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1 Introduction 

Artificial neural networks have been studied lor many years with the 

hope of achieving human-like performance in solving certain problems 

in speech and image processing. There has been a recent resurgence 

in the field of neural networks due to the introduction of new network 

topologies, training algorithms and VLSI implementation techniques. 

The potential benefits of neural networks such as parallel distributed 

processing, high computation rates, fault tolerance, and adaptive capa- 

bility have lured researchers from other fields srrch as controls, robotics, 

energy systems to seek neural network solutions to some of their more 

difficult problems. 

An artificial neural network can be defined as a highly connected ar- 

ray of elementary processors or neurons. Algorithms are then crafted 

about this architecture. Neurons are linked with interconnects analo- 

gous to the biological synapse. This highly connected array of elemen- 

tary processon defines the system hardware. Specification of weights 

to perform a desired operation can be viewed as the net's software. 
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Commonly used neural networks, such as the layered perceptron, are 

said to be trained rather than programmed in the conventional sense. 

Computationally, neural networks have the advantageof massive paral- 

lelism and are not restricted in speed by the von Neumann bottle neck 

characteristic of more conventional computers. Neural networks are 

characterized by high parallelism and, in many cases, are significantly 

fault tolerant. 

At this writing, the layered perceptron is receiving the mast attention 

as a viable candidate for application to power systems. The layered 

perceptron is taught by example, as opposed, for example, to an expert 

system, which is taught by rules. The preponderance of data typically 

available from the power industry, coupled with the ability of the lay- 

ered perceptron to learn significantly nonlinear relationships, reveals 

it as a viable candidate in the available plethora of solutions for solv- 

ing significant power systems engineering problems. A layered neural 

network is illustrated in Figure 1. 

Hopfield neural networks have also been proposed for application to 

combinatorial search problems in the power industry. In Hopfield nets, 

each neuron is connected to every other neuron, as is shown in Figure 2. 

In this Chapter, we provide an overview of contemporary research 

aimed at application of the artificial neural network to electric power 

engineering. 

2 A Brief History of Neural Networks 

Serious mathematical treatment of neural networks is usually attributed 

first to McCulloch and Pilts 1351 and, later, Hebb [21]. A flurry of 

activity in neural network research in engineering circles burned in the 

fifties and early sixties [45, 52). The end of this phase was marked by 

the publication of the negative critique Perceptrons 138). The spark 



interconnects 

Figure 1: A layered neural network. As a layered perceptron, data is 

presented at the input and the output. The weights of the interconnects 

between the neurons are adjusted as a function of the data thereby 

'training' the neural network the proper response. 

Figure 2: A homogeneously connected artificial neural network. Such 

architectures are used for Hopfield type artificial neural networks. The 

state ( i .e.  the number associated with) each neuron is determined by, 

the state and interconnect weights of the other neurons. The state 

of one neuron may change, thereby changing another, etc., until the 

network reaches a steady state. 



the exhuberant promotion of neural networks by Hopfield 122, 231 and 

some powerful nodinear extensions of previous work 1331. 

We cannot, in this brief chapter, do  justice to  the recent rich history of 

artificial neural networks. Besides, it has already been done admirably 

elsewhere. The reader is referred specifically to the anthology of An- 

derson and Rosenfeld 161 where the development of artificial neural net- 

works is presented as a delightful mix of commentary and classic paper 

reprints. Extensive bibliographies of the neural network literature are 

also available [SO, 261. 

3 Neural Network Paradigms 

There is often a comparison made between artificial neural networks 

and their biological counterpart. Indeed, the reference to  our circuitry 

as 'neural networks' is due to the pioneering of the field by scientists 

interested in the biological neuron 135, 211. The undisputed success of 

biological neural networks remains highly motivating to those involved 

in artificial neural network research, not unlike the motivation of the 

flying bird was to  the Wright brothers. 

There is some shared terminology between the artificial and biologi- 

cal neural network. The links between neurons can be referred to as 

synapses or, more simply, interconnects. The neurons have also been 

referred to  as nodesor, more recently, neurudes. Glossaries of terminol- 

ogy can be found in Eberhart and Dobbins [IS] and Dayhoff 113). 

3.1 Lateral Inhibition 

Lateml inhibition describes the competition between a number of neu- 

rons for dominance. Roughly, as in capatalism, each neuron tries to 

turn off the other neurons while reinforcing itself. When the contest 

is over, the strongest neuron or neurons win with a numerically larger 
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Figure 3: Illustration of a winner-take-all net. Each neuron is trying 

to turn off the other neurons while reinforcing itself. 

state than the loosing neurons. 

Specifically, consider the linear array of neurons illustrated in Figure 3. 

The interconnect weights between all of the neurons is -w and the 

autoconnection of a neuron to itself will be denoted as a. We will 
assume both w and a are positive. Typically, a is much larger than w. 

Let the state of the ith neuron at time n be ui[n]. Tbe input into the 

ith neuron at time n + 1 is 

si[n + 11 = aui[nl - c w u , [ n ]  
J#; 

(1 )  

The new state of the neuron is then 

where 
0 ; 2 < 0  

2 ; o  SI 5 1 

1 ; 2 > 1  

An inspection of the above equations reveals the dynamics of the 

competitive nature of this simple neural network as described in the 

first paragraph of this section. As an example, the reader is invited to 

try a simple 3 neuron example with w = 0.1 and a = 1.1. For initial 

states, [0.9,0.5,0.1], convergence occurs in less than ten iterations of 
each neuron. 

Neural networks of this type can either be implemented in discrete 

or continuous time. For continuous time implementation, shunt 
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capacitance in the weights results in a finite response time between two 

neurons. 

For obvious reasons, the neural networks described in this section are 

referred to as toinner take aN nets. They have also been referred to as 

maznets (301 and king of the hill 1361 neural networks. Note that we 

can view the operation of finding a maximum a simple search problem. 

3.2 Combinatorial Search 

The principle of lateral inhibition can be used in artificial neural net- 

work architectures to solve certain combinatorial search problems [36, 

23, 46, 471. 

3.2.1 The Rooks Problem 

A simple combinatorial search problem is the rooks problem. On an 

N x N chess board, we wish to place as many rooks as possible so that 

no rook can capture another. The maximum number of rooks that can 

be thus placed is N. One clear solution is to place N rooks on the 

diagonals. Although the rooks problem is simple, its discussion allows 

easy conceptualization to the more complicated Queens and Traveling 

Salesman problems 1361. 

To solve the Rooks problem, we form an N x N array of neurons. Each 

row of N neurons will be connected in a winner-take-all configuration. 

Also, each column is connected in a winner-take-all configuration. Our 

aim is to require the N x N net to settle onto a solution that has, in 

steady state, only one neuron at  a high state for each row and each 

column. The result is clearly a solution to the Rooks problem. The 

initial states of the N2 neurons can be chosen randomly. 



The Queens problem is analogous to the Rooks problem, except that 

queens, rather than rooks, are used. We must now provide, in addition, 

winner-take-all neural networks along each diagonal. If two neurons 

are connected by weights from two different winner-take-all nets, the 

composite weight is just the sum of the components. 

We illustrate the workingaf the Queens neural network by borrowing 

results from McDonnell et.al. 1361. After random initialization, the 

network responded with 

where denotes a neural state close to  one, o denotes an intermediate 

value and . denotes a state close to zero. Additional iterations gave 

Note that the third column has two neurons with states close to one. 

Interestingly, so does the third row. Since two neurons are trying to 

turn off the neuron in position (3,3), the final steady state result turns 
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This is an acceptable solution. For N > 3, a chess board can support, 

a t  most, N queens. 

3.2.3 The Traveling Salesman Prob lem 

The Traveling Salesman problem [23) can also be viewed as an ex- 

tension of the Rooks problem. We have, say, N cities denoted by 

A,B,C,D,E .... The physical separation between cities C and A  is 

dAC = dCA. We wish to arrange these cities in such a manner that a 

global round trip will be of minimum distance. 

We will solve the Traveling Salesman problem with the use of an N x N 

neural network. If, in steady state, an N = 8 neural network reads 

1 . . . . . . . . 
2 . . . . .  8 . .  

3 . .  . . . . . . 
4 . . . . . . . . 
5 . . . .  . . . .  
6 . .  . . . . . 
7 . . . . . . . . 
8 .  . . . . . . 

A B C D E F H I  

we would visit city C first, city F second, city I  third, etc. 
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How do we set up such a net? Note, first of all, that the solution must 

satisfy the rooks problem. In other words, only one neuron can be on in 

each row and in each column. Thus, we start our net by using a Rooks 

problem neural network. In addition, we would like to  discourage cities 

that are far apart from being listed together. This is accomplished by 

lateral inhibition of adjacent cities proportional to their separation. A 

large separation thus results in a large inhibition. 

Consider, for example, neuron (C4) which means that city C is  fourth 

to  be visited. We will connect this neuron to all neurons correspond- 

ing to  a visit in the number three and five positions. The connection 

to neuron (F5), for example, would be with a weight proportional to 

- d ~ p .  The connection to  neuron (A3) would be with a weight propor- 

tional to -dAc,  etc. There is also a third set of weights to fine tune 

the number of neurons that are on in steady state. If two neurons are 

connected by more than one weight, the composite weight is simply the 

sum of the composite weights. 

Randomly initialized, for the proper choice of weights, the neural net- 

work ideally approaches a solution of the traveling salesman problem. 

3.2.4 Convergence proof 

We will here offer a convergence proof for Hopfield type networks of the 

binary type when the neural nonlinearity is a unit step function. If the 

sum or the inputs to a neuron is positive, we set the state to  one. We 

will also disallow autoconnects. If the sum is negative, the state is set 

to zero. Thus 

uj [n  + 11 = p C Tjuj [n]  
C + i  1 

where T j  = Ti; is the interconnect weight between neurons i and j and 

p( . )  denotes the unit step function. We define the energy of the neural 
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network of N neurons a t  time n by 

where, due to  no autoconnects, we recognize that Ti; = 0. At time 

n + 1, one neuron, say the kth, changes state. The overall energy of 

t,he net can also change. Denote this change by 

where we have recognized that, for i f k, we have the relation u;[n] = 
u;[n + 11 and 

Auk[n] = uk[n + 11 - uk[n] 

Given that  neuron k has changed state, A ~ k [ n ]  can take on values 

of only -1 and 1. However, i f  Auk = 1, then this resulted from 

Auk[n] Eitk T;kui[n] > 0 and AE[n]  in (6)  is negative. Similarly, i f  

Auh = -1, then this resulted from A u k [ n ] E i f k  Tihui[n] < 0 and AE[n]  

in ( 6 )  is again negative. Thus, il the input sum to a neuron is other 

than zero, no matter what the state change, we have 

Thus, each change in state reduces the energy metric. The energy in 

(5) is only defined over the approximately N2 possible combinations of 

N states of f 1. It thus has a lower bound. Under our assumptions, the 

neural network must therefore cease decreasing energy a t  some point. 

Note that, without procedures such as simulated annealing[18] to assure 

otherwise, the iteration may stop a t  other than a global minimum. 

Design of Hopfield type nets rests on one's ability to craft the intercon- 

nects so that the minimum of the resulting net's energy corresponds 

to  the desired solution. Hopfield nets have been applied to a num- 

ber of problems other than combinatorial search. For a more complete 

treatment, see Dayhoff [I31 or Wasserman 1491. 



The fundamental Hopfield neural network can be used for applications 

other than combinatorial search 1471, including associative memory [23] 

and converters 1461. There exist, however, numerous problems with 

Hopfield neural networks. Their capacity has shown to increase less 

than linearly with the number of neurons 12, 34). The  number of false 

stable states has been shown to increase greater than linearly with 

the number of neurons. ?his, despite the fact the required number of 

interconnects grows as the square of the number of neurons. Al.so, the 

time taken to progmm the neural network to generate the desired result 

can be quite significant 1471. In addition, for different asynchronous 

operations, Hopfield neural networks convergence to different solutions 

[ll ,  391. 

The authors believe that the generic Hopfield neural network will sur- 

vive primarily as a footnote in the development of neural networks. 

Nevertheless, there exists some other quite promising biologically mo- 

tivated computational procedures for performing combinatorial search 

problems [44). These proposed procedures must be tested against other 

cutting edge and more conventional methods of solving the combinato- 

rial search problems. There are also some interesting variations on the 

Flopfield neural network that are worth noting. Here is a partial list. 

T h e  Bol tzmann  Machine.  A variation of the Hopfield neural net- 

work which avoids false minima is the Boltnnann machine [I]. Here, 

with a given probability, the state of a neuron will be switched from 

that value dictated by the sum of its inputs. As time increases, this 

probability decreases'. Stochastic processes play a significant role in 

~nhanced performance of many artificial neural networks 118, 31, 121. 

