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I. INTRODUCTION

Projection based artificial neural networks
{ANN's) have been discussed extensively elsewhere
[1-7]. In this paper, we analyze the noise
properties of these networks. Noise is
introduced both at the neural and interconnect
levels.

Two ANN’s will be analyzed. The first is
the alternating projection neural network (APNN)
[1-6] which can effectively be used as a content
addressable memory. We show that the performance
of such a network improves as the percentage of
clamped neurcons is increased. The second is the
layered classifier artificial neural network (L~
CANN} (7] whose performance is based on
nonlinearly augmented synthetic discriminant
funcrions (also called composite matched filters)
(8-97. If the signal-to-noise ratio of the
interconnect noise remains constant, the
performance of a projection based artificial
neural network can improve as the number of
hidden neurons is increased.

Space does not permit a detailed review of
the APNN and L-CANN. The reader is referred to
the references (particularly (3] and [7]) for a
more detailed explanation. For both ANN’s, we
will briefly state the algorithm, analyze the
noise sensitivity and interpret the results.

II. The APNN
(1) Algorithm Review

Consider a set of N continuous level
linearly independent library vectors (or
patterns) of length L>N (£ | 1SnSN ). We

form the library matrix
E=(£fy £, - £y]

and the neural network interconnection matrix
T=f (ETF) ~1gT

where the superscript T denotes transposition.
The L neural states are divided into two sets:
one in which the states are known (clamped
neurons) and the remainder in which the states
are unknown (floating neurons). The partition of
clamped and floating neurons can change from
application to application. We can, however,
assum2 without loss of generality that for a
particular application neurons 1 through P are
clampsd and the remaining neurons are floating.
We adopt the vector partition notation
iP

i = —
iQ
where if is P-tuple of the first P elements of i
and iY is a vector of the remaining Q = L-P. We
can thus write, for example,

Fp = [ fPl sz fPN ]
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Using this partition notation, we define the

neural clamping operator by:

£P
ni = —
iQ
Thus, the first P elements of i are clamped to
£P . The remaining Q nodes "float"
For synchronous operation, the network
iteration can be written as
S(M+1l) = 7N T s(M) (1)
This operation is the alternating projection

between the space which is spanned by columns of
matrix T and linear variety consisting of the set
of all vectors of length L whose first P elements
are those of f£. If Fp is a matrix of full rank,
then iteration converges to £.

We can rewrite the matrix T in partitioned
form as

I | I

I3 l T4

where T, is a P by P and I4 a Q by Q matrix.
Eq. (1) can then be written in partitioned form as

£ T | 1 £P

89 (M+1) 13 | 1, QM)

or, equivalently
3Q(M+1) = T3P + 1,80 ()

If the norm of T4 is strictly less than one, the
steady state solution of Eq.(2) can be written as

8Q(e0) = £Q = (I-74)~1r3£P, (3)

(2) Noise Model for the APNN

Fig.1 is a block diagram of the APNN
iteration in Eq.(2) corrupted with additive
noise, The vectors n; and ny denote the input
(data source) and output {(detector) noise
respectively, and ng¢ is the feedback noise
vector. These vectors are added appropriately to
the vector components (neuron states). The
matrices N3 and N4 denote the system noise which
is associated with the interconnects. They may
represent the inexactness of analog
multiplication or, for digital implementation,
round off error. We assume that each neural
(vector) noise process consists of elements with
identically independent distributions (iid) in
spatial domain, and, temporally, are either white
or static. For the system, we assume that the
noise is spatially iid with temporally white
noise. Each noise vector and matrix is assumed
to be zero mean and independent from every other
one.

Let T3(i)=T3+N3(i) and Tq(L)=Tg4+Ng4 (i) .
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Fig.1l The block diagram of the APNN operation
with additive noise. The matrices N3 and Ng
indicate the interconnect noise.

