T is small, feedback losses can
be compensated for by scaling the intensity transmit-
tance up to its maximum passive value of unity. Note
that the storage capacity of the network is then in part
a function of the ability to minimize feedback losses.

When every neuron in the network can either be
clamped or floating, the APNN is said to be homoge-
neous. In this form the network stimulus can be pro-
vided by different neurons from application to appli-
cation.

An architecture for a homogeneous APNN is shown
in Fig. 2. Clamped neural states are provided by the
point-source array. The five darkened dots on the
array correspond to the five clamped neural states in
this example. These provide the input-vector intensi-
ties for the portion of the Stanford matrix-vector mul-
tiplier corresponding to the upper spatial light modu-
lator (SLM). The light is collected at the output and,
as before, is fed back through a fiber-optics bundle to
the input. The light from the fiber output is fed
through the lower portion of the Stanford matrix-
vector multiplier, whose SLM transmittance compen-

sates for feedback loss. The processor output is de-
tected as before.

Note that there should be no input from fibers cor-
responding to clamped neurons. This can be accom-
plished with either an optic-optic or electro-optic tog-
gle that turns off the fibers corresponding to the loca-
tions of the clamped neurons. Such switches can
operate in the gigahertz range with small attenua-
tion.13

Note that the feedback is totally optical. In es-
sence, the nonlinearities of the neural network have
been placed at the input rather than in the feedback
path.

The interconnect matrix equation [Eq. (1)] for most
cases is computationally unacceptable. In the spirit
of learning, the interconnect matrix can be construct-
ed one vector at a time by using a Gram-Schmidt
procedure. 7' 8 If, for example, we wish to include a new
library vector f in an established APNN with an inter-
connect matrix T, the revised interconnect matrix is

T = T + eeT/(eTe), (2)

where e = (I - T)f.
Consider, then, training the homogeneous APNN in

Fig. 2. A new training vector f is input on the source
array. Since the fibers are turned off, the vector Tf
will be read by the output detector (not shown). The
output is subtracted electronically from the input to
give the vector e. The SLM is then updated in accor-
dance with Eq. (2).

If the new library vector f is a linear combination of
the previous library vectors, then e will contain all
zeros. Owing to the computational inexactitude of
analog computations is such a case, e will be close to
but not exactly equal to the zero vector. This moti-
vates us to compare the energy eTe to a small threshold
before deciding whether Eq. (2) should be applied.

The layered APNN in Fig. 1 can be similarly
trained. As with the case above, the input to the
system from the fibers is suppressed. The vector f is
input on the source array. The output is read by the
detector array shown, and the detector array is used to
read the output in the recall mode (not shown). Up-
dating the SLM transmittance is done as before. The
energy of the error corresponding to the output neu-
rons only, however, should be used to determine
whether to use Eq. (2).

Note that for both the layered and homogeneous

Fig. 2. An architecture for performing a homogeneous
APNN.
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cases, a significant portion of the SLM is used only in
the learning process.

The layered APNN can be configured to converge in
a single iteration when the output is allowed to take on
values of only ± 1. Consider an APNN with a single
output neuron that has been trained as either ±1.
Then the sign of the output neural state after one
iteration is the correct result. 9 Visualize Q single-
output neuron neural networks with input identical to
hidden-layer interconnects. Assume that the number
of neurons in the hidden layer is sufficient so that the
network can be trained with no clamped-to-floating
interconnects. Each net trains its output to be either
b 1 by using different criteria on the same input data.
Clearly, the Q nets can be superimposed into a single
net with the common input to hidden interconnects.
The hidden neurons are connected to the Q outputs as
they were in the individual net case. The composite
net will converge in sign in one iteration. Such perfor-
mance is clearly desirable since no feedback is re-
quired, and, consequently, minor absorptive losses in
the optical processor are no longer an issue. Training
algorithms and corresponding implementation of such
a neural network are now under investigation.
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