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Summary

We propose an associative memory based on min-
imization of a free energy function determined by the
library vectors to be stored. When the library vec-
tors are bipolar, the energy function contains minima,
at the library vector location. The minima can be
sought by search techniques such as gradient descent.
Significantly, if the correlation nonlinearity is chosen
to be sufficiently strong, then convergence occurs in
a single step.

1 Introduction

Associative memory architectures have been presented that are
based on artificial neural network structures [1] and iterative
matched filters. Indeed, in certain configurations, the resulting
procedures produce numerically identical results [2].

Similar associative memories based on nonlinear operations
in the correlation domain have also been proposed (3, 4, 5, 6].
Such memories have shift invariant characteristics [4] and high
capacity. If the correlation nonlinearity is stronger than 2(z) =
N=/2 and the library vectors are bipolar (i.e. contain only £1’s),
then the iterations normally required in such memories need not
be used. Convergence, rather, occurs in one step [5, 6].

In this paper, we examine the correlation based associative
memory and show its relation to minimization of a free energy
function placed on the training data. Using gradient descent,
the search is shown to converge in a single step for the case of a
bipolar library.

2 Probability of Occurrence and Free
Energy

~,fN} be library vectors of dimension L that we
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wish to store in the associative memory. Let fbe a vector of
like dimension. Then, the probability P(f) is

N - =
P(f) =3 PUPUAR) = L QiP(\S)

i=1

where f is an arbitrary vector and @ is the priori probability
of the library vector f;. We define an energy function F(f) as

N
F(f) = —yllP(f)] = —In [Z Q,-P(f\m]

i=1
where = is a constant. Note that F'(-) is analogous in concept to
free energy [8]. Our associative memory paradigm is as follows.
Let § denote a distorted version of one of the library vectors.
With an initialization of §, we search the landscape of F' for
a minimum. We will show that the minima occur at library
vectors location in many important cases.

EXAMPLE 1: If P(§\f) has an identically independent
Gaussian distribution, then
A F) o L (A
P@\fi) = Z5=exp { el B

Let v = 20% and a = 1/4. Then

N
F@) = -2 [Sqepi-ali- £ +0
i=1

where C is a constant. An example of the energy landscape
is illustrated Figure 1 for @ = 8 and @ = 32 with C =

" 0. The library vectors are L = 1 dimensional and are
{~1, 0, 0.5, 1} for both values of a. The energy function
reaches local minima at the neighborhood of the library
vector location when a = 32, but this is not the case when
a = 8. Thus we see that the minima become more distinct
for large values of a (which, in the free energy analogy, is
inversely proportional to temperature).

EXAMPLE 2 : If all vectors are bipolar (i.e. contain
only +1 components) and the noise is independent flip
(Bernoulli) noise with probability p < 1/2, then, under
the assumption that fis bipolar,

P(G\f) = p5(1 - p)lhi (2)
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where k; is the Hamming distance between § and f. Equa-
tion (2) can be written as

ki
PG\ = (1-p)* (%) = (1 p)"expl-kit] (3)

l):ln(l—p>.
p

and || §— f; ||2= 4k;. Equation (3) can then be written as

P@G\f) = (1 —p)rexpl-all§— fi |

where

and let @ = b/4. It follows that the energy function has
the same form as (1)

)

N

N -
F(@)=—yIn [} Qiexp{-allg- £} +C  (

i=1

3 Derivation of Operation

Searching for the maximum of P(g) is equivalent to searching
for the minimum of F(g). The gradient descent method is a
popularly used search technique and can be written as

dn+1) = §(n) = BV.F(9) (5)
where V,F(§) is gradient of F(g). If initialization of the search
is close to minimum, say fi, then we expect that §(oo) = fi.
3.1 Continuous Level Library Vector

In Example 1, the gradient is
N o "
> Qid— fiexp(=all G- fi |I*)

_lgaiﬂ -
L Qiexp(=a | g fi |Y)