Then the relationship between the noisy sQ(M) and
sQ(M-1) will be
sQ(M) = T4(M-1)82(M-1)

+ T3(M-1) (£F + njy(M-1)] + ng(M-1)
The solution of the above equation is

M-1 ~
sQM) = T Ay(k) T3(M-1-k) £P
k=0
M-1 ~
+ X Ag(k) ng(M-1-k)
k=0
M-1 ~ ~
+ 3 BAm(k)T3(M-1-k) nj(M-1-k) (4)
k=0
where
I i k=0
Ay(k) = - - -
T4 (M=1)T4 (M-2) T4 (M-k)
; k>0
For notational convenience, we define
T3(k) = T3(M-k), T4(k) = T4q(M~k),
ny (k) = n;(M-k-1) and ng(k) = ng(M-k-1).
Eq. (4) then become
M-1
sQM) = X A(k) T3(k+1)£P
k=0
M-1
+ T A(k) I3(k+1) nj (k)
k=0
M-1
+ Z A(k) ng(k) (5,a)
k=0
where
I ; k=0
A(k) = {5,b)
T4(1)Tg(2)~Tg(k) : k>0
Therefore the noisy steady state result is
Q) = r] + £y + £3 + ng (6,a)
where,
r1 = I A(k) I3(k+l) £P (6,b)
k=0
r2 = ¥ A(k) T3(k+1) nj (k) (6,c)
k=0
r3 = £ A(k) ng(k) (6,d)
k=0
The expectation of sQ(e) is
E(sQ(%)] = E[ry] + El(rp] + E[r3] + E(ng]
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TkT3EP = (I-T4) "1£F = £0

[]
T
S

Thus, 89(ew) is an unbiased estimate of

desired steady state result.
(3)

cur

Second Order Analysis

The second order statistics of the noise
are an indicator of the uncertainty of the final
result. Indeed, if the noise is Gaussian, the
process is uniquely determined by its second
order statistics. The covariance of s2(e) is

Cov (3R (e) ]

= E[(rq+rp+ratng) (ry+rp+ryng) T1-£0£QT
=Cg *+Ci +Cf *Cy

where Cg = E(r1r,T]1-£Q€QT, ¢, = Elxyr,T],

C¢ = Elr3r3T] and ¢4 = E[ngngT]

Let the variances of each of the elements
of N3 and Ny be o3 and 642 resgectively. We can
show [11] that if 042<(1-||T4]|%)/Q we guarantee
the convergence of s®(w). The covariance of the
system noise, Cq, can be shown [11] to be

Cq = [042][29]| 24032 |£2]|217(1-24D) " (7, 2)
where 1/y = 1 - G42tr((I-I4%)7 1.

By assumption, Cq = Udzg for
static and time wvarying case.
covariances of the static and time

(b

the both
The other
varying cases,

however, are different. We will consider each
case separately.
STATIC : We can show that, if the feedback and

input noise are static, that is, E[min;T] = Gi2l
and EfngngT) = 0¢2I, then Cg and Cj are (11}
Cg = o0f? (;—54)‘2
+ 0g2042tx [ (I-Tq) ~217(I-14%) 71 (7,b)
¢ = 6i2(1-24)‘1124+01-12(042tr{<1—24)‘1141
+Pa3217(1-142) ~ (7,¢)
TIME VARYING In the time varying case, from the
assumption of white noise process, E[aj(k)n;T(1)]

= ;21 8, and Elng(ingT(1)] = Og2I 8.
Expression for C¢ and C; are follow as [11]
Ce = 0g2 ¥ (I-14H 71 (7,d)
Ci = 032(1+T4) ~L14%0;2(0,2Er ((I+T4) "1T4]

+ P32 )Y(I-T4 ! (1,e)

We now have all of the information required
to evaluate (7) for both the static and white
noise cases. After a review of the L-CANN, we
will use this result to analyze the performance
of the APNN.

III. THE L-CANN
(1) Algorithm Review

The APNN is homogeneous in the sense that
any neuron can be clamped or floating. A
projection based ANN with fixed stimulus
(clamped) and response (floating) neurons is the
L-CANN [6,7]. To increase storage capacity and
enhance partition diversity, the network is
augmented to have R hidden neurons which are
generated by some nonlinear operation on the
clamped neurons. Let hp be the state of the
hidden neurons corresponding to a stimulus of
anA Then,

h, = 9 £F, ; 1 <n<N.

We form the hidden layer matrix
thy hy - hy]

and define that the interconnects from the hidden
neurons to output neurons as

H =
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Fig.2 The block diagram of L-CANN with additive
noise both at the hidden neurons and the hidden-
to-output interconnects.

Ny —

(8)
the output at the

W = Fq(uTH) ~147.
Note that for a stimulus, tp,
floating neurons will be

8 =W EP =wh=£2
The operation is one step as opposed to the
iterative APNN, If Eg has dimension of 1xN and
its elements are bipolar (+1), we can use the L-
CANN as a binary classifier.