IThe name Boltzmann machine arises from the uae of the Dotzmann probability 
jintrihution. 



projection neural network (APNN) 1321 is a viable alternative to the 

Hopfield associative memory. If properly initialized, it has no false 

minima, will converge properly independent of asynchronous opera- 

tion [39, 401, has a capacity that is proportional to the number of 

(excited) neurons and can operate with continuous instead of binary 

neural states. 

T h e  Bidirectional Associative Memory, The bidirectional asso- 

ciative memory (BAM) is a generalization of the Hopfield neural net- 

work 1.291 and suffers many of the same f~~ndamental  problems. 

3.3 The Layered Perceptron 

Currently, the artificial neural network most commonly used is the lay- 

ered perceptron. A layered perceptron with one hidden layer is shown 

in Figure 1. Although convention varies, the interconnects from the 

input to  the hidden neurons along with the hidden neurons constitute 

a layer. The  hidden to  output interconnects with the output neurons 

constitute a second layer. Thus, the perceptron in Figure 1 has two 

layers. In our treatment, we do not consider the input nodes to be 

neurons. 

Layered perceptrons are trained by numerical data, in contrast, for 

example, to expert systems that are trained by rules. The layered 

perceptron operates in two modes: training and test. In the training 

mode, a set of representative !raining data is used to adjust the weights 

of the neural interconnects. Once these weights have been determined, 

the neural network is said to be trained. In the test mode, the trained 

neural network is activated by test data. The response of the layered 

perceptron should then be representative of the data  by which it was 

trained. Typically, the test and training data are different sets. As we 

will discuss in the section on learning, training a machine to respond 
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properly to the same data on which it is trained is not learning, hut is, 

rather, memorization. 

A layered perceptron can be used as either a classifier or a regression 

machine. As a classifier, the layered perceptron categorizes the input 

into two or more categories. In power system security assessment, for 
example, the trained perceptron will categorize the power either as se- 

cure or insecure in accordance to the current system states. For regres- 

sion applications, the output or outputs of the layered perceptron take 

on continuous values. Power load forecating is an example of a regres- 

sion application. Here, the output of the neural network corresponds 

to  the forecasted load. 

A layered perceptron with L layers if shown Figure 4. We assume there 

are I inputs and Nt neurons in the tth hidden laye. The interconnects 

from the j t h  neuron in thee-1st layer to the ith neuron in the Pth layer 

will be denoted by wij(P). The state associated with the i th neuron in 

the eth layer is denoted by si(e). The output of the layered perceptron 

is given by the states {s;(L)I1 5 i 5 NL) where the number of output 

neurons is NL. For the layered perceptron in Figure 1, L = 2, I = 2, 
NL = 3 and Nl = 9. 

The sum of the inputs to the i th neuron in the t th  layer is 

NI-I 
.,(el = c wij(e)sj(e - 1) 

,"I 
(8) 

The state of a neuron is related to this value by the nonlinearity 

  here J(.) is referred to as a sigmoidor a squashing Junction. The most 

:ommonly used nonlinearity is 

I 
J ( z )  = (10) 

rhis form has the useful property that 



372 M .  A. EL-SHARKAWI. R. I. MARKS II .  A N D  5. WERASOORIYA 

Figure 4: A layered perceptmn with L layers. 

The interconnects to the eth layer can be written in matrix form as 

W(C). Define the sigmoid vector operator, SN,  such that, for any vector 

u' of dimension N, the operation SNu' results in a vector dimension N 

such that the ith element in the new vector is equal to the ith element 

in ;subjected to the sigmoid nonlinearity in (10). In other words, if Cis 

the vector of the sum of inputs into a layer of neurons, then SNG is the 

vector of the resulting vector states. We can then represent the input- 

output relationship of the layered perceptmn with L hidden layers by 
the equation 

where :is the input vector and Cis the corresponding response and the 

neural network operator is 



There are commonly used variations on the layered perceptron archi- 

tecture illustrated in Figure 4. The most common are 

1. Interconnection between nonadjacent layers. 

2. Feedback interconnects between layen (recurrent neural nct- 

works). . 
3.4 Training 

The layered perceptron is trained with training data. For the load 

forecasting problem, for example, input training data might consist of 

a number of temperatures and the output is the forecasted load. Data 

from the previous year, for example, can be used. Once trained, the 

layered perceptron, presented with the temperatures of the current day 

will provide, as output, a forecast of the load for the next day. 

Assume there are M training data  vector pairs. Let an input of 5= P 

correspond to  a desired target response of 5 = ?". For a given set of 

weights, let the actual response of the layered perceptron be 

Our goal in training is to choose the interconnect weights, and thus the 

neural net operator, so that the response vectors. {rmJ1 5 m < M) 
are, in some sense, close to the corresponding target vectors, {?"(I 5 
m 5 M). For the mth training data pair, the measure most commonly 

used is the mean square error 

Em = ill?" - ?"I(' 
= ~z,(t? - r,")' (15) 

where the norm of a vector is defined by l(i;l12 = gi7. The total error 

can be written as 



For a given set of training data, { ~ , ? " l l  < m < M), this error is 

totally specified by the weights in the set of matrices {W(e)ll 5 t' < L). 
Our goal in training is to find the values for these weights that minimize 

the error in (16). 

The task of finding the minimum of an error (or cost) function is a 

familiar topic in optimization theory. Envision a weight space with 

coordinates wij(P). The error function E is a positive function in this 

space. We wish to find that point in space where E is minimum. There 

exists many approaches for finding such a minimum. The method most 

often used in the layered perceptron is a variation of the steepest descent 

method, called error back propagation 1331. Other methods, such as 

conjugate gradient descent and random training, have also been used 

to train the layered perceptron. 

3.4.1 Steepest Descent  

The training procedure for layered perceptrons called error back prop- 

agation is a steepest descent method for finding the minimum of a 

function. At the current point in the weight space, we compute the 

steepest slope and take a step in that direction thereby changing our 

location in weight space. The process is repeated until an acceptably 

low error is obtained. For a weight wij(e), steepest descent can be 

written as 

where r) is the step size. 

3.4.2 Error Back Propagat ion.  

Finding the response of a layered perceptron to a stimulus, as in (14) 

can, of course, be totally performed within the neural network architec- 

ture. Such an  ability is a strong attributeof the neural network in terms 
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of parallel implementation. Error back propagation training of a lay- 

ered perceptron has the same advantage. I t  can be performed totally 

within the neural network architecture. Many other search methods 

applied to the layered perceptron do not have this important property. 

In its fundamental form, error back propagation is an implementation of 

steepest descent search defined in (17). A steepest descent adjustment 

to the weights is first made for the first training data pair. A second 

step is made in response to the second training data pair, etc. In each 

step, all of the weights in the network are adjusted. When all of the 

training data has been used, the cycle is again repeated starting from 

the first training data pair. The process is repeated until an acceptably 

low error results. 

Error back propagation is mathematically based on the chain rule of 

partial derivatives from which we can write the derivative term in (17) 

as 
a p  a a ~  asi(e) aoi(e) - = - -  

a~~,(!) a~,(!) au,(e) a~.~,(!) (18) 
We will now examine each of the three terms in this expansion. First, 

define 

We will say more about this term later. Since 

we can use (11) to  write the second term in (18) as 

8.9; (P) -- 
agi(e) 

- si(4 (1 - si(P)) 

Thirdly, from (8), we conclude that 

Thus, using Equations (19), (20) and (21), we can rewrite (18) as 
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Our remaining job is to interpret 6 , (0  in (19) in order to interpret (22). 

The result will explain the use of the phrase error back pmpagation. 

First, for C = L, we recognize that s;(L) = rr  and use (15) to write 

BE"' 
J:(L) = 

- BE" - "r 
= r" - t" (23) 

This value, of course, is simply the difference between the actual and 

target response observed a t  the output of the neural network. For 

1 < e < L - 1 , w e h a v e  

As before, each of these three terms is evaluated separately. From (19), 

we recognize that the first term in (24) is 

The second term in (24) is 

The third term is 
au,(C + 1) = tu;,(P + 1) 

Substituting (25), (26) and (27) into (24) gives the following desired 

result. 

The 6; values on on the Cth level can thus be determined by the 6; 

values on the P + 1st level. 



mth input, gives a response of rP". This response is compared to  

the target response of ?" to determine how the weights in the neural 

network might be adjusted to give a better response. Each weight in 

the neural network is updated using the steepest descent equation in 

(17). The required error gradient for each weight is given in (22). The 

weight update, from this equation, is a function only of the states of the 

two neurons which the weight connects and 6;(P). At the output layer, 

as is seen from (23), 6i(L)  is simply the error between the actual and 

desired output. At other layers, we see from (28). the values of 6;(P) 

at other layers can be calculated from the states, interconnect values 

and the 6;'s from the previous layers. Thus, 6;(L - 1) can be evaluated 

from 6i(L) ,  the values of 6 , (L  - 2) can be determined by 6;(L - 1) and 

onward, all the way to  the input. Thus, the error a t  the output is 

back propagated in order to adjust the weights using steepest descent2. 

The m + 1st input data pair is applied to the network and the process 

repeated. 

There are numerous variations to  the basic error back propagation 

training algorithm. In order to improve convergence, for example, a 

momentum term can be and typically is included in the weight update 

procedure. Here, in addition to the change in weight specified by steep- 

est descent, a fraction of the previous weight change is added. The use 

of momentum allows training to  plow through some local minima. 

3.4.3 Problems wi th  back  error propagat ion 

Although back error propagation is the most widely used method to 

train multi-layer perceptmns, it is not the only nor necessarily the best 

approach. Indeed, most any algorithm that searches for a minimum can 

be used to train a layered perceptron. Back propagation is attractive 

because it can be performed within the neural network structure. The 

'This training procedure is also referred Lo M the gcncmlized delta mle.  



algorithm. 

1. Training t ime. Thousands of iterations can be required 

to train a layered perceptron on even a simple problem. 

2. Weight  accuracy. Back error propagation requires high 

computational precision. This is tied to the long training 

time in Item 1. Each iteration can result in a change in bits 

of only low significance. As such, training cannot be done 

on high speed, but low accuracy, analog electronic or optical 

devices. Once trained, however, a layered perceptron can 

be tested using low analog percision. 

3. Layering. The required computational precision increases 

with the number or layers. 

4. Scaling. The scaling problem can be illustrated through 

the curse of dimensionality. Specifically, for a problem of 

similar partition complexity, the required cardinality of the 

training data set grows exponentially with respect to  the 

number of input nodes. Visualize, for example, a binary 

classifier with two inputs and a single output. In order to 

classify points within a unit square to a certain accuracy, 

assume that we require, say, 100 input-output data pairs. 

Increase the number of inputs to three now requires classi- 

fication within a unit cube. For the same precision, we now 

have to train on 10 planes with 100 points for each plane. 

The required number of data pairs increases to about 1000. 

Roughly, if P pairs are required in one dimension, then PN 
pairs are required in N dimensions. We note, however, that 

correlation relationships among the input data can affect 

this argument. Note that this problem is not specific to 

the layered perceptron, but is applicable to  any classifier or 

regression machine trained by example. 
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4 Learning 
The layered perceptran is an example of a classifier or, when the output 

is continaous, a regression machine, which is trained by data. Once 

trained, a good classifier or regression machine will properly respond 

to  test data. For proper performance, the test data and the training 

data  should be different, albeit from the same statistical source. 

There is a difference between training and memorization. A trained 

classifier o r  regression machine can respond with confidence to  a pattern 

which it has not seen before. The ability to properly classify data  which 

has not been seen before is referred to as generalization. Memorization, 

on the other hand, guarantees that, when presented with a specific 

element in the training data set, the classifier will respond in exactly 

the same manner that it was trained. In the case of memorization, 

the response to data  other than training data is not considered in the 

paradigm. 

The ability t o  interpolate among the training data does not necessarily 

imply good generalization. We illustrate with an example from detec- 

tion theory. 

Consider the two solid points in Figure 5. The one on the left is a 

square and the one on the right is a circle. We assume the these are the 

centroids of two two-dimensional Gaussian random variables with the 

same variance. Given some observation point, the minimum probability 

of error solution results simply from determination of whether the point 

lies to the right or the left of the perpendicular bisector between the 

two centroids. 

