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Abstract

An Artificial Neural Network (ANN) is used to assess the
static security of a test system. The technique is contrasted with
that of using a nearest neighbor search. The ANN is shown to
perform significantly better in terms of classification, recall time,
and data storage requirements.

Introduction

Static security of a power system addresses whether, after
a disturbance, the system reaches a steady state operating
condition that does not violate given system operating constraints.
These constraints ensure the power in the network is properly
balanced, the magnitude of all bus voltages are within acceptable
limits, and the thermal limit of each transmission line is not
exceeded [1]. If any one constraint is violated, the system may
experience disruptions that could result in a "brown out* or even a
“black out". Hence, the power system is insecure.

Security assessment typically involves two steps: off-line
analysis and on-ine assessment. With off-line analysis, the status of
the power system is evaluated for various probable disturbances,
such as the loss of a transmission line or a generating unit. In
steady state, the static security is evaluated using the load flow
equations. The load flow is solved for various types of disturbances
and the results are compared with the system constraints.
Violations, if any, are then identified and the operating condition is
labeled secure or insecure {2]. For convenience, the resuits of this
oft-line analysis are stored in lookup tables.

In step two (on-ine security assessment), an operator may
check the security of the system using the lookup tables. If the
operating condition has previously been simulated, the security
status is determined. However, when the system operating
condition has not been simulated, a precise assessment of the
system security cannot be made. A method such as a nearest
neighbor search must then be used. For a lookup table to include
all possible operating conditions, a huge number of simulations
must be made. This is a prohibitive process that demands
excessive computational time.

In this paper, a different approach is proposed for static
security assessment. This approach is based on Artificial Neural
Networks (ANN's). By using ANN's, (1) security regions can be
defined by training the ANN through examples; (2) the training data
can be randomily obtained from real system operation or simulated
by off-line techniques; (3) the amount of data used in training is
much less than that in lookup tables and yields comparable (if not
better) assessment accuracy; and (4) ondine security assessment
can be done much faster.
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ANN's can be loosely defined as highly connected arrays
of elementary processors. When used for classification, the
processors, or neurons, are typically partitioned into layers. Such
ANN's have the ability to leam from training data rather than from a
set of rules. Other attributes include fault tolerance, regularized
architectural structure and computational parallelism. Design of
neural networks and analysis of their performance to date has
relied primarily on steepest descent and energy reduction
algorithms ({3]. For leaming, steepest descent algorithms can
perform painfully slowly but with quite impressive final resuits.
Indeed, increasing the speed of network leaming is presently one
of the most important needs in neural networks [4]. ANN's, when
used for static security assessment, operate in two modes:; training
and recall. In the training mode, the ANN leams from data such as
real measurements or off-line simulation. In the recall mode, the
ANN can provide an assessment of system security even when the
operating conditions are not contained in the training data.

This paper presents preliminary resuits of using ANN for
static security assessment. The AEP 8-bus is chosen as a test
system and used to demonstrate the capability of the proposed
technique. The results in this paper show that the ANN in the recall
mode performs much faster and more accurately than using
nearest neighbor classification.

Static Security Assessment

The normal steady state operation of a power system
requires that the generator power satisfy

ZPg=PptP (1a)

Z,Qg=Qp + Q (1b)

Where P, and QG are the real and reactive powers of generator at
bus (i); P% and Qj, are the total real and reactive load demands; P
and Q_ are the real and reactive losses in the transmission network.

Inequality constraints must always be imposed on the
system to ensure secure operation. All bus voltages must be
bounded, all line currents must not exceed the respective thermal
limits, and all generator power outputs must be limited. These
constraints can be expressed as follows:

Vmin<Vj<Vmax ;j=1,nB

S, < sl,mtx ;I=1,nL
(2

Pi,min < Pi < Pi,mlx( ; ’=1’nG

Qi < Q< Qy ii=tng

where V. is the voitage at bus (j), and S, the apparent power of line
0. ng, N, and ng are the number of buses, lines, and generators
respectively.
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We assume that the steady state operating condition of the
power system is governed by an optimal dispatch strategy [5,6]. In
this case, the total power cost function is given by:

C=%( ii=1ng

@)
where C;, the cost function of individual generators, is given by:

2

C = CpPq” * Gt P + Co “@
where C,, C,, and C,, are constant coefficients for a given
generator.

