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Abstract

Recent experience suggests that artificial neural networks (ANN's) may be
particularly appropriate for assisting dispatchers in operating electric power
systems. Dispatchers often need to make rapid decisions to maintain
satisfactory operation when the system is threatened with possible
disturbances. This paper discusses the potential applicability of ANN's to
electric power systems with emphasis on aiding dispatchers with decision
making, particularly with decisions relating to power system security.
Examples illustrate how ANN's can alert dispatchers to security threats due
to possible constraint violations, unstable dynamics and uncertain loads.
The paper also reviews the problems that must be overcome before an
ANN dispatcher’s aid is realizable.

1. Introduction

Numerous researchers have explored ways in which artificial neural
networks (ANN's) may apply to the electric power industry. Those
applications which interest us most are focused on electric power system
operation. In this paper we review the current literature applying ANN's
specifically to operational problems and argue that there may be an
exceptionally good match between the problem of power system operation
and the capabilities of ANN's. One important class of problems is that of
power system “security" but we believe other applicable operations
prohlems exist as well.

In the next section we discuss the power system security problem in more
detail and argue that it is a classification problem for which ANN's may be
suitable. That section is followed by a review of literature discussing recent
ANN applications. The rest of this paper is devoted to reporting the results
of three small-scale applications by the authors and their co-workers. The
final section of the paper discusses what we believe to be the fundamental
challenge to this research area: the need to build ANN tools that can be
applied to full-scale power systems.

2. Review of the Power System Security Problem

Operating an electric power system network involves on-line control to
maintain economic operation while avoiding disruption of service to
customers. The term economic operation relates to the fact that a utility
attempts to minimize its cost of energy generation and transmission. This
minimization is subject to constraints intended to assure reliable service.
The basic equality constraints are that the total real and reactive generated
powers must meet the total demand plus losses. Inequality constraints

must also be imposed on the system to ensure secure operation. The basic
inequality constraints are that all bus voltages must be bounded, all line
currents must not exceed the respective thermal limits, and all generator
power outputs must be limited.

The function of maintaining economic operation during "normal" conditions
is automatic without intervention by the dispatcher. However, in some
types of "abnormal” operation the dispatcher is expected to react. A
common example occurs when all variables are within allowable ranges but
there is a credible threat of violations. Here the system is said to be
“insecure.” An event which is disruptive enough to cause preventive action
and is reasonably likely is called a “contingency.”

We can think of the system as being represented by a large set of key
variables. At any time, the system operating “state” is a point in the high
dimensional space of these variables {1). Insecurity problems occur in the
region containing the "alert" states. When the dispatcher is concerned
about "static” security and the system is in one of these alert states, the
equality and inequality constraints are met but would not be met if some
specific contingency occurs [2]. Consequently, the dispatcher may be
willing to abandon pure economic operation for the sake of greater
security.

The other form of security, "dynamic™ security, is not concerned with the
constraint equations but with stability [2]. After a contingency, system
variables such as frequency and voltage will oscillate, no matter how small
the disturbance. If the system is stable, the oscillations will decay.
However, if the system is unstable, they will grow until equipment, probably
a generator, switches off automatically. A system is called secure if all
contingencies would yield stable oscillations:

The contingency analysis of a single operating state requires much off-line
calculation involving power flow [3], economic dispatch [4], and stability
[5] analysis. In using analysis for guidance, the dispatcher faces two basic
problems. First, the operator must determine which analyzed state is
"closest" to the present system operating state so that the analyzed state
can be used for guidance. Second, the dispatcher must be alerted when
conditions exist that cause insecurities.

It is our position in this paper that the dispatcher clearly needs a tool to
assist with these two problems. This tool must monitor the system state
and identify when it falls within the insecurity region for some contingency.
This tool can refer to off-line studies but it must generalize from those
individual studies. Hence, we need a "classifier". That is, the current state
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must be compared to the collection of reference states to determine
whether it should be classified as “secure” or "insecure.”

