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Abstract. We propose an associative memory based on minimization of a free-energy function determined by 
the library vectors to be stored. When the library vectors are bipolar, the energy function contains minima at the 
library vector location. The minima can be sought by search techniques such as gradient descent. Significantly, 
if the correlation nonlinearity is chosen to be sufficiently strong, then convergence occurs in a single step. We 
demonstrate how the algorithm can be implemented using MOS circuitry. 

1. Introduction 

Associative memory architectures have been presented 
that are based on artificial neural network structures 
[I, 21 and iterative matched filters. Indeed, in certain 
configurations, the resulting procedures produce 
numerically identical results [3]. 

Similar associative memories based on nonlinear 
operations in the correlation domain have also been pro- 
posed [4-91. Such memories have shift-invariant 
characteristics [6] and high capacity [lo, 111. If the 
correlation nonlinearity is stronger than z(x) = IVt2 
and the library vectors are bipolar (i.e., contain only 
fl's), then the iterations normally required in such 
memories need not be used. Convergence, rather, oc- 
curs in one step [7-91. 

In this paper, we examine the correlation based 
associative memory and show its relation to minimiza- 
tion of a free-energy function placed on the training 
data. Using gradient descent, the search is shown to 
converge in a single step for the case of a bipolar library. 

A circuit implementation of the resulting associative 
memory is proposed. The correlation operation is per- 
formed using metal oxide semiconductor (MOS) 
capacitors and MOS switches. The subthreshold region 
of MOS is used to implement the exponential 
nonlinearity. 

2. Probability of Occurrence and Free Energy 

Let (f, , f2, . . . , fN} be library vectors of dimension 
L that we wish to store in the associative memory. Let 
f be a vector of like dimension. Then, the probability 
P(f)  is 

where f is an arbitrary vector and Qi is the priori 
probability of the library vector fi. We define an 
energy function F(f) as 

where y is a constant. Note that F(*) is analogous in 
concept to free energy [12]. Our associative memory 
paradigm is as follows. Let g denote a distorted ver- 
sion of one of the library vectors. With an initializa- 
tion of g, we search the landscape of F for a minimum. 
We will show that the minima occur at library vectors 
location in many important cases. 

Example 2.1. If P(g\fi) has an identically indepen- 
dent Gaussian distribution, then 

Let y = 202 and a = lly. Then 

where C is a constant. An example of the energy land- 
scape is illustrated in figure 1 for a = 8 and a = 32 
with C = 0. The library vectors are L = 1 dimensional 
and are { -1, 0,O. 5, 1) for both values of a. The energy 
function reaches local minima at the neighborhood of 
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Fig. 1. The energy in the Gaussian noise for (a) a = 8 and (b) a = 32. The library vectors (scalars in this example) are -1, 0, 0.5, and 1. 

the library vector location when a = 32, but this is and )I g - f 112 = 4ki. Equation (3) can then be writ- 
not the case when a = 8. Thus we see that the minima ten as 
become more distinct for large values of a (which, in 
the free-energy analogy, is inversely proportional to P(g\fi) = (1 - P ) ~  exp [-a II g - fi I1 2l 
temperature). and let a = bl4 .  It follows that the energy function has 

the same form as (1) 
Example 2.2. If all vectors are bipolar (i.e., contain 
only +1 components) and the noise is independent flip 
(Bernoulli) noise with probabilityp < l/2, then, under F(g) = -7 lr. 1 Qi exp{-a 11 g - fi 112} 1 + C 
the assumption that f is bipolar, L i=l 1 

(4) 
P(g\fi) = pki(l - p)L-ki (2) 

3. Derivation of Operation 
where ki is the Hamming distance between g and fi. 
Equation (2) can be written as Searching for the maximum of P(g) is equivalent to 

searching for the minimum of F(g). The gradient de- 

P(g\fi) = (I  - ) [ = ( 1  - p)L exp[- k,b] scent method is a popularly used search technique and 
can be written as 

where 
where VF(g)is gradient of F(g). If initialization of the 
search is close to minimum, say f l ,  then we expect 
that g(oo) = f ,  . 
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1 3.1. Continuous Level Library Vector 

/ Example 2.1, the gradient is 

I i = l  

I 
N 

C Qifi exp(-a I I  g - fi (I2) 

I - - 2g - 2'=' N 

Equation (5) is 
I 

= (1 - 2P)g(n) 
N 

C Qifi e x ~ ( - a  II g - fi 112) 

i = l  

Thus, if )I fi 11 is the same for all library vectors and 
$ = 112, then 

N 

I C Qifi exp[2aai(n)I , g(n + 1) = 
N 

C Qi exp(2aai(n)l 
i = l  

where ai(n) = gT fi is the correlation of g with fi. 

I 3.2. ~ i ~ o l a r  Library Vector 

i For the bipolar library with equal priori probability, 
a sufficiently large value of a and corresponding value 
of P, assures that the gradient descent method converges 
in one step, if, after the iteration, we project onto the 
nearest bipolar vector. For the more general case where 
the nonlinearity is not sufficiently strong, we calculate 
lfrom (4). 

N C 2 Qifi exp(2aai) 

Iwhere oli = fTg. If we choose the gain 

then the recurrent relation will be (6). Generally, 
g(n + 1) here is not bipolar, so we project it onto the 
nearest bipolar vector by the sign(*) operation 

C Qifi exp[2aai(n)l 
g(n + 1) = sign I 
The block diagram of this operation is shown in figure 
2, and this operation is the same as the exponential 
function at the correlation domain in iterative matched 
filter [7, 81. 