(2) Noise Model for the L-CANN

in this section, we will analyze the
effects of  additive noise at hidden neurons and
hidden-to-output interconnects. We assume that
the noise is zero mean and spatially iid. Let np
and N, denote the additive noise at the hidden
neurons and interconnects respectively as shown
in Fig.2. Then the noisy output, s, is

(W+Ny) (h+ay)
The expected
E[s] =

s =
value of s is

E[(W+N,) (h+ny)] = W b = £9

The covariance of s

which is our desired result.

is
Covis) = E[(3-£9) (s-£)T)
= E[(Wap+N h+Nony) (Wnp+N h+Nnp) T)
Because N, and np are iid with variances °w2 and
On“ respectively, the covariance is
Cov(s] = Ch + &

=w

where Cp = 0n2WWT and G, = 0,2(||h||2 + RoW2] I
h h W W h

IV. PROBABILITY OF ERROR FOR BIPOLAR LIBRARY

In this section, we will discuss the
probability of error for the bipolar (*1) library
vectors for both the APNN and the L-CANN, In

both cases, the bipolar response is obtained from
noisy output by a sign operation. For the APNN,

s, = sign[so(w)], and, for the L-CANN, 8, =
sign(s]. We will assume that all noise is
Gaussian.

(1) Union Bound of Probability of Error

The probability of error is
N

Pe = ZQxl[1-Pck)
k=1

where Qx is the priori probability of the library
vector fy and P,y is the probability that our
classification is correct. We cannot, however,
evaluate P,y easily. We can, though, compute the
union bound ([10] for Pe. For Gaussian noise, a
probability error bound for k-th library vector
can be written as

Pex = 1= Pey

<%
i=1

is

exp (- (x-1)2/ (2¢c;)1/ (2nc;) 1/2
0 dx

where cj the i-th diagonal element of
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Fig.3 The error probabilities for the APNN with
white Gaussian noise. The scale on right side is
for Cj. {(a) The error probabilities decrease
with the decrease of 04, O and O¢. We assume
that ©¢3 and 04 are all 1/36. (b) The error
probabilities from C;, C4q and Cg saturate with
the decrease of o3 and G4, but that from (g
decreases. 04, O; and O¢ are all 1/6.
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covariance matrix C. The probability of error is
then represented by following inequality [11]

Pe S % erfc(l/cil/z)
i=1

s tr(cl/2exp(-c1/2))/ (2m) 172

(2) Probability of Error for the APNN

We demonstrate the probability error bounds
for the 5 bipolar library of dimension L=30 which
are generated randomly. The average value of the
diagonal elements of T is 1/6. Fig.3a shows the

probability of errors corresponding to €4, Ci and
Cg vs. agq4, ciz and cfz respectively when o3 and
G4 are 1/36. From Fig.3a, the error bound

decreases with the decrease of 04, ©0; and Of.
Fig.3b shows the probability errors corresponding
to Cq, Cj, Cf and Cg vs. 0’32 and 0'42 when 0Oy, Sy
and O¢ are 1/6. The probability of error from
Cqr € and Cf saturates with the decreases of o3
and G4, but that from Cs decreases as shown in
Fig.3b. Fig.4 shows that the probability of
error from Cqr Cf and Cg decrease with the number
of clamped neurons.

(3) Probability of Error for the L-CANN
In our L-CANN example, we choose the
nonlinear function 3
h = 9 £P = sign( y£P ]
where Y is generated randomly by a zero mean
uniform distribution. (6]. We normalize the

noise by the maximum interconnect value in order
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Frobability of Error

Number of Clamped Neurons
The error probability as a function of the

Fig.4
clamped neurons for the
probabilities from Cg¢, Cy and Cg decrease with
the increase of the percentage of clamped
neurons. Oy, O3 and Og are all 1/6, O3 and 04
are all 1/36. The scale on right side is for Cj.

APNN. The error

to maintain a constant (maximum) SNR. Fig.5
shows that the probability of error C, increases
with the number of hidden neurons, but that from
Ch decreases. We can show that the probability
of error from Cp decreases with the number of
hidden neurons [11]. Fig.5b shows that the
probability of error generally decreases with the
increase of the number of hidden neurons.

V. Conclusion

We have presented a preliminary noise
analysis of the APNN and L-CANN. For the APNN,
the error probability decreases with the increase

of the number of clamped neurons. For the L-
CANN, the covariances are strongly dependent on
the number of hidden neurons. The error

resulting from the noise at the hidden neurons
decrease with an increase in the number of hidden
neurons when the SNR of the interconnects is held
constant.
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