Consider, then, memorization from the training data shown by the 

hollow squares and circles. Since we require the classifier to properly 

categorize all points, the resulting partition boundary would follow the 

winding dashed line shown. Clearly, this line would become more wind- 

ing with the increase of the data set cardinality. This observation leads 
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us to the conclusion that  some trained classifiers should not generate 

a 7,ro probability of error corresponding to the training data. This, 

rather, is memorization. 

Are there cases where the error corresponding to training data should 

be zero? Yes. This is generally true when their is no noise or ambiguity 

in the data. How then, might we  determine whether the classifier or 

regression machine has learned or memorized? The answer is that a 

properly trained classifier or regression machine should respond with 

the same error to training data as to test data. Note that this is a 

necessary lhough not sufficient condition. If the error frorn the test 

data is much higher than that frorn the training d a t 4  then, chances 

are, the neural system is over determined. In other words, the degrees 

of freedom in the classifier or regression machine is too high. For the 

layered perceptron, this is the number of interconnects which, of course, 

is related to  the number of neurons in the hidden layer [lo]. If the error 

from the test and training data  are similar, we are not guaranteed of 

proper training. Note, for example, that any partition line passing 

through the midpoint between the two centroids in Figure 5 would 

result in a classifier with the same error for training and testing. Only 

the perpendicular bisector gives the unique minimum error solution. 

4.0.4 Classifier performance assessment 

A measure of the goodness of learning for a classifier is the resulting 

probability of error for test data. As explained in the previous section, 

the optimal measure may not be zero. 

Consider, as an  illustration, the two dimensional closed curve in Fig- 

ure 6. The solid line represents the unknown concept. Within the curve 

we wish to  classify the ordered pair as one. Outside, the classification 

is zero. Based on available training data, the classifier tries to  learn the 

classification boundary. The estimate of the classification boundary is 

the representation shown by the dashed curve. If the training data 



memorization 

0 

boundary 

Figure 5: An illustration of the difFerence between learning and mem- 

orization. The solid square and circle denote centroids of two gaus- 

sian random variables with the same variance. The hollow circles and 

squares are corresponding realizations. If the training data is memo- 

rized, the winding broken line will be the classification boundary. O p  

timal detection theory, though, teaches that the vertical perpendicular 

bisector between the two centroids is the optimal partition. It is this 

boundary we wish to 'learn'. 

noise is uncorrupted by uncertainty, we would expect the representa- 

tion boundary to approach the concept boundary as the cardinality of 

the training data set increases. For a finite size training set, the result- 

ing probability of error is equal to the probability of false classification. 

This is equal to the shaded area in Figure 6 (481. 

For a layered perceptron, the classification problem in Figure 6 can be 

evaluated using two inputs wrresponding to the ( t ,y)  wordmates of 

the input, and a single output corresponding which offen its estimate 



concept J 

Figure 6: The concept, shown by the solid line, is to be learned. The 

broken line denotes the learned repnsentation The probability of error 

is equal to the probability a point is chosen is the shaded area. If the 

training data is chosen randomly, then a decrease in the probability of 

error also requires a decrease in the probability of learning something 

new. 

of the proper classification. The output neuron will typically take on 

a continuous value between, say, zero and one. Typically, this value 

would be thresholded at 112. That is, if the value of the output were 

above 112, we would announce a 'one'. A zero would result from an 

output value below one half. The possible errors are the false alarm 

with probability 

a = Prob(1 is announced given that the proper dass is zero] 

and the probability of a false negative 

1 - B = Prob[O is announced given that the proper class is one] 

The quantity B is also sometimes referred to as the detection pmba- 

bility. Generally, as the detection probability increases, so does the 

false alarm probability. In a layered perceptron with a single output, 

this trade off can be realized simply by choosing different values of the 

output neuron's threshold. As the threshold decreases, the false alarm 
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probability and detection probabilities increase. The relationship be- 

tween the two errors is referred to  in communications as the receiving 

operating characteristic o r  ROC curves. Using ROC curves to assess 

classifier performance was suggested by Eberhart and Dobbins [IS]. 

The concept can be generalized to  layered perceptrons with multiple 

outputs. 

There exists a relatively large literature on detection theory. To the 

authors' knowledge, a comparative study between neural networks and 

more conventional nonparametric detectors has yet to be performed. 

In certain cases, such as thermo nuclear meltdown and power system 

security assessment, a relatively high false alarm rate can be tolerated 

in order to  achieve a high detection probability. In other casa ,  such as 

choosing the most efficient of two power sources, we are more interested 

in the total probability of error given by 

where, for example, Prob[l] = the probability that the proper classifi- 

cation is one. As we vary the threshold of the singleoutput neuron from 

zero to  one, there exists an intermediate minimum value for Prob[error]. 

In the multi output case, there exists a setting of thresholds which will 

minimize the error probability. 

4.1 Determining the best net size 

The degrees of freedom of the neural network, equal to the number of 

interconnects and therefore related to the number of hidden neurons, 

must be matched, in some sense, to the complexity of the classification 

boundary. Visualize, for example, the problem of classifying the integer 

parts of continuous numbers from one to ten as odd or even. This 

problem clearly requires more degrees of freedom (and therefore more 

neurons) than classifying whether the same numbers are greater or less 

than five. 
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Currently, in the absence of parametric guidance, the only proposed 

method of determining the best number of hidden neurons is through 

the use of comparative cross validation among two or more neural net- 

works. (We consider theaugmentation ofone neural network to another 

by an increase or decrease in the number of hidden neurons a s  a dif- 

ferent net). Moving from a small number of hidden neurons to a large 

number must decrease the overall probability of error while maintaining 

an equivalent error performance for the test and training data. When 

the perceptron's performance on training data begins to lag, we have 

started the process of memorization. 

4.2 Query Based Learning 

When a classifier or regression machine with a static architecture is 

trained by random example, the mom that is learned, the harder it is 

to learn3. This is true of the multilayered perceptron. Indeed, in the 

absence of data  noise, additional learning takes place in a multi layered 

perceptron only if new data is introduced that the neural network im- 

properly classifies. The closer the representation comes to the concept, 

the smaller the chance that this happens. 

To illustrate, consider the classification problem of learning the location 

of a point a on the interval 0 5 a 5 1. We choose a point at random on 

the unit interval. If it is to  the right of a, we assign it a value of one. 

If i t  is to the left of a, the result is 0. It is clear that, after a number of 

data points have been generated a t  random on the unit interval, that a 

lies somewhere between the rightmost 0 and the left most 1. Call this 

subinterval C. If we generate a new data point that does not lie in the 

subinterval C, we have learned nothing new. If the new point lies in 

the subinterval C, then we revise the subinterval and make it's duration 

shorter. Doing so, however, decreases the chance that the next data 

point contains new information. That is, the probability decreases that 

3i.e. you can't teach an old dog new tricks 



the more we learn about the location of the point a,  the harder it is to  

learn. One approach to counteract this phenomenon is with the use of 

oracles in query hased learning [3, 24, 251. 

4.2.1 Oracles 

In supervised learning, each feature vector is assigned a classification 

(or regression) value or ?alum. There is usually a cost associated with 

this assignment, such as the cost of performing an  experiment, com- 

putational overhead or simply time. We can envision this process as a 

presentation to an omcle the feature vector. For a cost, the oracle will 

reveal to us the proper classification or regression value associated with 

that vector. Note that, if we have deep pockets to pay the oracle, there 

is no need to for a classifier or regression machine such as the layered 

perceptron. Any feature vector we desire can be taken to the oracle for 

proper categorization. 

In many cases of interest, we have the freedom to choose the feature 

vectors that we present to the oracle. Ideally, we would like to present 

those vectors to the oracle that, in some sense, will result in training 

data of high information content. The motive is to  effectively train the 

classifier or regression machine with a low training data cost. Query 

hased training is concerned with the manner in which the training vec- 

tors that will result in high information data  are chosen. 

Note that, as is illustrated in Figure 6, the binary classification prob- 

lem is totally determined by the classification boundary. Indeed, here 

is an obvious case where the importance of data to  the classification 

can be noted. Roughly, the closer a feature vector is to  the concept 

classification boundary, the more information i t  contains. One way to  

exploit this observation is through interval halving. Between each fea- 

ture vector classified 0 and each classified 1, there exists a classification 

boundary. In many cases, taking the geometric midpoint of these two 



the boundary. This is assured, for example, if the underlying concept 

is convex. 

To illustrate interval halving, let's return to the problem of finding 

the point a on the interval (0,l).  After N randomly generated points 

on this interval, we would expect (in the sense of statistics), that the 

distance between the right most zero and the left most one is about 

1 / N .  Using interval halving, on the other hand, this is reduced to 

about 2N. The acceleration in learning is indeed remarkable. 

4.2.2 Inversion of t h e  Layered Percep t ron  

Another approach to query based learning is, in effect, to ask a par- 

tially trained classifier or regression machine "What is it you don't 

understand?". The response of the classifier or regression machine is 

taken to the oracle for proper categorization and the result is added 

to the training data set. The classifier is then further trained and the 

process repeated. 

How might we apply this query approach to, say, a trained layered 

perceptron classifier with a single output? Assuming that the output 

neuron is thresholded a t  one half to make the classification decision, the 

representation boundary in feature vector space is the locus of all inputs 

that produce an output of one half. This locus of points corresponds to 

feature vectors of maximum confusion. In other words, when presented 

with such a vector, the neural network is uncertain to  the corresponding 

classification. If there were a technique to  find a number of these points, 

they could be taken to  the oracle to clear the confusion. The data from 

the oracle could then be used for training data. The perceptron can 

then be retrained to yield a higher accuracy. The question is, how can 

the locus of confusion be generated? The answer is through inversion 

of the neural network [24, 25, 291. 
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One technique for inversion of the layered perceptron has been pro- 

posed by Hwang et.al. 124, 251. The approach is basically the dual of 

back propagation. Instead of holding the training data constant and 

adjusting the weights by using steepest descent, the weights are held 

constant and the input is adjusted using steepest descent to give an 

output of one half. Clearly, a number of inputs will give the response 

of one half. Variations are imposed by changing the initial starting 

point of the input in the iteration procedure. Use of inversion in query 

based learning has resulted in a significant improvement in accuracy of 

a trained layered perceptron in comparison with a second neural net- 

work trained with a randomly selected data set of the same cardinality. 

In practice, data near (rather than on) the representation boundary 

was used to accelerate training. 

4.2.3 Adaptive Learning 

In the training of a layered perceptron, an assumption of stationarity 

of the training data is typically made. In a number of cases of interest, 

however, the training data  is a slowly varying nonstationary process. 

Consider, as an example, training data  for the load forecasting problem 

generated in a developing urban area. Training data from five years 

prior will be different in character to data more recently generated. In 

order for the layered perceptron's weights to adapt to a slowly varying 

nonstationailty, such a procedure should 

1. still respond appropriately to  previous training data if those 

data are not in conflict with the new training data and 

2. adapt to the new training data even when it is conflict with 

portions of the old data. 

The adaptively trained neural network (ATNN) of Park et.ol. [43] as- 

sures proper response to previous training data  by seeking to minimize 

a weight sensitivity cost function while, a t  the same time, minimizing 
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the mean squareerror normally ascribed to the layered perceptron. Al- 

though space does not permit a detailed explanation, we will illustrate 

the performance01 the ATNN through an exemplar problem 1431. Later 

in this chapter, the procedure will be applied to the load forecasting 

problem. 

In Figure 7, 100 training data pairs were generated using the solid 

curve. When a layered perceptron is trained with these points using 

error back propagation, the response to test data is indistinguishable 

from the solid curve. The lOlst data point is introduced ot  0.5. It is 

10% larger than the other datum there. When the layered perceptron 

is retrained using error back propagation, the generalization is shown 

by the dots. When trained using the ATNN, the dashed line results 

as the generalization. Clearly, the dashed line has adapted to the new 

data point without a resulting drift of the other data. Such was not the 

case lor error back propagation. A detailed explanation of the ATNN 

is given in Park et.al. [43]. 

4.2.4 Unsupervised Learning 

The layered perceptron is trained using superuised learning. The per- 

ceptron is told the desired output lor each input pattern. Unsupervised 

learning, on the other hand, does not require knowledge of the output. 

The classifier, rather, looks for similarity of structure in input patterns 

and groups them accordingly. The most visible 01 neural networks 

paradigms using unsupervised learning are adaptive resonance training 

(ART) 1201 and the Kobonen feature map 1271 both 01 which exist in 

various forms [6]. 

As a rule, i l  supervised training can be applied to a problem, it is 

preferable to unsupervised learning. One learns better with a teacher 

than without one. 