Fig. 2. Block diagram of a matched filter with a nonlinearity in the 
correlation domain. A(x) = e2ax, 

3.3. One Step Convergence for Bipolar Library 

Consider the case where the priori probability, Qi, is 
the same for all library vectors. One step convergence 
can then be assured for the iteration in (7). Specific- 
ally, if a > ln(N - 1)/2, the operation in (7) converges 
to one of the library vector in one step [7, 8). This con- 
dition is the same as requiring that p < 1IN. Under 
this condition, we establish the following 

Lemma 3.1. Let g and fi be bipolar vectors. If a > 
ln(N - 1)/2, then F(g) > F(fi) for g # fi for all i = 
1, 2, . . ., N .  

ProoJ: Let cik = h(fi, fk) and dk = h(g, fk) where 
h(x, y) is the Hamming distance between x and y. Let 
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Because h(fi, fk) 5 h(fi, g) + h(fk, g), 

Equation (8) then becomes 

N N 

A(fi, g) 2 1 + [e-wie-Qdk] - e-4a4 - e-4adk 

k f i  k # i 

If a > ln(N - 1)/2, then, for n 2 1 

This leads to conclude that A(fi, g) 2 0 and, as a con- 
sequence, F(g) > F(fi). 

The above lemma establishes that the free energy 
has local minima at all library vector locations. One 
step convergence using (7) attains this local minimum 
without iteration. 

4. Circuit Implementation of the Operation 

The operation in equation (7) consists of two parts. The 
first is calculation of the correlation between the input 
and each library element. The second is generation of 
the nonlinearity operation and sign(*) function opera- 
tions. The implementation of correlation can be 
achieved a matrix vector multiplier and that of the 
nonlinear function by a cascade connection of the multi- 
ple differential amplifier and a high-gain amplifier. 

We give an example of the implementation using 
CMOS technology. The bipolar matrix vector multiplier 
can be implemented by MOS switches and MOS 
capacitors. Figure 3 is an example for f = [I, -1, -1, 
llT. The connection between capacitors and the 
voltage sources depend on the values of elements of f. 
Also, the switches are operated by the values of input 
g. The operation is as follows 

1. Charging mode: 
a. The switch S5 is connected to VDD. 

b , = ?  Ss V o u t  i 

Fig. 3. An example of MOS implementation of correlation with a 
bipolar library vector. 1 

b. The switch S6 is connected to -VDD. 
c. The switches S1, S2, S3, and S4 are connected to 

the left side if the input is 1 and to the right side 
otherwise. I 

1 

2. Distributing mode: 
a. The switches S1, S2, S3, and S4 are connected to 

the right side. 
b. The switch S5 is closed to the lower terminal. 
c. The switch S6 is closed to V,,,. I 

I 
We will explain the operation of the circuit for g = 
[I, 1, 1, -llT. After the charging mode, the voltages 
of the capacitors are VDD, -VDD, -VDD, -VDD. In the 
distributing mode, because the switch 5 is connected 
to lower terminal, all capacitors are connected parallel. 
The voltage across each capacitor is the same and the I 
value is -2VDD/4. The value -2 is the same as fTg, 
so this circuit gives the correlation operation. 

Figure 4 shows the basic schematic circuit for 
nonlinearity implementation. If all of the MOS tran- 
sistors are operated in the subthreshold region, then 
the current voltage relationship of the NMOS follows 
as [13-151. I 

If KV, - Vd is negative, then we can ignore the last 
term of the above equation. In figure 4, 

P 

I, = C I& exp 
i= 1 

r 

= C I;,, exp 
j= 1 

i 
i 

Using the Kirchhoffs law, I, = Il + 12. The current 
mirror action by TI and T2 leads to I,,, = Il - Iz 
Then 
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T1?TC; T2 I out  

Fig. 4. A CMOS implementation of correlation with a bipolar library 
vector. 

Iout = I0 

1 where 

u = X 4  
kT 

Here, the Id;'s are the function of the WIL value of 
gate. 

Figure 5 is an example of the circuit implementa- 
tion whose library vectors are 

fl = [ I ,  -1, 1, -1, - l lT  

f2 = [I ,  -1, -1, -1, l lT  

f3 = [I ,  -1, 1,  1, -llT 

In this figure, the circuit has three stages. The first is 
the correlation operation using MOS switches and 
capacitors. The second is the nonlinear operation using 
the CMOS which is operated exponentially in the sub- 
threshold region. The third is a saturated high gain 
amplifier, i.e., the comparator or buffer with switches. 

5. Conclusion 

In this paper, we found the most probable solution for 
correlation based associative memories using an eneqy 
function equal to the logarithm of the probability. For 

T fig. 5. The schematic of the CMOS implementation for the library [ l ,  -1, 1 ,  -1, -11 , [I, -1, :1, -!, 1lT, and [I, -1, 1, 1, -1lT The 
switches in the correlation oprator operate by gl  (n) ,  g2(n), g3(n) ,  g4(n), and g5(n).  The outputs are hl(n) ,  h2(n),  63(n) ,  h4(n),  and &(n) where 
hi(n) = g,(n + 1). The switches S are closed in the distributing mode. 
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bipolar library vectors, the associative memory with 
an exponential nonlinearity in correlation domain 
minimizes the energy which is proportional to ln[P(f)]. 
Also, we showed that one-step convergence to the 
desired local minimum can occur for a bipolar library 
with equal priori probabilities for sufficiently strong 
nonlinearity. We demonstrated that this associative 
memory can be implemented using the CMOS 
technology. 
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