3. Historical Perspective

General reviews of the history of classifiers are readily available [6-8]. In
this section we will review applications of classifiers to power systems. The
initial approaches used pattern recognition but, more recently, applications
of ANN's have been an active area of study. The idea of using pattern
recognition in power systems was first suggested by Dy Liacco in 1968 [9].
This suggestion was followed by a wave of enthusiasm as power system
engineers expected that pattern recognition would fulfill the need for an on-
line aid [10-14]. Unfortunately, no tool based on pattern recognition has
yet achieved operational status. This lack of implementation is probably
due in part to the fact that the effort to develop the training cases was very
large, the classification accuracy was disappointing and the scope of the
application often too narrow. However, this work must be judged part of
the foundation upon which any successful on-ine applications of ANN
classifiers will be built.

Artificial neural networks have demonstrated the ability to properly classify
complex relationships. This ability has been demonstrated in speech
recognition and signal processing [15-17], and power systems [18-27]. in
all these cases, the relationships classified by the ANN's are highly
nonlinear and often result from large mathematical models. The major
benefit is that once trained, the ANN can classify new data much faster than
would be possible by solving this model.

Neural network research reached power systems at the end of the 1980's
due mainly to the contribution of Sobajic and Pao [18]. This paper was
followed by numerous additional applications of ANN's, many of which are
reviewed below. We first review the papers specifically about power
system security and then discuss those concerning other issues.

D.J. Sobajic and Y.H. Pao (1989) {18] used a three layered artificial neural
network to estimate the critical clearing time for a three phase short circuit.
In this study the error backpropagation algorithm was used to update the
networks' parameters. The test system was composed of four generators,
seven lines, and six buses.

R. Fischl, et. al (1989) [19] used a three layer neural network to screen
contingencies to identify those which could lead to an insecure state. In
this study the error backpropagation algorithm was used to update the
network's parameters. The test system chosen was composed of 6 buses,
9lines, and 3 generators. The main contributions of this paper were (1) the
appropriate choice of the inputs to the neural network and (2) the
investigation of the learning capability of the network.

N.I. Santoso, and O.T. Tan (1989) [20] used a group of neural networks to
control capacitors installed on a 30 bus distribution system. The model
chosen for the networks was based on error backpropagation. The main
contributions of this paper were: (1) the use of multi-neural networks in the
same power system and (2) the choice of inputs to the neural networks.

H. Mori, and S. Tsuzuki (1983) [21] used a Hopfield model based neural
network to determine the network topological observability of a test system.
In this study, the test system was composed of 5 buses and 7 transmission
lines. The main contributions of this paper were: (1) the first application of
the Hopfield model to power system network observability and (2) the
appropriate choice of the inputs to the neural network.

More recently many other applications were suggested in the ~~«~-
system field. Among the contributors are: Mathur et. al. (1989) [22].
Matsuda and Akimoto (1989) [23], and Uhrig (1989) [24]. Mathur et. al.
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suggested using artificial neural networks for many problems in the utility
industry and provided a checklist for ANN applications. Their discussion
emphasized coal-fired generating plant control. Matsuda and Akimoto
used a Hopfield model ANN to solve the economic power dispatch
problem. Uhrig provided an overview of the operation, and characteristics
of artificial neural networks and discussed some of their potential
applications to nuclear power plants.

4. Results of Preliminary Research on ANN Applications

The previous sections have argued that ANN's may be useful for on-line
security assessment because they have the correct basic properties:

1. They can be trained with the off-line data used to understand power

system operation.

2. They can be queried rapidly on-line when the dispatcher needs help.

3. They can generalize from the cases that were studied and, hence,

respond to cases that were not.