Unsupervised learning typically compares an input pattern to anumber 
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Figure 7: Illustration of the use of the adaptively trained neural net- 

work. 

of representative stored templates. If the new pattern is sufficiently 

close to an existing template, then information from the pattern is 

used to modify and reinforce the template. If the pattern is not close 

to an existing template, then a new template can be formed. 

As with other neural network paradigms, there exist other non neural 

network approaches to unsupervised learning (e.g. k-means clustering). 

4.3 Comparative Performance 

Other artificial neural networks have fallen from favor in an applica- 

tion sense because, quite simply, they are not competitive with other 



l t l u r r  w ~ ~ v c v c ~ u r r a r  a y p r u o c r r c ~ .  LIIC a a r l r c  q u a b r u ~ r  I I ~ U D ~  uc pneu III 

regard to  the layered perceptron. Does the layered perceptron preform 

better than other classifiers or regression machines programmed from 

examples using supervised learning? Although abstract analysis of this 

question may be possible in some cases, it must ultimately be answered 

in regard to  actual data. Comparisons of the layered perceptron have 

been performed with classification and regression trees (CART) and 

nearest neighbor lookup for such problems as power security assessment 

and load forecasting and, in each case, have shown the layered percep 

tron to  perform better in terms of classification or regression accuracy 

171. Both of these competing algorithms can be implemented using 

parallel processing. 

In comparison with nearest neighbor lookup, the layered perceptron was 

shown to  interpolate much more smoothly and with greater accuracy 

for the problem of power security assessment 13, 161. 

5 Neural Network Implementation 

Implementation of artificial neural networks is still quite immature. 

Implementation can currently be broken into the following categories. 

1. Emula tors  a n d  simulators. Currently, the most com- 

monly used computational method for neural networks is 

simulation using standard software and/or emulator boards. 

Ironically, serial computation is here used to evaluate the 

performance of these highly parallel algorithms. Emula- 

tion packages and electronics are available from a number 

of vendors. Software is also available in association with 

some books on neural networks [15]. 

2. Analog Electronics. The speed of analog electronics is 

attractive for implementing neural network algorithms [37]. 

The percision of analog electronics, as we have noted, is 



not high enough for back error propagation - the most com- 

monly used training procedure. Analog electronics can be 

used, however, in other neural networks and in the testing of 

trained multilayer perceptrons. A superb overview is given 

by Graf and Jackal (191. 

3. Digital  Electronics. Digital electronics will be the imple- 

mentation technology of choice for neural networks in the 

near future. The technology as applied to neural networks 

is expanding rapidly and will be the first viable option to  

emulation. Atlas and Suzuki 191 give a thorough review. 

4. Op t ron i c  Implementat ion.  Optics oKers a quite promis- 

ing medium for the implementation of neural networks 1171. 

Consider, for example, the high connectivity required for 

neural networks. Multilevel VLSI must be used in elec- 

tronics to avoid shorting since electrons cannot go through 

electrons. Photons, on the other hand, can go through pho- 

tons. For this reason, optics is capable of extremely high 

interconnect capabilities. On the negative side, optical im- 

plementation is quite far behind electronics in maturity of 

implementation. As in electronics, fast optics is analog op- 

tics. The same comments in regard to required accuracy 

are also applicable here. 
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6. Selected Applications to Power Systems. 

Artificial Neural Networks have been recently proposed as an 
alternative method for solving certain traditional problems in power 
systems where conventional tech~ques have not achieved the desired 
speed, accuracy or efficiency. 

Neural Network (NN) applications that have been proposed in the 
literature up to date can be broadly categorized under three main 
areas: Regression, Classification and Combinatorial Optimization. 
The applications involving regression includes Transient Stability. 
Load forecasting, Synchronous machine modelling, Contingency 
screening and Harmonic evaluation. Applications involving 
classification include Hannonic load identification, Alarm processing, 
Static security assessment and Dynamic security assessment. In the 
area of combinatorial optimization, there is topological obsewability 
and capacitor control. 

In the following sections, we provide an overview of the reported 
Neural Networks (NN's) applications to power systems. A more in 
depth treatment of the material can be found in the respective 
references. 

6.1 TRANSIENT STABILITY 

Stability of a power system deals with the electro-mechanical 
oscillations of synchronous generators, created by a disturbance in the 
power system. Whether or not the post disturbance process leads to 
loss of synchronous operation, is the subject of primary concern. 
When the disturbance is small and when the system oscillations 

.. 
Portions of this seaion arc reprints with permission from IEEE 

[16.5134J5Js,57~39,62.63,65~, 1989-1991. 



equilibrium point, concepts of linearized systems analysis can be 
applied to determine the stability of the power system. This is known 
as steady state or small signal stability assessment. However, when the 
disturbance is large and when the oscillatory transients are significant 
in magnitude, nonlinear system theory or explicit time domain 
simulations have to be used to analyze the system stability. The 
ensuing analysis is known as tmnrient stability assessment. 

6.1.1 Problem Description 

reduced 
power system 

model 
G+ jB CI? 

Figure 8. Network reduction for stability calculation 

Figure 8(a) shows a small test power system. It has 6 buses with 4 

generators and three loads. Since transient stability analysis is focused 
on the generator dynamics through a few cycles following the fault, 
certain simplifying assumptions can be made. All generators are 
replaced by the corresponding internal emfs (E) behind a transient 
reactance (Xd7) Each load is replaced by a futed admittance based on 
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generic circuit reduction techniques, to reduce the topology of the 
original power system to one that is shown in figure 8(b). This 
reduced power system forms the basis for transient stability 
calculations. 

The admittance matrix of the base power system can be written as, 

where subscripts G and L stand for generator and load buses 
respectively. The modified admittance matrix corresponding to the 
reduced power system where all load buses are eliminated as shown in 
figure 8(b) is given by, 

1 
G + j B = pi' + (diag -y'r' X . 

di 

where 

For the reduced power system, the equations for generator and rotor 
dynamics can be written as follows. 

M. (dZ&/dt2) + D. (d6./dt) + Pe = Prni 
I I , ,  (i = I N G )  (29) 

P ei = E~ x E. [ G .  cos (9 - 9)  + B.. sin (6 - b) 1 
I IJ 'I 1 I 

(31) 
1 
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where. 

Mi,Di - inertia and damping constants of the il\enerator 

Pci - electrical power output of ith generator 

P,, - mechanical power input to the ith generator 

E. - equivalent field voltage behind the transient reactance X, 
Gii.Bii - real & imaginary parts of the reduced admittance matrix 

6 - rotor angle of the ith generator relative to a synchronous 
i 

reference 

"i 
- angular velocity of ith generator relative to the same 

synchronous reference 

N, - number of generators in the system 

Equations (29) and (30) are the differential equations governing the 
rotor dynamics of the i'h generator. Equation (31) gives the electrical 
power output of the i I h  generator calculated by applying Krchoffs 
Laws. 

Transient stability is determined by observing the variation of 6s' as a 

function of time in the post-fault period. Power system is said to be 
transiently stable for a given disturbance if the oscillations of all rotor 

angles damped out and eventually settled down to values within the 
safe operating constraints of the system. For any disturbance. the 
transient stability of a power system depends on three basic 
components: the magnitude of the disturbance, the duration of the 
disturbance and the speed of the protective devices. For example, in 
the case of a transmission line fault, assume that the line section is 
first isolated and then successfully reclosed. There exists a threshold 
parameter known as the Critical ClemMng Time (CCT) where if the 
fault is cleared before this time, the power system remains stable. 
However, if the fault is cleared after the CCT, the power system is 
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likely to become unstable. Hence, stability analysis may involve the 
calculation of the CCT for a given contingency. 

CCT is a complex function of pre-fault system conditions, disturbance 
structure and the post-fault conditions. There are two commonly used 
methods for calculating CCT, namely 1) Numerical integration and 2) 
Liapunov-type stability criteria [53]. The first method involves 
extensive time domain simulation of the power system while the scope 
of the second method is limited by its restrictive assumptions. Due to 
the many possible pre-fault operating conditions and types of faults, 
computation1 effort needed to assess the CCT for each of these 
scenarios is prohibitive. 

6.1.2 Neural Network Approach 

The estimation of CCT can be looked at as a regression problem 
where pre-fault system parameters are used to predict the CCT for 
the corresponding fault. A multi-layer perceptron was proposed to be 
trained using back-propagation to learn a set of input attributes and 
the corresponding CCTs for a specified fault under varying operating 
conditions 153). 

The inputs to the NN (ai) for a specified contingency are selected as, 

where 
1 

a. = E M i ?  
0 i 



angle. P,i corresponds to the reduced electrical power output of the ith 

generator during fault initiation. This change from the steady state 
electrical power Pq is brought about due to the change in network 

impedance caused by the fault and also due to the effect of the 
transient reactance of the generators. 

The NN input quantity given by equation (33) gives a measure of the 
rotor angle deviation at the instant of fault clearing. The input 
quantity described by equation (34) is a measure of the individual 
acceleration energy of the generators of the system accumulated 
during the fault 1531. 

The output of the NN is the CCT corresponding to the given 
contingency under the described inputs. During generation of training 
data, CCT for the corresponding input quantities is obtained by 
repetitive numerical integration of the post-disturbance system 
equations using different reclosing times. The CCT would correspond 
to the maximum time for reclosure after the initial isolation of the line 
in order to maintain synchronous operation. 

For a specific test of the algorithm, a 3-phase fault was simulated at 
location shown in figure 3.l(a). The CCT was calculated for the case 
where the fault was initially isolated by tripping the line and the 
system subsequently restored by reclosing the line. 30 training 
patterns were generated for a combination of different loading levels 
and two different base power system topologies. The trained NN was 
used to estimate the CCT for the same type of fault under varying 
load levels and varying topologies. The estimated CCT was compared 
to the analytical value calculated through numerical integration. Close 
comparison of results was reported. 



The ability of a NN to generalize between different network 
topologies was observed. This adaptability was facilitated by providing 
training data corresponding to couple of different base topologies. 
This is a key idea that could be applied to training NN's for problems 
with time varying power system topologies. 

So far, the merit of the NN in calculating the CCT is limited to the 
above mentioned fault scenario and the restrictive second order 
model of the generator. Simulations are also restricted to simple 3- 
phase line faults. The ability of the NN to predict CCT under more 
complicated fault scenarios is not clear. The training data should be 
produced by using a higher order generator model to include other 
transients caused by the presence of damper windings and excitation 
systems. 

6.2 LOAD FORECASTING 

Forecasting electrical load in a power system with lead-times varying 

from hours to days, has obvious economic as well as other advantages. 
The forecasted information can be used to aid optimal energy 
interchange between utilities thereby saving valuable fuel costs. 
Forecasts also significantly influence important operations decisions 
such as dispatch, unit commitment and maintenance scheduling. For 
these reasons, considerable efforts are being invested in the 
development of accurate load forecasting techniques. 

6.2.1 Problem description 

Most of the conventional techniques used for load forecasting can be 
categorized under two approaches. One treats the load demand as a 
time series signal and predicts the load using different time series 
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analysis techniques. The second method recognizes the fact that the 
load demand is heavily dependent on weather variables. The general 
problem with time series approach include the inaccuracy of 
prediction and numerical instability 1421. The main reason for 
instability is not considering the weather information which is known 
to have a profound effect of load demand. Numerical instability is 
caused by computationally cumbersome matrix manipulations. 

The conventional regression type approaches use linear or piecewise- 
linear representations for the forecasting function. The accuracy of 
this approach is dependent on the functional relationship between the 
weather variables and electric load which must be known a priori. 
This approach cannot handle the non stationary temporal relationship 
between the weather variables and load demand. 

6.2.2 Neural Network Approach 

NN can combine both time series and regression approaches to 
predict the load demand. A functional relationship between weather 
variables and electric load is not needed. This is because NN can 
technically generate this functional relationship by learning the 
training data. In other words, the nonlinear mapping between the 
inputs and outputs is implicitly imbedded in the NN. 

The M\I approach proposed in [42.54] uses previous load data 
combined with actual and forecasted weather variables as inputs, and 
the load demand as the output. As an example. to predict the load at 

the kth hour on a 24 hour period, the NN uses the following 
input/output configuration. 

NN inputs : k, L(24,k), T(24.k). L(m,k). T(m,k) and T,(k) 

NN output : L(k) 



where, 

k - hour of predicted load 
m - lead time 

%k) -load at x hours before hour k 

T(&k) - temperature at x hours before hour k 
Tp(k) - predicted temperature at hour k 

During training, the actual temperature T(k) is used instead of T,(k). 

Different NNs are trained to predict the load demand at varying lead 
times. ?he results are reported too be better than those obtained 
through some of the existing extensive regression techniques. 