The optimum dispatch problem is solved by minimizing the
cost function C while satifying equation (1). Mathematically, the
problem reduces to minimizing the following augmented cost
index J,

J=C-A(2Pg-Py-P) (5)
where X is a Lagrange multiplier.

lagsification Algorithms

The problem addressed in this paper is concerned with the
static security following a line outage and under various levels of
apparent power , S, of a given load. The security of the system is
assessed for various values of real power, P, and reactive power,
Q, of a second load.

Back Propagation Algorithm

The neural network topology used for the results presented
in this section consists of a 3-input, 2-output and 10 hidden unit
network. This network (with a constant input bias of 1.0 for all
thresholds) is shown in Figure 1. Ideally, the network will predict
secure system operation by having the output unit produce a value
of 1 and will predict insecure operation by having an output value
of 0.

Input Units Hidden Units

Qutput Unit

Figure 1. Neural network architecture

As in other trainable pattern classifiers, a set of input-output
examples is used to determine the classifier parameters which, in
the case of ANN's, are the interconnect vaiues between adjacent
neuron layers. The network we use has 1 hidden layer to allow for
arbitrary convex decision regions. The learning rule is a variant of
steepest descent which is back-propagated to estimate the weights
of the hidden units {7].
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As seen in Figure 1, the three network inputs are S, P, and
Q. in the forward path the output signal from the n-th neural unit in
the input layer is multiplied by a weight and accumulated over the
inputs as

i1 4 B .

X112 2 Wiy Xo) ©

After passing through a weighted bias 6 '*' and a
function f, the output value of the n-th neural unit in the hidden layer
is obtained by

Xnn =f(xni+1_0nin) ™
For the output unit,

£+2 =m‘§1 W™ )
and the calculated output value is

X° = f(x*241+3 ©)
An important value is the output error

e® = 0.5 (d°x%)2 (10)

where d° is the desired output (zero or one).

The back-propagation training technique (which attempts
to minimize °) consists of an error calculation for each unit and
the adaptation of weights. At the output, the error is calculated by

§° = [dxO) ' (X*24'%Y (1)
where f ' is the derivative of f. At the hidden layer, the errors are
estimated as
(12)

ho_ g i+1 i+ o i+1
§P =, e 60w

The trained weights are determined for both layers by the iterations

W =W 0 +n 8 " x] (13a)

w1 = w T £ 0% (13b)
The training of this network requires many iterations until the values
of the interconnect weights converge. The use of a trained network,
however, requires only one forward pass.

Nearest Neighbor Algorithm

The nearest neighbor algorthm is aiso trainable by
examples. It is intended as a baseline classifier which is used for
performance comparisons to the neural network classifier. The
nearest neighbor scheme memorizes each training point as

t = (P,Q,8,0) (14)

In order to use the classifier, a set of inputs, t, is compared
exhaustively with the first three dimensions of all the training points
and the value of O, (zero or one) for the closest match using the
distance

(15)

where S, P, and Q are values for which system security is unknown.
The security is found via

d 1) = {(P-P)? + (Q-Q)? + (5-8)71°°

dtt ) = min{dit. p} (16)
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The value Oy, then is chosen to indicate the predicted security.

This nearest neighbor algorithm is, for large amounts of
training data, asymptotically very close to the optimal Bayer
classifier. However, since an exhaustive search through the training
data is very inefficient, the nearest neighbor algorithm becomes
impractical for realistically-sized problems.