What follows is a review of the authors' work on three types of security
problems. In this work we used a layered perceptron [25] (figure 1) with
two training algorithms, a projection algorithm [26] and an error
backpropagation algorithm [25]. The projection algorithm is based on the
least squares approximation technique and the error backpropagation on
the steepest descent technique. Once the ANN has been trained to classify
adequately, it is ready to be applied on-line, that is, installed in the power
system EMS.
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Figure 1. A layered Artificial Neural Network

4.1 Dynamic Security

Dynamic security assessment consists of determining whether or not the
system can reach a new steady operating state following a disturbance.
Stability can be checked by examining the eigenvalues of the system
model linearized about the new operating state.

Preliminary results were obtained from studies of the dynamic security of
the test system of figure 2. Our first study analyzed the relationship
between system stability and the output power of generator 3, the
excitation of generator 3 and the availability of lines 9 and 10. The results
were reported in [27]. Basically, the accuracy of classification and the
ability of the ANN to generalize were very good. However, we encountered
difficulties in extending the results to larger systems due to properties of - :
projection algorithm. First, the number of hidden nodes must be at least s
large as the number of training data points. Second, as the number of



hidden nodes grew, the projection algorithm became unstable due to the
problem of inverting an ill-conditioned matrix.

Figure 2. Dynamic security test system

Our second examination of the dynamic security of this system used the
error backpropagation training algorithm [28]. While this approach
requires fewer nodes in the ANN, the training time is longer because it is
iterative. This second study examined the security of the system with
respect to the outputs, P3 and Qs, of generator 3, the apparent power
output, Sz, of generator 2, and the status of line 10. The ANN used had 4
input nodes, three representing the quantities P3, Qs, and Sz and 1 for a
constant bias input. The hidden layer had 10 nodes and the output had
one node.

Two types of training sets were used, each of 1000 points chosen from
allowed domain in the three dimensional P3 x Q3 x Sz space. One set was
chosen at random over this domain using a uniform distribution. The other
training set was selected to emphasize the security region boundaries.
Each training set was used separately to train an ANN. In both cases,
convergence required a few hundred iterations through the set.

To assess the classification accuracy of each trained ANN, we performed
an exhaustive query of two different slices in the 3 dimensional domain of
inputs. For the first case, we fixed Sz = 0.8 per unit. Figures 3 and 4 show
the results for both training sets where the solid curve represents the true
security boundary and the dotted or broken curve represents the
classification of the ANN. The second case was chosen to examine the
generalization ability in a small region around a critical portion of the
boundary when Q3 was fixed at 0.3. For both cases the classification
accuracy is seen to be very good. The additional accuracy that appears to
be achieved by the boundary enhancing training set is probably not
important. Rather, the significance of this result is that the ANN is able to
give a good representation of the security boundary for a complex
relationship, information that can help the dispatcher operate near the
boundary with more confidence than is available at present.

4.2 Static Security

This section provides a brief review of the work reported in [29]. The
problem was to monitor the network and assure that the constraints were
met even if a disturbance in the contingency list occurred. After training,
the ANN should indicate the security status by the value of its output node.
The test system was that of figure 5 consisting of 8 buses, 14 lines and 4
generators. The goal was to represent the security relationship involving
the loads at buses 6 and 8 and transmission line number 4.
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The ANN chosen had 3 input neurons, one for each of Pg, Qg and Sg, and
one constant value, or bias input neuron. There was one hidden layer with
10 neurons and one output neuron. With line 4 operating, the network was
trained to monitor the values of Ps, Qs and Sg and to indicate when
constraints would be violated if line 4 were to fail. That is, line 4 was the
only element in the contingency list.

To represent system operation in the "normal" mode, each training point
must represent economic operation. Specifically, for a given load, an
optimal power flow must be solved to determine the minimum cost pattern
of generation. Then, with those values for each generator output, line 4 is
removed from the network and a power flow solution determines if any
constraints are violated. If not, the point is in the secure region, else it is an
insecure operating point. This procedure was used to determine the input
values and status of each of the training points.