One of the test results presented in [42] is given for brevity. Five sets 

of actual load and t e m p e h r e  data were used in the study. Each set 
contained data corresponding to 8 consecutive days as shown in table 
1. Out of each set, data corresponding to the six weekdays were 
selected. No weekends or holidays were included. 

Table 1. Test data sets 

From 1421 courtesy of EEE. (C) 1EE+1990 

sets 

Set #1 
Set #2 
set #3 
SctU4 
Set US 

The NN was trained to forecast the hourly load with one hour lead 
time. Table 2 shows the forecasting error(%) of each day in the test 
sets. Each day's result is averaged over a 24 hour period. The average 
error for the 5 test sets was found to be 1.40%. 

Test data from 
01/23/89 - 01/M/89 
11/09/W1- 11/17/88 
11/18/88 - 11/2Y/Xtl 
12/0I1/88 - 12/15/88 
12/27/88 - 01/01/83 
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(*: predicted temperature, T, is not available) 

From 1421 courtesy of IEEE. (C) IEEE.1990 

L2.3 Comments 

he results show that NN can be trained to predict the load demand 
y among its training patterns. However, one network cannot handle 
I1 cases where enough and sparce representation exist in the training 
!st. For example. a NN trained to predict electric loads of normal 
.eather conditions, may not do accurate prediction during extreme 
eather conditions such as cold snaps and heat waves. To predict 
lectric loads under these conditions, a separate NN may be needed. 
Jso the holidays cannot be accurately predicted. It is also worth 
~entioning that the above restrictions are also applied to all existing 
:chniques. 

rnchronous generators are the only available choice for bulk electric 
)wer generation. Hence, the synchronous machine dynamics are 
tal to power system stability in both steady state and transient state 
jerating modes. Accurate modelling of the synchronous machine 
fnamics is imperative for the operation and control of any power 
stem. 



As mentioned in section 6.1. when stability analysis with a high degree 
of accuracy is desired, a 2'* order model for the synchronous machine 
is often inadequate. Other operating modes of the synchronous 
generator are needed in order to achieve the required degree of 
accuracy. For example. the dynamics caused by the damper windings. 
armature reaction, excitation system, saliency and other inherent 
control loops are important in determining the accurate behavior of 
the synchronous machine. 

Figure 9. (a) 33 windings of the synchronous m/c (b) d-q axis 
equivalent model 

Figure 9(a) shows a three phase representation of a synchronous 
machine. The figure shows the stator, field and damper windings. 
Figure 9(b) shows the equivalent d q  axis model obtained through 
Blondale's transformation. In addition to the two mechanical mode 
equations, flux linkages of the d,q axis and field windings can be used 
to derive the following 7th order model for the synchronous generator. 
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where, 

P,, PC, Pd - mechanical, electrical and damping powers 

+d>$q - d and q components of armature flux linkages 

i i 
d' q 

- d and q components of armature currents 

v v 
d' q 

- d and q components of armature voltages 

r.'rF - armature and field resistance 

+D,$O - d and q components of damper winding flux linkages 

iD.io - d and q components of damper winding currents 

r ~ * r o  - d and q components of damper winding resistances 

1C;"F - flux linkages and current of the field circuit 

The d,q and F axis fluxes and currents are related by the following two 
matrix expressions. 
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where, 

xd> 'q 
- d and q components of armature self inductance 

X 
Xmd* Oq 

- d and q components of armature mutual inductances 

Equations (35) and (36) are linked to the external power system as 
follows. 

v = v sin 6 
d 1 

v = vI sin 6 
9 

Equations (35) through (37) can be written as a nonlinear state space 
model 



The set of matrix equations described by (39) have to be solved at 
each time step in order to generate an evolving trajectory of the states 
based on a given input sequence. This type of trajectory generation is 
common in time-domain transient stability analysis where the 

generator responses are repeatedly simulated as function of time for 
many operating and contingency scenarios. This type of calculations is 
both repetitive and time consuming. 

63.2 Neural network approach 

In order to avoid the time consuming calculations associated with 
solving a non-linear state space model, a NN approach is proposed 
[SS].  A multi-layer perceptron is trained to emulate the state space 
equations of the synchronous motor. The proposed learning and 
retrieving phases of the neural network are shown in figure 10. 

Lets assume that there is a full state output, i.e Y(k) = X(k). During 
training, patterns of Y(k) and U(k) are given to the NN with the 
corresponding target Y(k+l). These patterns are either randomly 
generated within the specified operating region or corresponds to 
points on a set of pre-selected training trajectories. In the retrieving 
phase, NN estimated state trajectories for different arbitrary input 
sequences. 



ANN 4 i] 
(a: learning phase (b) retrieving phase 

Figure 10. (a) Learning (b) Retrieving phases of the Synchronous 
m/c NN simulator 

From 155) courtesy of IEEE, (C) 1EEE1989 

The NN has 11 inputs consisting of the elements of vectors Y(k) and 
U(k) while the 7 outputs consist of the elements of vector X(k+ I). 
The specific example given in reference 15.5) compares the NN model 
output against the actual motor states for a step change in the field 
voltage v, Close model following is observed for the given test. 

63.3 Comments 

Using an NN to simulate the synchronous machine dynamics can 
significantly speed up the transient stability calculations. However. 
accurately training a NN with 11 inpua and 7 outputs, to model the 
synchronous generator within a bounded operating space, is non- 
trivial. The training patterns should be sufficiently representative of 
the operating space so that the NN can accurately generalize its 
learning for an arbitrary input sequence. A recurrent neural network 
topology with its inherent temporal properties, is probably more 
suited for this type of application. 



6.4.1 Introduction 

9 contingency in a power system, is an abnormal event (such as faults) 
which could be potentially damaging to power system components. 
Zontingency screening is a relatively fast and approximate method of 
dentifying whether a contingency may resu!t in a violation of any of 
:he operating constraints of the power system. The evaluation of the 
)perating constraints due to a contingency is called security messmenr. 
~ n d  is discussed in Section 6.7. Contingency screening helps select a 
:ritical set of potentially damaging events for more accurate analysis. 

5.4.2 Problem description 

Zontingency selection, in its simplest form, is dealing with forming a 
ist of contingencies which may result in steady state voltage or 
hermal limits violations in the post contingency power flow condition. 

vi ei 
line 1 

line P\ 

Figure 11. A simple power system 

:or a simple power system, such as that in figure 11.4. the real and 
,eactive power injections at the ith bus can be expressed as. 
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where Pnec i, Qml a n  the net real and reactive injections at ith bus, 

and Bit is defined as 

Bik = Bi - Bk and Y = G + j B 

Equations (40) and (41) can be solved for V and 0, at all nodes. The 

power flow on line j between nodes i and k is then given by the 
equations, 

P lim j = G. ( v 2  - V. Vr cos Bik) - Bik Vi Vk sin Bit 
tk 0 

Q tine j = - Bik ( ~ 2  - Vi Vk cos Bik) - Gik Vi vk sin gik (43) 

line j line j line j 

The voltage magnitudes (Vi) obtained by solving equations (40) and 

(41) and line flows (S,i, i) obtained from equation (44) constitute the 

so called secutify vm'ables, which are the variables that decide the 
stahls of the system security. Any magnitude violation of these 
variables will result in an insecure system. Post-contingency security 
limits for bus voltages and line powers can be defined as, 

z.(A) denotes the post contingency value of the ilh security variable 

corresponding to kth contingency. If all the above inequalities are 
satisfied the system is labelled as secure under the AVh contingency. 



time consuming and often computer intensive. To obtain a fast and 
approximate method for selecting key contingencies is known as 
Contingency screening. Contingency screening can be performed by 
several methods, among them are the Distribution Factor and the 
Performance Index. 

With the Distribution Factor based method, the post-contingency 
Security variables are calculated by 

where AY(A) corresponds to the change in a network due to the Xth 
contingency. This could be either a change in network admittance due 
to a transmission line outage or the change in real power due to a 
generator outage. H(X) is known as the transfer matrix whose 
elements are a set of factors which represent the sensitivity of the line 
flows to the above variations. Therefore, these partial derivatives can 
either be line outage distribution factors or generation shift factors 
corresponding to the type of the Ath contingency. 

In the Performance index (PI) based methods, an index associated 
with each contingency is calculated as follows: 

where 

w w -weighting factors 
i' k 

V - the desired value of V. 
i mf 

'I; MAX 
- the maximum rating of the klh line current 

Based on the value of PI(A) being lesslgreater than a certain 
threshold 'TH", the contingency A is classified as secure/insecure. 



NN approach is proposed for contingency screening [56]. It is based 
on identifying the contingent branch overloads. The question of 
contingent voltages is not addressed in this study. This is known as 
active power contingency screening which is based on the DC load 
flow concept. By assuming that all voltage magnitudes V. are equal to 

unity and that all angles O are small (sin B = B),  equations (40) and 

(42) can be reduced and put in matrix notation as, 

P = R B  
net 

P = T O  
linc 

For secure operation. I Ptine r: 1 5 Sr Mnx v k E {lines) 

A collection of NNs are trained where each NN is dedicated to a 
specific line outage. The inputs to the NN are: 

B.. v i, j E {buses) (post-contingency system) 
11 

P . V i E {buses), 
"Ct I 

and the outputs are: 

P V k E {lines) 
linc k 

binary flag 6 (0.1) indicating secure/insecure status. 

The concept was tested on a small power system with 6 buses and 9 
lines. Training data was generated for 9 contingencies and 9 different 
discrete loading levels giving 81 different patterns. Only line 
contingencies were considered. A line contingency was simulated by 
halving the admittance between the corresponding buses. Each 
contingency was handled by a separate NN. 
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6.4.4 Comments 

The proposed NN based contingency screening method is effective for 
a small power system. The minimum input dimension is equal to twice 
the number of buses plus the number of lines. Therefore, for a larger 
power system, the input variables can be excessively large. Under such 
cases, training a single NN for contingency screening will be difficult. 

6.5. HARMONIC IDENTIFICATION AND EVALUATION 

6.5.1 Introduction 

Nonlinear loads and other harmonic producing loads have existed in 
power systems for many years. Today, the number of harmonic 
producing devices is rapidly rising due to the development of high 
power semiconductor switches and converters. 

Figure 12. Phase controlled rectifier 

Figure 12 indicates a simple phased controlled rectifier connected to a 
resistive load. The figure shows the load voltage and current. This 
nonsinusoidal load current, unless filtered, will be drawn from the 
power system. If a large number of such solid state devices and 
circuits are used, the nonsinusoidal current will give rise to harmonic 



voltage drops across system components. thereby distorting the 
voltage wave form of the system. This can cause potentially damaging 
problems to the power system such as misoperation of protective 
relays, overheating of capacitor banks, increased losses in 
transmission systems, insulation failure in cables, increased losses in 
transformers and noise in communication circuits. 

6.5.2 Problem Description 

It is necessary to analyze and predict the behavior of current and 
voltage harmonics so that appropriate action could be taken to reduce 
their adverse effects. So far, model based analysis has been 
inaccurate and time consuming due to the nonlinearity of the 
harmonic components. the random behavior of harmonic signals and 
the wide variety of harmonic profiles of all solid state circuits. 

6.5.3 Neural Network Approach 

As a first step to identifying harmonic loads. a multi-layer perceptron 
was used to identify the type of harmonic load from among a set of 
pre-specified choices [57]. The training data for the NNs are 
generated by monitoring the current wave forms corresponding to 
each specific type of harmonic load. The fast fourier transform (FFT) 
of the digitized current wave form is used to produce the harmonic 
frequency spectrum. Different combinations of harmonic magnitudes 
and phases are then fed to the NN as inputs with the corresponding 
load type as the output. 

Figure 13(a) shows the structure of the NN used to learn the 
harmonic/load relationship in the example given in reference [57]. 
The NN input are chosen among 31 harmonic magnitudes and phases. 
The output is one of 5 load groups, namely Personal Computer (PC), 
Television Set (TV), Video Tape Recorder (VTR), Fans(FNS) and 



1 NN is trained under each case with different combination of inputs. 

harmonic com~onents 

1 1 1 1 1  
FL TV WR FNS PC 

Figure 13. Identification of harmonic loads using NNs 
From 1571 courtesy 01 IEEE. (C) 1EEE.1989 

Case I: Magnitude of harmonic currents of order h = 1, Z...... 31: 

Case II: Magnitude of odd harmonic currents of order h = 12.5. .... 31; 
Case III: Magnitudes of harmonic currents of order h = 2,3,4,5,7, 

9, 11 and phase angles of order k = 3.5.7.9.1 I; 

Table 3 Correct classification as a percentage 

From 1571 courtesy 01 IEEE, (C) lEEE.1989 

Learning Set 

A 
B 
C  

Testing Set 
Case 111 

A B C  
100 100 
100 100 100 

YO 96 100 

Case I 
A B C  
M 92 86 
94 39 78 
61 99 97 

Caw I1  
A B C  
% 73 68 
84 98 95 
92 99 97 



 he aQlllty to correcuy ctass~iy 111s ~U-U vwcY .,.. ...- ..- ....,.... 
currents is investigated for the three cases. NNs are trained and tested 
using 3 separate data sets. Several NN architectures with different 
numbers of hidden layers are used to find the optimal NN design. 
Table 3 gives the performance under the 3 cases for the NN design 
with six hidden neurons. 

