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Abstract 
A fundamental limitation of the use of error back propagation (BP) in the training of a 

layered feed forward neural network is the high degree of required computational accuracy. For 
each iteration, the weights typically change at low significant digits. Thus, layered perceptrons 
cannot be trained with error back propagation using low accuracy analog circuitry. Since ana- 
log implementations of layered perceptrons perform quite fast in comparison with their digital 
counterparts, this is indeed unfortunate. The training of the layered perceptron, however, is 
simply a minimization search in weight space to which any one of a number of search algorithms 
can be applied. Certain other search approaches do not require the computational precision 
needed by error back propagation. In this paper, we demonstrate the random search approach 
to training layered perceptrons can be performed using low accuracy computational precision 
and, therefore, can be implemented using analog computational accuracy. In spite of numerical 
stability, random search techniques suffer from ever increasing search time as dimensionality 
grows. In response, we introduce a modified random search technique (Improved Bidirectional 
Random Optimization - IBRO) to improve the search accuracy per iteration. Consequently our 
scheme will reduce overall search iterations dramatically. We compare the performance of IBRO 
with that of the bidirectional random optimization (BRO) method through simulations. 

1 Introduction 

Finding a global minimum of cost or error function is a problem common to many applications. In 
contrast t o  steepest descent approaches, the random optimization (RO) technique [I, 3, 5, 6, 91 is 
an optimization technique for which no gradient information is required. The approach is known 
for its simplicity, modest computational complexity and low computational accuracy demands, low 
memory requirement, and its capability of handling multi-modal objective functions. 

The training of a layered perceptron can be viewed as a minimization search in weight space 
to  which any search algorithms can be applied. The back propagation (BP) algorithm seeks a 
minimum based on the local gradient of the objective function. A fundamental limitation of the 
use of BP is the high degree of required computational accuracy. For each iteration, the weights 
typically change a t  low significant digits. Thus, layered perceptrons cannot be trained with BP 
using low accuracy analog circuitry. 

In this paper, we perform a preliminary investigation into the performance of RO as a layered 
perceptron training algorithm. We experimentally demonstrate that random search methods can 
be used t o  train a layered perceptron using low accuracy computations. 
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2 Random optimization method 

The RO technique was first introduced in 1953 by Anderson [l] and developed by Rastrigin [7], 
Karnopp [5], Matyas [6], and Solis [9]. Recently Baba [3] suggested its use in training feedforward 
multi-layer perceptron. 

Although there have been numerous variations on this approach, the basic idea behind RO 
can be explained as follows. Starting from an initial point f(0) in the weight space, we compute 
i ( 0 )  = f (0)  + GO) where f(0) is a randomly chosen vector. A typical choice of f(0) is a Gaussian 
random vector. The objective function f( i (0))  is then evaluated. If an improvement in the cost 
function1 is measured, then Z(1) = i(0). Otherwise, Z(1) = Z(0). 

One of the most attractive features of the RO method is that the resulting search converges 
in probability to  the global minimum. Specifically, for many probability distributions, including 
Gaussian and Laplace, the sequence of search vector {Z(k))gl converges to the global minimum 
point Zopt in the sense that, 

lim P r  [ p(Z(k), fopt) > 61 = 0, 
k-03 

where p( . , - ) represents the distance measure between the two vectors and 6 is a small positive 
number (6 > 0). The proofs are in references [2], [6], and [9]. 

Another important advantage of the random search method is its simplicity. It  does not require 
evaluation of gradient information that, for example, is required in the BP algorithm. The RO 
algorithm requires no imposition of learning parameters except for the variance of the random 
number generator. Ry a.pplying this method to  train a multilayer feed forward network, Baba [3] 
empirically has shown the effect of the variance of Gaussian random vector. Obviously, a small 
variance will confine the scope of the search space and result in a slower albeit more a.ccurate search. 

3 Improved random optimization method 

Various modifications of the basic RO algorithm are possible. The bidirectional r_andom optimiza- 
tion (BRO) method searches both reverse (Z(k) - {(k)) and forward (Z(k) + [(k)) direction to 
compare the objective function. This method has been empirically proven to be more effective 
than the conventional RO method [3,9]. The BRO also keeps track of the center of random search 
vectors g(k) as shown in the Table 1 (the introduction of g(k) is due to Matyas [6]). 

S t e p  1: Initialize 3(0), g(0) = G ,  and set k = 0. 
S t e p  2: Obtain a k ) .  The mean of the random vector a k )  is ;(k). 
S t e p  3: Let 

a0 = f (?(k)) 
a-1 = f ( q k )  --Gk)) 
a1 = f (f(k) + [(k)). 