Training was accomplished with the error backpropagation algorithm and
two different training sets. The first set was a two dimensional case where
Sg was fixed at 100% of its nominal value. Two thousand training points
were selected randomly in the P, Qg plane. Figure 6 indicates the
relationship between the true and predicted security region. About 2% of
the 6561 points over which the ANN was tested were misclassified. The
false secure and false insecure indications were about equal in number.

The second training set explored all 3 input variables. The variable Sg was
allowed to have the discrete values of 0%, 50% and 100% of nominal load
and Pg and Qg were again selected randomly for each of these Sg values.
Atotal of 1469 training points was used. When tested, the ANN was found
to generalize smoothly between the fixed values of Sg used in training. In
both cases, the performance of the ANN was judged very good for the
complex relationships being classified.
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Figure 5. Static security test system
15]
10 i
|
3 i
I
o 1
---true boundary i
s predicted boundary !
10 -5 0 5 10 < 20 25 30 35 4‘0
Pg
Figure 6. True and predicted security

boundaries

4.3 Load Forecasting

In addition to the contingencies which are emphasized in the previous
security issues, another major source of uncertainty facing power system
dispatchers is the future system load. Near term forecasts of a few days are
needed to plan which generation units should be committed for use at a
particular time, a concern of "operations planners.”

To explore one such forecast, we used data provided by the Puget Sound
Power and Light Co. to train ANN's to predict (1) the total load and peak
load one day ahead using temperature information, and (2) the load with
different lead times from 1 hour ahead up to 24 hours ahead [30].

For the total load forecast, the errors ranged from a low of 0.03% to a high
of 5.64% and averaged 1.68%. For the peak load forecast, the errors
ranged from a low of 0.13% to a high of 6.64% and averaged 2.04% over
the 30 test days.

Figure 7 shows the curves for the actual load at time k and the one hour
ahead prediction for time k for a typical day. The average hourly error for
this day was 1.41%. The three hour ahead prediction was so similar it
could not be distinguished from the one hour prediction if plotted on the
same graph. For one 5 day test set, which was roughly nominal of all test
sets, the average error was 1.39% for the one hour ahead prediction and
1.84% for the three hour ahead prediction

From our brief experience, we conclude that load forecasting is another
role that ANN's might perform in power system operations. The forecasts
that we have obtained in these early experiments are at least as good as
those currently used by the Puget Sound Power and Light Co. Further
investigation is required to determine the reliability of such forecasts and
the actual use that engineers and dispatchers may make of them.
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Figure 7. 1 hour lead forecasted load

5. The Current Challenge: Solving Full Scale Problems

The basic challenge we see at present for developing useful tools is one of
scale. Power systems are typically considered “large scale systems.”
Hence, an ANN approach must ultimately accommodate this problem of
scale in some manner.

The relationship between system size and ANN size is not clear to us.
Certainly that refationship must depend on the function the ANN is to
perform. However, it does seem likely that an ANN for a useful onine
function on a full-scale system will need to be large. Perhaps it will need to
be much larger than those used as examples in section 4. The problems
that we think will need to be faced are to determine:

1. how large an ANN is required and what its architecture must be,

2. how much data is required for training and if that training can be
accomplished in reasonable time,

3. whether the training data (probably from offline studies) can be
generated with reasonable effort,

4. a method for testing the trained ANN to measure its classification
accuracy and develop the confidance of the dispatcher, if warranted,
and

5. how to update the ANN so it continues to be current.

The immediate challenge then to developing useful on-line dispatcher aids
with ANN's is two fold:

1. identify applications which are of suitable scale for current ANN
technology and

2. develop the ANN technology until it is capable of application to larger
scale problems.

One possible solution to the large scale problem may be the parallel
application of many ANN's, each focused on one very narrow, local
subproblem (security issue). |If this large collection of ANN's can be
managed by a supervisory layer of software, then large scale problems
may be manageable without "order of magnitude” advances in ANN



technology.

Development in ANN technology needs to focus on (1)

knowing the relationships between the ANN size and the power system
scale, and (2) developing fast training algorithms.
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