It is clearly seen that NN trained under case 111 configuration has the 
best classification performance. 

In subsequent development, a multi-layer perceptron was used to 
predict the magnimde of a selected harmonic in a time series form 

p8l. 

where, 

~ " ' ( t )  - magnitude of the i I h  harmonic at time t 

A series of multi-layer perceptrons were trained to predict the 
magnitude x("(t+ 1 )  based on a time series of the past magnitudes. 
The structure of the NN is given in figure 13(b). The performance of 
the NN was compared with another nonlinear systern identification 
algorithm known as the Revised Group Method of Data Handing 
(RGMDH). The NN identifier was observed to give an error 
distribution of lower variance compared with the RGMDH algorithm. 

6.6 ALARM PROCESSING AND FAULT DIAGNOSIS 

The control centers of a power system are continuously interpreting 
large number of alarms signals to determine the status of the systern 
components and to evaluate the power system operation. This 

process is very complex because of two key reasons: 
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1. Alarm pattens are not unique to a given power system 
problem. Same fault may manifest in different alarm patterns 
based on the current topology and operating status of the 
power system. 

2. Alarm pattern are likely to be contaminated with noise due to 
equipment problems. incorrect relay settings, interference, or 
miscalibrated meters. 

Expert system techniques have been widely tested for analyzing alarm 
signals. The formulation of mles, however, requires precise definitions 
of the power system and its operational strategies which may widely 
vary depending on the utility. Therefore, expert system technique are 
known to suffer from a high customization effort. 

6.6.1 Neural network approach 

The ability of a power system operator to diagnose a system problem 
by analyzing a set of multiple alarms is a form of pattern recognition. 
Accurate classification of noisy alarm patterns is also a key 
shortcoming in most of the conventional techniques. Therefore, NN's 
with their ability to classify noisy patterns seems a logical choice for 
alarm processing. The NN is also capable of associating different 
alarm patterns to the same system fault by training the NN with a set 
of infomuion rich data that represents different operating scenarios 
159). Figure 14 shows a block diagram showing the concept of 
intelligent alarm processing (IAP) using NNs. 

Learning and retrieving phases of the IAP NN is presented in figure 
14. The NN training set is generated by first creating a credible set of 
contingencies and then deriving the possible alarm patterns under 
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Relay prolection 
schemes 

TRArmlNC THC INTELLlCEM ALARM 

PROCESSOR 

Anticipaled possible 

TRIlNlNG SET 
System IrOUbh8 

W E U  TRWBLES N E U W  - NLNK)RK 

UOOEL 

Alorms NEURAL - NETWORK 

MODEL 

Syslem trouble 
interpretdion 

Figure 14. Concept of using NN for IAP 
From 1591 courtesy ollEEZ (C) lEEE,t989 

each fault. These patterns are generated by the relay protection 
schemes and power flow analyses. These patterns are then used to 
train a multi-layer perceptron using back-propagation 1591. In the 
retrieving phase, incoming alarm patterns from the energy 
management system (EMS) are interpreted to predict the possible 
fault scenario. 

The concept was tested on a 1 ISkV/12kV substation for 65 different 
fault conditions with 99 bit alarm patterns [59]. It was also tested on 
the lEEE 30 bus system for 72 different bus and line fault conditions 



was able to correctly classify all noiseless input patterns. NN was also 
able to correctly classify some of the noisy patterns. Noisy patterns 
were generated by randomly toggling certain bits of the original input 
pattern. It is also worth mentioning that when noisy patterns were 
incorrectly classified by the NN, the system operator, given the same 
noisy pattern, also reached the same wrong conclusion. 

. 
6.6.2 Comments 

This is an area where NN seems to have great potential due to its 
intrinsic noise rejection and self learning capabilities. The reported 
study is preliminary in the sense that it does not take into account 
some of the characteristics of the alarms such as the order in which 
they are reported. the magnitude of the violations, and the behavior of 
alarms over a certain time period. A combination of several NNs' are 
proposed to capture the different system problem characteristics and 
the time-sequential significance of the alarm data in order to draw 
more definitive conclusions. 

6.7 STATIC SECURITY ASSESSMENT 

Static security assessment is defined as the ability of a power system to 
reach a state within the specified safety and supply quality following a 
contingency. The time period of consideration is such that the fast 
acting automatic control devices have restored the system load 
balance, but the slow acting controls and human decisions have not 
responded. 

Static security assessment consists of three distinct stages. They are 
contingency defnition (CD), contingency selechon (CS), and 
contingency evaluation (CE). CD defines a contingency list to be 
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is deemed sufficiently high. CS is the process that shortens the original 
long list of contingencies by removing the vast majority of cases having 
no violations. Two commonly used algorithms for CS are contingency 
screening contingency ranking. These methods were introduced in a 
previous section. There has also been an increasing effort towards 
applying expert systems to augment the analytical CS methods [SI]. 
CE is the process where the selected contingencies are simulated on 
the power system in order to evaluate the post-contingency security 
variables. The resulting system attributes are checked for security 
violations. the calculations are performed on each of the list of ranked 
contingencies. The number of cases evaluated depends on the amount 
of time and computer resources available for the task. 

6.7.1 Neural Network Approach 

From a pattern recognition perspective. CE is a two class 
classification problem where the pre-contingency system attributes are 
used to predict post-contingency system security status. A multi-layer 
perceptron can be trained to perform this pattern classification [51]. 
But for a large power system, where a large number of attributes and 
operating conditions are needed to classify the system security, a 
single NN approach may be an enormous computational exercise. 
One way of reducing the dimensional complexity is to use a modular 
approach where the security problem is divide into smaller tasks or 
reduced topology. A modular NN can then be used to handle each 
task or topology. 

Figure 15 shows a possible modular approach to large power system 
problem. A specific NN for predicting security status under a specific 
contingency is proposed. This is necessary due to the variations in 
which a contingency manifests itself based on the nature, location and 
clearing strategy. Furthermore, for a given contingency. the 
mechanisms leading to line and voltage violations are Fundamentally 
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lifferent. t ine violations are brought about by real power overflows, 
vhile voltage violations are brought about by an excess or a 
leficiency of reactive power. Therefore, separate NNs are trained for 
~ssessing line and voltage violations under the same contingency. 

contingency violation contingency security 
evoluotion clossilicotion 4 a a a  

contingency 1 voltoqe - ANN 1 - 1. 0 
line - ANN 2 - 1. 0 

contingency 2 voltage - ANN 3 - 1. 0 
line - ANN 4 - 1. 0 

- ANN 5 - '. 0 
- ANN 6 - 1. 0 

! i 
j j 
! I  - ANN 2m-1- 1. 0 

line - ANN 2m - 1. 0 

Figure IS. The proposed NN's approach to SSA 

L7.2 Generating training Data 

tach training pattern for a particular contingency is selected to 
orrespond to a different power system loading condition. These 
atterns car1 be generated by perturbing each of the real and reactive 
)ads with a uniformly distributed random variable within the 
~ecified range. The perturbations are uncorrelated. The pre- 
~ntingency system states 9, are given by the solution to the power 

ow equations, 
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where. 

L -Load demand 

U - Control vector (such as s generator real power and voltage) 

(.)O - Pre-contingency value of "." 

U and L are inputs to equation (49). The control vector U, is selected 
to minimize an objective function F ( ~ . u )  which represent a pre- 
contingency optimal dispatch strategy, 

where C,, Cli and C, are coefficients. Pgi is generation of machine i. 

The control vector U is given by 

To minimize the cost index of equation (SO), a Lagrangian function is 
introduced, 

where Xis the lagrange multiplier vector. The minimization process is 
iterative with respect to 9, U. and A A gradient based search 
technique is used for the process. The control vector U is bounded by 

the constraint, 

Based on generator ratings and system considerations. A solution to 
this constrained optimization problem should satisfy the Kuhn-Tucker 
corner conditions. This procedure is commonly known as an Optimal 
Power Flow (OPF). 



after the system states X' in the load flow equations is obtained, 

where, 

xk - post-contingency state vector 
Uk - post-contingency~control vector 
Lk - post contingency demand 

In this study, Lk is assumed to remain equal to its presontingency 
value. The post-contingency control vector U' is calculated based on 
the type of fault: for a sizable disruption of real power, such as the 
loss of a tie-line or a generator, the outputs of the remaining 
generators are adjusted on the basis of their individual speed-droop 
characteristics: or else, only the swing bus absorbs the slack 
generation. The droop of each individual generator is assumed to be 
proportional to its maximum ratings. Therefore, if tripping of a tie line 
causes a surplus of real power Ap, the individual generator power 
settings are adjusted as, 

where, 

The bus voltages and line currents are then checked against their safe 
operating limits specified by, 



is labeled secure if no violations are found, otherwise the power 
system is insecure. 

6.7.3 Feature selection 

Each pattern vector should contain all possible variables affecting 
system security such as load powers, bus voltages. line flows etc. With 
feature extraction. the dominant variables are selected. By this 
method, the dimension of the pattern vectors can be substantially 
reduced. For example, assume a pattern with D dimensional 
normalized measurement vector, 

Assume that the dominant number of variables is d <  <D. The 
security classification is then based on these d components. The 
heuristic notion of interclass distance is used to accomplish this task. 
Given a set of patterns with dimension D, it is reasonable to assume 
that the pattern vectors for each of the two classes (secure/insecure) 
occupy a distinct region in the observation space. The average 
pairwise distance between the patterns is a measure of class 
separability in the region with respect to the particular variable. The 
following function F provides a measure of the importance in each 
variable. 

where, 
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The subscript 's' stands for 'secure' while 'i' stands for 'insecure'. Ns 

and N indicate the number of secure and insecure patterns that form 

the training set. m and m denote the corresponding in-class means 
1s 11 

of the f h  attribute. rr and 0 are the standard deviations. The 
1s 1' 

variables are ranked according to the following steps. 

1. Calculate Fj V 0 < j 5 D 

2. Rank all Fj in a descending order 

3. Go to the 1" ranked variable. 

4. Calculate correlation coefficients (CC) of all lower ranked 

variables with respect to the 1st ranked variable. The CC is 

defined as, 

5. Eliminate all lower ranked variables which have a (CC ( > 0.9 

6 .  Go to the next highest ranked variable and go to step 4. 

The process is repeated until all the variables are ranked or discarded. 
The resulting ordered list of variables are considered to be key 
features in training the NN classifier. 
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6.7.4 Training the neural network 

In order to evaluate the performance of the trained NN classifier, the 

following definitions are introduced. 

False Alarm: When a true secure operating point as described by the 

oracle, is classified as insecure by the NN. 

False Dismissal: When a true insecure operating point as described by 

the oracle, is classified as secure by the NN. 

The following percentages are also introduced to obtain a quantitative 

measure of the classification performance. The percentage false 

alarms, false dismissals and false classifications are calculated using 

the following definitions: 

- - # of false alarms 
% false alarms 

total true secure states 
x 100 

# of false dismissals 
% false dismissals = x 100 

total true insecure states 

false alarms + false dismissals 
% false classifications = xl00 

true secure + true insecure states 

6.7.5 Tests results 

The concept is tested on the study system of Figure 16. It includes 4 
generators (N =4), 8 loads (Nb=8) and 16 transmission lines (NI=16). 

g 

The influence of the external networks is modelled by a bi-directional 

power flow at boundary buses #9 and #10 respectively. 

Table 4 shows the operating point and the allowed perturbation in the 

real and reactive loads at each bus. The tie line flow is considered to 

be either positive or negative depending on the direction of flow. 



- 

---- 

study system 
I--- /-- 

Figure 16. The test power system 

Table 4. The range of load parameters 

In this test, the tripping of tie line #16 is investigated. A single pre- 

contingency pattern contains 54 different attributes including all the 
real and reactive generation (P ,Q ), real and reactive loads (P ,Q ), 

gl @ b~ bJ 

all the bus voltage magnitudes (V ) and all the line currents (t) in 
bJ 
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selected as described earlier. Six features were used for NN training: 

QbS' "b8' QgZ' QblO' IL7' 
ILIA The training and testing statistics of 

the NN are given in Table 3.5. 