S t e p  4: 

if a-1 is minimum, f ( k  + 1) = Z(k) - f(k) and g(k + 1) = g(k) - 0.4ak). 

'In the case of the layered perceptron, the cost function is the error function. 



if a1 is minimum, Z(k + 1) = Z(k) + a k )  and c(k + 1) = 0.2g(k) + 0.4r(k).  
if a0 is minimum, Z(k + 1)  = Z(k) and g(k + 1)  = 0.5i (k) .  

Step  5: Set k = k + 1 and return to S tep  2. 

Table 1 Bidirectional random optimization (BRO) algorithm (Solis & Wets, 1981). 

We modified the BRO to increase the search probability in every iteration. Let's assume the 
situation where both forward and backward search fails to find lower objective function values as 
illustrated in Fig. 1. Define, F, = {y'( f (3 < f (Z)), and 

For la1 < 1 , if Z +  a<€ Fa , then we can increase the search probability and thus improve BRO 
with relatively low additional computing costs. Notice that the only additional computation is 
S tep  5 shown in Table 2. We compare our improved BRO (IBRO) to BRO to demonstrate the 
speed upgrade by simulating 6-bit parity problem. The corresponding learning curves, shown in 
Figure 2, are obtained through 10 ensembles of experimenk2 The learning gains were 0.3, 0.5, 
0.75 and the momentum gain was chosen to be between 0.3 and 0.8 for the B P  algorithm. The 
feedforward network has one hidden layer with sigmoidal non-linear units. Different numbers of 
hidden units were employed (from 5 to 15 units). Sometimes the simulation never escapes local 
minima, and we restart with a different configuration. The IBRO, on the other hand, never fails 
to reach the zero error value (global minimum). We use 0.1, 0.01, 0.001 variances for the Gaussian 
random variables. 

Step 1: Initialize Z(0), i ( 0 )  = 8 ,  and set k = 0 .  
Step  2: Obtain flk).  The mean of the random vector f (k )  is g(k).  
S t e p 3 :  Let 

a0 = f ( ? ( I ; ) )  

a-1 = f (Z(k)  - a h ) )  

a1 = f (Z (k )  + f ( k ) ) .  
Step  4: 

if a-1 is minimum, Z(k + 1) = Z(k) - a k )  and g(k + 1)  = g(k) - 0 . 4 a k ) .  Go to Step 6. 
if a1 is minimum, Z(k + 1)  = Z(k) + a k )  and g(k + 1 )  = 0.2g(k) + 0.$(k). Go to Step 6. 
if a0 is minimum, i.e., ( > a0 and a1 > a o ) ,  Go to Step 5. 

S tep  5: Compute a = (a-1 - a l )  j (ab1 + a1 - 2 a1) and let a ,  = f ( ~ ( k )  + a a * ) ) .  

if a, < ao, then Z(k + 1)  = Z(k) + ask) and 

 he cornpalison of performance in terms of iterations is, in some sense, unfair. The computational complexity 
of the BRO and IBRO are significantly less on a per iteration basii than that of a BP iteration step. 



g(k + 1) = ag(k) - 0.48k) when -1 < a < 0. 
g(k + 1) = 0.20 g(k) + 0.48k) when 0 < a < 1 
g(k + 1) = 0.5 g(k) when a = 0. 

Else Z(k + 1) = Z(k) and g(k + 1) = 0.5 g(k). 
Step 6: Set k = k + 1 and return to Step 2. 

Table 2 Improved bidirectional random optimization algorithm. 

4 Effect on finite word length representation of weight values 

In this section, we experimentally show the sensitivity of RO to finite word length. The ability to 
use RO a t  low precision levels removes a significant obstacle for classifier and regression machine 
training using analog technology. For example, when the LMS algorithm is implemented in VLSI 
using fixed point arithmetic, experiments show that approximately 16 - 20 bits are required to 
represent weight coefficients in order t o  achieve necessary performance [lo]. 

The random search nletliods are, by their very nature, numerically stable. Clearly an algorithm 
that does not require the function to be accurately computed is unlikely to depend on exact arith- 
metic utilizing these function values. We only need to evaluate the function if the objective value 
of the new search point is lower or higher than the previous one. 

The simulation of low precision is performed by truncating the weight values a t  the nth digit 
after the decimal point. To illustrate, consider the 5-bit parity problem. A typical learning curve 
is shown in Figure 3 for different degrees of truncation. The BRO method exhibits convergence on 
finite word representation up to  first digit truncation. The BP method, however, was not a.ble to 
perform consistent learning after 5th digit truncation. 
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Figure 1: Improved bidirectional random search. 
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Figure 3: Effects of finite word representation of weight values for the BRO method(a), BP(b) and 
IBRO(c). 5 bit parity problem is chosen. 