Jost System

Thelest‘systemisshmninﬁgwezThissyu«nis
composed of 8 buses, 14 transmission lines, and 4 generators.
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Figure 2. Test system

Test Results
m| v mance for a Fix 1
Apparent Power

Training data was generated under the scenario that line 4
is disconnected and apparent power of the toad at bus 8 is fixed at
$=100% of its normal value. A total of 2000 training points were
randomly chosen from a total set of 6561 points generated by
varying the real power, P (in MW), and the reactive power, Q (in
Mvar), of the load at bus 6. The back-propagation and nearest
neighbor techniques were used to predict security. This fixed
apparent power case allowed 2 input parameters (P and Q) to be
varied, thus making it possible to interpret classification
performance in a 2-dimensional picture.

The back-propagation result is shown in Figure 3. The
interior of both curves represents secure regions. The dashed
curve represents the boundary between the secure and insecure
resuits. This boundary was obtained by a nearly exhaustive search.
The solid curve represents the predictions of the back-propagation
algorithm. It should be noted that while 2000 points were used for
training, the boundary curve represents the resuit of testing the
network with the complete set of 6561 points.

The back-propagation resuit shows that the hidden units
allowed for a non-linear and smooth partition boundary. While the
algorithm did not give a perfect fit, the maximum deviation from the
true boundary was quite small.
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Figure 3. Back-Propagation classifier (S =100%)
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Figure 4. Nearest-Neighbor classifier (S =100%)

The nearest neighbor result is shown in Figure 4. Note that
the predicted boundary is less smooth than for the back-
propagation case and that, for small reactive power, the maximum
deviation from the true boundary is quite large.

The amount of data required to train a classifier is an
important performance measure. Figures 5 and 6 represent this
tendency to asymptotic performance for both classifiers.

It is encouraging that the number of back-propagation
failures (in terms of false secure states) is, in general, no worse
than the nearest-neighbor result. As the training set size increased
by a factor of 4, the number of falsely predicted secure states
decreased by about a factor of 3.

The lower-cost error of false insecure states occurrs at a
rate similar to that of false secure states. Since the classification
techniques do not assign any explicit cost to the type of error, this
result is expected. Either classifier can be easily augmented to
allow for an asymmetric cost function.
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Figures 9 and 10 show the classification boundaries for Q
asaﬁmctlonofSwhenPlslsfkedatlSMW.Theregionbﬁween
the curves is the predicted secure area. While the training took
place only at discrete values of S, the back-propagation technique
interpolated much more smoothly than the nearest neighbor
classifier.

m. f to Train 1

The simulations for both classifiers were done on a Balance
Sequent Parallel Computer. The results piotted below are estimates
ofneuralnetworkpeﬁormameinlmnsdspesd.Themenicof
CPU seconds refers to time on one of the Sequent CPUs and is
loosely indicative of time expected for a dedicated classifier,
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Figure 11. Training set size vs. training time

in Figure 11, the dashed line represents resuits for the
back-propagation network. The training time is about 4 orders of
magnitude higher than the nearest-neighbor classifiers. We expect
that the long training time may be the most significant challenge to
applying the neural network classifiers to large-scale power
systems.
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Figure 12. Training set size vs. classification time

.The most important performance measure may be the
recall time of the classifier. As shown in Figure 12, this time grows

linearly for the nearest neighbor classifier, yet is constant and mush
shorter for the neural network.
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Conclusions

We have demonstrated that an artificial neural network
(ANN) can potentially be a significant useful tool for static security
assessment of power systems. We have shown that ANN's perform
significantly better than a nearest neighbor search in terms of
classification, recall time, and data storage requirements.

The ANN, however, requires a great deal of time for off-line
training. This problem will be compounded as the system size
increases. Learning complexity theory may be applied to better
understand this scaling problem. Alterations which may lead to
better performance include accelerated leaming algorithms and the
use of oracle based learning.
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