Table 5 Training and testing statistics for the NN in Case I. 

outputs 1 / true secure patterns 346 
hidden layers 1 I true insecure patterns 154 

Network architecture Sr 
training information 

hidden neurons 6 / false alarms 9 
iteration step 0.05 1 false dismissals 4 
momentum factor 0.01 / % false alarms 2.601 

Testing statistics 

Table 6. Training and testing statistics for the NN in Case 11. 

inputs 6 1 testing data 500 

Network architecture & 
training information 
inputs 7 
outputs 1 

In the second case, the contingency is the tripping of the transmission 
line between buses #5 and #6. The training data are generated 
similar to the previous case. The input attributes for the NN are 

selected by the feature selection algorithm described earlier. The 
features Qb6, Qgl, Qg3, Qg4, ID, ILll and I,,, are selected. The 

training and testing statistics for the NN in case I1 aregiven in table 6 .  

Testing statistics 

testing data 500 
true secure patterns 160 

hidden layers I 
hidden neurons 6 
iteration step 0.10 
momentum factor 0.01 
training patterns 1550 
iteration cycles 1000 

true insecure patterns 340 
false alarms 3 
false dismissals 2 
% false alarms 1.875 
%false dismissals 0.588 
%false classifications 1.000 
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6.7.6 Comments 

The feature selection criteria is based on the heuristic notion of inter- 
class distance. Selection of features based on their individual merit 
does not always ensure accurate selection of the discriminatory 
information. 

Selection of loads based on a random number generator is not 
realistic. Load variations in an actual power system consists of a 
superposition of correlated and uncorrelated components. In this 
study, no provision to handle any topological variations brought about 
due regular powers system operating characteristics. 

Security assessment by the above mentioned method would require a 
NN for each possible contingency. To cover all possible contingencies. 
a large number of NN may be needed. The implementation of such a 
scheme is practical only when NN hardware becomes available. 

6.8 DYNAMIC SECURITY ASSESSMENT 

In dynamic security, or small signal stability analysis, the power system 
model is linearized around a selected operating point and the 
corresponding system eigen values evaluated to predict system 
stability. For a power system to be evaluated at all possible operating 
conditions, the linearization and eigen value analysis has to be 
repeated for all the cases. This is a time consuming process that poses 
a challenge to performing dynamic security assessment (DSA) on-line. 
Thus NN may provide a potential avenue toward achieving this 
objective. 

6.8.1 Problem Description 

In dynamic security assessment, the power system stability is evaluated 
via frequency domain analysis. The power system is divided into a 
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study system and an external system. The external system can be 

replaced by a dynamic equivalent models while the study system is 
modelled in detail. The model of the entire power system is 
developed using the small signal analysis. The eigen values of the 
system are then computed and assessed at various operating 
conditions 116). The linearized state space model of the power system 
can be considered as an oracle for NN training. The linearized model 
is derived by combining the set of state and algebraic equations listed 
in section 6.3 for all generators in the study area of the power system. 
The composite linearized state spaces equation take the form. 

where X = Xo + AX and U = U, + AU are the state and input 

vectors for the system. The stability of the system is determined by 
calculating the eigen values of the system matrix A(Xo,Uo). Any eigen 

value with a non-negative real component is unstable mode of 
operation. 

The stability of the power system as described above is heavily 
dependent on the operating condition and topology of the power 
system. The computation of the eigen values of a large system is a 
time consuming process that inhibits the on-line applications. 

6.8.2 Neural Network Approach 

Training data for dynamic security assessment can be generated off- 
line by using an oracle. Training data can also include measurements 
of previous assessments. A multi-layer perceptron is trained using 
back-propagation to learn the dynamic security status with respect to 
a selected set of variables U within a defined operating space (16). A 
test example of 9 bus, 3 generators was used to validate the method. 
For simplicity, 3 independent input variables were selected as inputs 



generator and complex power output (S = d m  ) of another 
generator. All other parameters were assumed to be constant. In the 
retrieving (testing) phase. Zdimensional dynamic security contours of 
P,Q are obtained by fixing S at arbitrary values. The NN generated 
contour compared well with the actual contour obtained using the 
oracle 1161. 

6.83 Comments 

The dimensionality of the security contours is a function of the size of 
the system under investigation. In a high dimensional operational 
space where a combination of correlated and uncorrelated variables 
forms the input space, the development of a NN based system for 
assessing dynamic security is a challenging problem. 

6.9 CAPACITOR CONTROL 

6.9.1 Introduction 

Compensating the reactive power flow in utility systems is an area of 
continuous development. Reactive power has limiting effect on the 
operation of the power system due to the line losses and unnecessary 
equipment load. The reactive power compensation can be viewed as 
an optimization problem where several optimum sizes of capacitors 
can be placed at optimum locations to minimize a cost index such as 
line (or system) losses. This is a complex nonlinear optimization 
problem. Many techniques have previously been used such as gradient 
methods, linear, nonlinear and dynamic programming and expert 
system methods. 



Consider a uniformly loaded feeder of 'h' length as shown in figure 
17(a). 

Figure 17. (a) Uniformly loaded cable (b) capacitor compensated 
cable 

The 3* power loss in an elemental length dx due to the resistance of 
the cable is given by 

where 

i - current per unit length 
r - resistance per unit length 
h - length of the cable 

The total 3* power loss (w) along the feeder is given by 

h 
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= r h - the total resistance of the cable 

i h - the total load current drawn in to the cable 

ming that the load is cyclic with a period of T hours, the total 
e~ loss (wh) can be calculated as, 

consider the installation of a capacitor bank at location h as 
r 

a in figure 17(b). The 3* power loss (w) can now be modified as, 

reactive component of current i 

capacitive current provided by the bank 

modified energy loss can be similarly calculated. The cost saving 
to installing capacitors to decrease energy and power losses is 

I by. 

e K, and K2 are two cost factors. The optimum size and location 

e capacitor bank can be explicitly calculated by setting the partial 
wives (a AC/a i ) and (a AC/a 1 ) to zero. 

c C 
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However, in a real power system, the situation is not that straight 
forward. The distribution system can have multiple capacitors with 
discrete tap settings. The load current may not be uniformly 
distributed and the load variations at different parts of the distribution 
network may be uncorrelated. Hence, no common load cycle can be 
identified. Also, other economic considerations such as depreciation, 
return on investment etc. may have to be included in the optimization 
model. In order to deal with these constraints, linear and nonlinear 
programming techniques can be employed. Expert systems also have 
been looked at as a possible alternative. However, solution accuracy 
and computational time are a major concern in most of these 
techniques. 

6.93 Neural Network Approach 

The NN assisted approach to the solution of capacitor control 
problem is expected to drastically reduce the calculation times and 
enable on-line adjustments. A specific example in the control of 
capacitors on a radial distribution system is addressed in 162). The 
test power system is given in figure 18(a). The location of the 
capacitors are assumed pre-determined. The entire power system is 
divided into six subsystems, each with uniformly distributed loads 
marked by dotted lines. There are 6 measurement locations marked 
by MI through M6. P. Q flow and the voltage magnitude IVI are 

monitored at the capacitor locatiow. The aggregated load in each 
subsystem is assumed to take one of 4 feasible levels at 50%. 70%. 
85% and lO0% of the peak load with proportional variations in 
reactive power. The current tap setting of each capacitor is also 
known. The objective is to use 3 measurement quantities (P,Q. I V J )  at 
locations M1 through M6 and the current tap settings of the 
capacitors C1 through C5 in order to calculate the optimum tap 
settings for the 5 capacitors. 
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Figure 18. The capacitor control through NNs 

From (621 munesy of IEEE, (C) IEEE.1989 

The problem is solved in two stages. Both stages use multi-layer 
perceptrons trained by back-propagation. In stage I. 6 NNs, shown in 
figure 18(b), are trained to perform a power flow calculation. The 
training data for the this stage are the P. Q, I VI measurements for all 
feasible combinations of load levels and capacitor settings. The 



figure, the circles placed on the lines indicate multiple measurements. 

In stage 11, the outputs of the NNs of stage I (i, through i,) are used to 

train 5 NNs as shown in figure I8(c). In this stage, the NNs are 
trained to select the optimum tap setting of all 5 capacitors. Training 
data for stage I1 are generated by the optimizing algorithm. Different 
combinations of aggregated loads on the 6 subsystems are assumed. 
In the retrieving phase. the NN estimated the optimum tap settings. 

6.9.4 Comments 

Perhaps one of the most significant contribution of this work is the 
partitioning of the overall problem into in to smaller subproblems. 
Then individual NN's are used where each id dedicated to solve a 
specific subproblem. This modular approach facilitates faster and 
simpler training of the NN's. Also i t  simplifies the maintenance 
(updating) of the NN's. 

Topological ob3ewabiliIy is a method for selecting certain locations in 
the power system where measurements can be collected in order to 
observe the entire power network Once the topological observability 
is concluded, a State estimolion technique is used to filter any errors in 
the measurements and to estimate the states at locations where 
measurements can not be obtained. 

6.10.2 Problem Description 

Consider the nonlinear measurement model for the power system 
consisting of (n) states and (m) measurements, and m > n 
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where 

z measurement vector (rn x 1) 
x state vector (n x 1) 
v measurement noise vector (mx 1) 

The maximum likelihood estimate of x is obtained by minimizing the 

:ost function, 

'r -1 J(x) = (z - h(x)) R (z - h(x)) (64) 

where R = E[v v T], and E[.] is the expectation of "." 
Z 1 

To obtain the optimal solution of x , the first derivative of the cost 

unction is set to zero 

a h  
vhere Hx^ = - a X* 

Nhere x" is the estimated value of x. 
:or a linearized de-coupled measurement model, the measurement 

quation takes the form 

!here H is the linearized measurement matrix. In this case, the 

ptimal state estimate x" can be proved to be as follows 

he  power system is said to be topologically observable if H has a 

ink of (n). The question to be answered is whether or not a system is 

bservable through a given types and locations of measurements. If 
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the system is not observable, then the question is what other 

measurements are required to make it observable. 

Among the commonly used techniques for topological observability 

are: heuristic methods, and graph theory methods. These techniques 

are associated with different degrees of accuracy and computational 

effort. In an effort to find the most efficient way to handle the 

combinatorial complexity of this problem, a NN approach has been 

looked at as a possible alternative. 

6.10.2 Neural network approach 

Figure 19. (a) 3 node test system (b) corresponding measurement 

allocation graph 

From I631 courtesy of IEEE, (C) IEEE,1989 

The proposed method [64], starts from a graph theoretic definition of 

topological observability and converts it to an integer programming 

problem. It is then solved by using a Hopfield neural network model. 

Based on the converged solution of the Hopfield modeI, it can be 

determined whether the system is observable under the assumed 

measurement placement. 

The topologically observable measurement allocation graph is defined 

as having a structure where, a node ltm at least one measurement and a 

memurement is msigned to at least one node. 
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lse elements represent the relationship between the meters and 

nodes in the allocation graph. Elements of G can be defined as 

s important to note that the value of a, can take only values {0,1} 

2 the hopfield network iterates to a solution. But for the 
iulation of G, the values of a, are assumed to be bounded within 

interval {0,1).) For the three node power system shown in figure 

I), a graph G can be written as 

Car as graph G is concerned, to meet the topological observability 

dition, the following conditions must be met 

Measurement z is assigned to only one node. Hence, at least 

one value of ak in each row should be equal to one, i.e 

x a, 2 1 where k E row@) 
k 

Node n has at least one measurement. Hence, at least one 

value of ak in each column should be equal to one, i.e 

a 1 where j E colm(i) 
1 

I 



eliminated by introducing slack variables. Once the slack variables are 
eliminated from the basis, the following combined model results. 

The vector a contains elements a, while elements of matrix D denoted 

by d take values {0,1} based on the constraint equations. Solving 
'I 

equations (71) with the constraints (1 2 a, > 0: a, - integer) is 

equivalent to minimizing the cost function 

where, 

p, and p, are to weighting factors whose choice is arbitrary. The cost 
index G, goes to zero when the matrix equation in (72) is satisfied 

while index G, forces the values of a, to be either 0 or 1. Therefore 

both GI and G, should ideally converge to zero. 