VeF'(§)

a

S Qifexp(=al| 711 )
27— 25 -
El Qi exp(—a || 5‘ f:' ||2)

i

Equation (5) is
G(n+1) = g(n) - BY,F(J)
S Qifiexp(—al| 5~ Fi )
= (1-20)(n) + 2% -
X, Qeexp(—a | g = fi %)

Thus, if || f; || is the same for all library vectors and 8 = 1/2,
then

Q. fi exp[2aci(n)]

M=

i=|*

Gn+1)=
Q; expl2aai(n)]

where o;(n) = §7f: is the correlation of § with fi.

3.2 Bipolar Library Vector

For the bipolar library with equal priori probability, a sufficiently
large value of a and corresponding value of 3, assures that the
gradient descent method converges in one step, if, after the iter-
ation, we project onto the nearest bipolar vector. For the more

general case where the nonlinearity is not sufficiently strong. we
calculate from (4).

g: Qlf: exp(2aa;)
VeF(§) = e §~ S——
¥ Q:exp(2aw)

1=1

where o; = f:Tgi If we choose the gain

1
f=—
vya
then the recurrent relation will be
N .
E Q: fiexp[2aai(n))
gn+1) = 5———— (6)

N
i§1 Q; exp[2ac;(n)]

Generally, g(n + 1) here is not bipolar, so we project it onto the
nearest bipolar vector by the sign(-} operation

_]ZV: ng:- exp[2aq,{n)]
g(n+1) =sign ’:;{_—— (7)
El Q; exp[2ac;(n)]
The block diagram of this operation is shown in Figure 2, and
this operation is the same as the exponential function at the
correlation domain in iterative matched filter [5, 6].

3.3 On Step Convergence for Bipolar Library

Consider the case where the priori probability, @i, is the same for
all library vectors. One step convergence can then be assured for
theiterationin (7). Specifically,if a > In(N—1)/2, the operation
in (7) converges to one of the library vector in one step [5, 6].
This condition is the same as requiring that p < 1/N. Under
this condition, we establish the following

Lemmal [fa > In(N = 1)/2, then F(§) > F(f}) for § # f;
foralli=1,2,--- N.

PROOF :

Let i = h(fi, fi) and di = h(§, f) where h(Z,7) is the
Hamming distance between Z and 7. Let

. N N
Afin§) = Y emtoon = Y et (®)
k=1 k=1

Because h(ﬁ,ﬁ) < h(f:ﬁ) + h(ﬁc,.‘i)»

e—4ac‘k > e—4ad, ) e—amdk

Equation (8) then becomes

N N
A(f:,_(_]') > 14 Z [e—4ad, _e—qadk] _ e~tadi Ze—mdk

ki ki
N N

- 1_ Ze—mdk _emdedi | _ Ze—4adk
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[1 - emted] [1 _ i e-mk}

k#1

If @ > In(N —1)/2, then, for n > 1

e4an S

N -1
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This leads us to conclude that A(f;,§) > 0 and, as a conse-
quence, F(g§) > F(f).

Q.E.D.

The above lemma establishes that the free energy has local
minima at all library vector locations. One step convergence
ueing (7) attains this local minimum without iteration.

4 Conclusion

In this paper, we found the most probable solution for correla-
tion based associative memories using an energy function equal
to the logarithm of the probability. For bipolar library vectors,
the associative memory with an exponential nonlinearity in cor-
relation domain minimizes the energy which is proportional to
In[P(f)]. Also, we showed that one step convergence to the de-
sired local minimum can occur for a bipolar library with equal
priori probabilities for sufficiently strong nonlinearity.
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Figure 1 : The energy in the Gaussian noise for {a) a = 8 and
(b) @ = 32. The library vectors (scalars in this example) are —1,
0, 0.5, and 1.
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Figure 2 : Block diagram of a matched filter with a nonlinearity
in the correlation domain. Z(z) = e**.
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