By equating the coefficients of the energy function in equation (72) 

and the generic hopfield energy function given by, 
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can be proved that 

he solution procedure is as follows. First, the weights w and the 
lresholds 8 of the hopfield network are set according to equations 
74) and (75) respectively. Starting from an arbitrary set of ai within 

re range (0,1], the hopfield network is allowed to converge to a stable 
)lution where the energy function is sufficiently minimized. The 
slues of a are then taken from the converged hopfield network and 

~bstituted in order to find a redundancy factor R given by 

here k = l,....,nw (nw - number of variables a's), and n is the 

umber of nodes for a set of measurement placements, the system is 
rid to be topologically observable if the value of R given by equation 
19) is a non-negative quantity. 

lue to the poor attractor dynamics of the hopfield network, the 
~lution was seen to converge to a local minimum thereby giving an 
)correct observabilily picture. The convergence was also largely 
ependent on the choice of the parameter pl and p,. Subsequently, 

le same formulation was solved using a Boltzman machine to obtain 
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better results. Improved convergence properties were observed in this 
formulation. 

6.11 IDENTIFICATION AND CONTROL OF A DC MOTOR 

6.11.1 Introduction 

An electric drive system is considered "high performance" when the 
rotor position or shaft speed can be made to follow a pre-selected 
track at all time j66.67). A track (or trajectory) is a desired time 
history of the particular controlled variable. This type of high 
performance drive system is essential in applications such as robotics. 
actuation and guided manipulation where precise movements are 
required (66,671. 

A fast controller is an essential feature of such a drive system [66,671. 
The objective of a speed controller is to manipulate the terminal 
voltage in such a manner as to make the rotor speed follow a specified 
trajectory with minimum deviation. The resulting control signal should 
be reasonably well behaved in order to be implemented using a 
general purpose converter 167). 

One of the main difficulties with conventional tracking controllers for 
electric drives is their inability to capture the unknown load 
characteristics over a widely ranging operating point. This makes the 
tuning of the respective controller parameters difficult [66-69). There 
are many techniques that can overcome this problem. In adaptive 
control for instance, this problem is overcome by identifying the 
overall behavior of the motor using a linear parametric (ARMAX) 
model at prespecified time intervals [66.67,69]. But load torque is 
usually a nonlinear function of a combination of variables such as 
speed and position of the rotor. Hence identifying the overall 
nonlinear system through a linearized model around a widely varying 



which can lead to instability or inaccurate performance 1691. 

The ability of NNs to learn large classes of nonlinear functions is well 
known [33,70]. It can be trained to emulate the unknown nonlinear 
plant dynamics by presenting a suitable set of input/output patterns 
generated by the plant [70-741. Once system dynamics have been 
identified using an NN, many conventional control techniques can be 
applied to achieve the dhred  objective. Among these techniques is 
indirect model reference adaptive control (MRAC) 169,701 which is 
specifically useful in trajectory control applications. An attempt has 
been made to merge the accuracy of MRAC systems and the 
calculation speed of NNs to come up with a trajectory controller for a 
dc motor. 

This section introduces a NN based identification and control system 
[65]. It is formulated as a MRAC system for trajectory control of a dc 
motor. No prior knowledge of the load dynamics is assumed. The 
main purpose of the controller is to achieve trajectory control of 
speed when the load parameters are unknown. 

6.11.2 Problem Description 

The dc motor is the obvious proving ground for advanced control 
algorithms in electric drives due to the stable and straight forward 
characteristics associated with it. It is also ideally suited for trajectory 
control applications as shown in references [66-681. From a control 
systems point of view, the dc motor can be considered as a SISO plant, 
thereby eliminating the complications associated with a multi-input 
drive systems. 

The dc motor dynamics are given by the following two equations 



K i (t) = J [dw (t)/dt] + D w (t) + T,(t) 
P P 

where, 

- rotor speed rad/s 

- terminal voltage v 

- armature current A 

- load torque Nm 

- rotor inertia ~ m '  
- torque & back emf constant N ~ A "  
-damping constant Nm s 
- armature resistance R 

- armature inductance H 

The load torque TL(t), can be expressed as 

where the function Y ( w  ) depends on the nature of the load. The 
P 

exact functional expression of *(w ) is assumed to be unknown. 
P 

In order to derive training data for the NN and to apply the control 
algorithms, a discrete-time dc motor model is required. Let's assume 
the load torque TL(t) of equation (79) to be 

where p is a constant. The function is set up so that the direction of 
load torque always opposes the direction of motion. The motivation 
for choosing this particular function is that it is a common 
characteristic for most propeller driven or fan type loads. However, it 
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is important to note that the choice of load torque is completely 
arbitrary and does not influence the proposed control algorithm. 

The discrete-time model is derived by first combining equations (77). 
(78) and (80) and then replacing all continuous differentials with 
finite differences. The resulting state space equation is 

where a, B, and [ are constant values based on the motor parameters 
J, K. D, R , L , and the sampling period T. while y and d in addition to 

8 .  

being functions of the above parameters are also functions of p. The 
value k denotes the kIh time step. 

A separately excited dc motor with name plate ratings of 1 hp, 220v, 
550 rpm is used in all simulations. Following parameter values are 
associated with it. 

6.11.3 Identification and Control using NN 

Figure 19 shows the basic concept of identification and control of the 
dc motor using an NN. The scheme is very similar to indirect model 



reference adaptive control 169,701 where the motor is first identified 
between a combination of its input and output variables using an NN. 
The weights from the trained NN identifier are then used in the 
controller to calculate the terminal voltage which will asymptotically 
drive the motor shaft speed w (k) towards the reference model output 

P 

a,(k). 

Figure 20. NN based identification and control system 
From 1651 courtesy IEEE (C) IEEE, 1991 

In the case presented in figure 20, the quantities e(k) and e$k) are 

defined as the identification and tracking error respectively. The 
objective in identification is to minimize 

while the control strategy is to calculate a suitable terminal voltage 
Vl(k) which minimizes 

where 10, t,] is the time window under review. The desired behavior of 

the motor is specified through a stable reference model. For a desired 
speed trajectory {a,(k)}, a bounded control sequence {r(k)) could be 

derived by using the reference model. This forms the activation signal 
for the control system. 



determined by the consequent design of the controller. This is 
because, as seen from figure 20, the controller uses information from 
the identified model to predict the controlled input. 

The dc motor characteristics are identified by presenting a set of 
input/output patterns to the NN and by adjusting its weights 
accordingly by using back error propagation. The extent of training 
depends on the degreeof complexity of the dynamics to be learned. 
One of the first tasks in training an NN is to define a region of 
operation with respect to its input/output variables. In conforming 
with the mechanical and electrical hardware limitations of the motor, 
and with a hypothetical operating scenario in mind, the following 
constrained operating space is defined. 

-30.0 < w (k) < 30.0 rad/s 
P 

I wp(k - 1) - o (k) 1 < 1.0 rad/s 
P 

Two different identification topologies are introduced. They are both 
oriented towards achieving the same control objective. Depending on 
the circumstances, one or the other may be used. The NN 
identification model performance is assessed by comparing the 
estimated output and the actual motor output for a common arbitrary 
excitation signal. 

Equation (81) which describes the motor dynamics, can be 
partitioned as 

where the Function f [.I is given by, 



+ 6 [sign(op(k))] o '(k - 1) 
P 

and is assumed to be unknown. A NN is trained to emulate this 
unknown function f 1.1. The values o (k) and o (k - I) which are the 

P P 

independent variables of f 1.1, are selected as the inputs to the NN. 
The corresponding NN output target f [o  (k), o (k - I)] is given by 

P P 

equation (83). The target is also equivalent to the value of o,(k + 1) 

in equation (81) with the terminal voltage Vl(k) set to zero. The latter 

method is useful when deriving training data from actual hardware. 

Table 7 Training and Testing statistics of the NN 

The NN is trained off-line using randomly generated input patterns of 
[op(k), op(k - I)] and the corresponding target f [op(k). o (k - I)]. The 

P 
choice of o (k) and w (k - 1) have to satisfy the constraints previously 

P P 

specified. 

The motor speed is estimated by the trained NN predictor as 
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where N[.] denotes the NN output for a given set of "." inputs. A " ^  " 

indicates an estimated value of the quantity directly below it. The NN 
topology and the training effort are briefly described by the statistics 
in table 7. 

As mentioned earlier, except for the number of inputs/outpuu of the 
NN, all other design and learning parameters are selected by trial and 
error. 

Figure 21. Structure of the NN for identification of the dc motor 

From 165) eounesy lEEE (C) IEEE. 1991 

The trained NN is applied as a series-parallel type identifier as 
described in reference [70], to estimate the value of the function f 1.1. 
The structure of the identifier is shown in figure 21. i' in any figure 
indicates a unit time delay. The performance of the trained NN 
identifier is evaluated by comparing the actual and estimated speeds 
as calculated from equations (82) and (84) respectively for the 
following arbitrarily selected terminal voltage sequence 

V (k) = 50 sin(2rkT17) + 45 sin(2rkT13) V kT E [O, 201 
I 

The results are given in figure 22. It is seen that the two tracks are 
barely distinguishable from each other. The maximum identification 
error is 0.36 radfs. 



Figure 22. Actual and estimated rotor speeds 

From 1651 courtesy IEEE (C) IEEE. 1991 

It is important to note that this algorithm assumes the availability of 
the value I for its operation. It can be proved that is a function of J, 
K, R,, La, D and the sampling period T and that it can be explicitly 

evaluated if these parameters are known. Since all the parameters are 
motor specific, it is fair to assume their availability. However, when 
none of the motor parameters are available, topology 11 is proposed 
for dc motor identification. 

6.11.4 Trajectory Control of DC Motor using NN 

The objective of the control system is to drive the motor so that its 
speed, o (k), follows a prespecified trajectory. wm(k). This is done by 

P 

letting the dc motor follow the output of a selected reference model 
throughout the trajectory [70]. The following second order reference 
model is selected. 
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selected to ensure that its poles are within the unit circle and has the 
type of response that can be achieved by the dc motor. For a given 
desired sequence {o (k)} (trajectory), the corresponding control 

m 

sequence {r(k)) can be calculated using equation (85). 

The controller uses the previously trained NN to estimate the motor 
terminal voltage V$k) which enables accurate trajectory control of the 

* 

shaft speed g(k) .  Performance of the two controllers are simulated 

for arbitrarily selected speed tracks {~,(k)). A graphical comparison 

of the specified and actual speed trajectories are presented. 

Let's for a moment assume that the tracking error eJk) is zero, and 

that the nonlinear function I[.] in equation (82) is known. The control 
input V$k) to the motor at the kt\irne step can be calculated as 

V,(k) = [ -f [o (k). g (k  - I)] 
P 

(86) 
+ 0.6 (k) + 0.2 op(k - 1) + r(k)j / € 

P 

Substituting this result in equation (82) and combining with equation 
(85) gives the tracking error difference equation 

e (k + I) = 0.6 e (k) + 0.2 e$k - 1) (87) 

Since the reference model is asymptotically stable, it follows that 
lirn 4(k+ I)  = 0 for arbitrary initial conditions. However, since f [.] is 

not known, its value is estimated using the trained NN. The estimated 
terminal voltage is given by, 



Figure 23. The overall structure of the controller 

From 165) courtesy lEEE (C) IEEE, 191 

The overall structure of the identification and control system is 
displayed in Figure 23. The tracking control capability of the model 
was investigated for different arbitrarily specified trajectories. Only a 
specific result is shown for brevity. In this case, the specified speed 
trajectory is defined by 

o (k) = 10 sin(2.0rkT/4) + 16 sin(2.0rkT/7) V kT E [O, 201 
m 

For the above trajectory, the corresponding {r(k)} is derived by using 
equation (85). This is applied to the model shown in figure 23. The 
matrix am corresponds to the reference model coefficients [0.6 0.21. 

Figure 24 compares the actual and specified speed trajectories for the 
above sinusoidal reference track. Close model following is observed. 
The maximum tracking error is 0.55 rad/s. 
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Figure 24. Tracking performance for a sinusoidal reference track 

From (651 courtesy IEEE (C) IEEE, 1991 

,11.5 Comments 

dc motor has been successfully controlled using an NN. The 
zknown, time invariant, nonlinear operating characteristics of the dc 
iotor and its load have been successfully captured by an NN. The 
incepts of model reference adaptive control have been used in 
injunction with the trained NN to achieve trajectory control of the 
Itor speed. Two different controller topologies have been presented. 
0th display good tracking performance. Simulations were also 
:rformed under noisy operating conditions to study the degree of 
~bustness of the controller. which is an important consideration in 
~y practical application. 

entification of a time varying drive system using an NN is also of 
~nsiderable interest and needs to be studied. The overall system 
ability was never investigated from a conventional control theoretic 
lint of view and is worth studying. Implementation of the control 

hemes on actual hardware is currently under progress. 
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