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Abstract

We propose a fuzzy logic controlled implementation of the backpropagation train-
ing algorithm for layered perceptrons. The heuristics for adjusting the values of
the learning rate 7 are incorporated into a simple fuzzy control system. This pro-
vides automatic tuning of the learning rate parameter depending on the shape of
the error surface. Application of this straightforward procedure is shown to be
able to dramatically improve training time in some problems.

1 Introduction

The backpropagation learning algorithm [1], has been successfully applied
to the training of multilayer feedforward neural networks in a number of
practical problems. This algorithm is a gradient descent search in the space
of weights of the neural network, and aims to minimize an energy function
which is normally defined as the sum of squared errors, where each “error” is
the difference between desired (target) values at the output of the network,
and actual values obtained during each iteration of the algorithm. Weight
changes are performed according to:

Aw, = —gVE(w,) + aAw,_, (1)

where w,, is the vector of weight values after the nth iteration; Aw, is the
change in these weights; E(wy) is the error function at the nth iteration, 1
is the learning rate, and « is the momentum parameter.
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Despite the effectiveness of backpropagation, its speed of convergence can
be painfully slow, rendering it ineffective in many practical situations where
on-line learning is required. The reasons for this have been discussed in detail
by Jacobs [2]. Jacobs also presented an overview of heuristics that can be
used to accelerate the convergence of the algorithm, suggesting that each
weight be given its own learning rate, and that this learning rate be allowed
to change over time during the learning process. He also suggested how
the learning rate should be adjusted, thus incorporating the heuristics into
the delta-bar-delta rule. The heuristics suggested that if the error gradient
possessed the same sign over several consecutive time steps, the value of 5
should be increased; and if the sign of VE alternated over consecutive time
steps, the value of 5 should be decreased.

However, there are still no general guidelines for choosing the values of 7
and «, and it is up to the user to come up with values that provide for fast
convergence. Fuzzy control of the learning rate 7 is suggested herein as a
solution to this problem. The resulting procedure, although straightforward,
can be remarkably effective.

2 Fuzzy Controlled Backpropagation

The central idea behind fuzzy control of the backpropagation algorithm is
the implementation of heuristics used for faster convergence in terms of fuzzy
IF ... THEN rules. This is done by considering the error E, and the change
in error C'E to be fuzzy variables taking on the values F, and CE, at each
iteration n. These values can in turn be categorized as low, medium, and high.
We also define a fuzzy variable An taking on a value of A, at each iteration n
representing the amount by which 7 is updated at the nth iteration. This can
take on the values negative small, zero, and positive small. All of these values
are expressed in terms of membership functions as shown in Fig.1. Based on
the actual (crisp) values of E and CE, we can thus arrive at a (crisp) value
for Ap, if we can express the relationship among these variables through
fuzzy conditional statements. During each iteration of the backpropagation
algorithm therefore, the value of the learning rate 5 is incremented by An,
based on current values of the error and change in error (F, and CE,).
The rules chosen for this application are shown in the form of a table in
Table 1. From this table for instance, one can read the following rule:
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(1) IF E is low, THEN IF CE is low, THEN A7 is positive small.

CFE [ Low | Medium | High
E
Low PS PS ZE
Medium PS PS ZE
High ZE | ZE | NS

Table 1: Decision Table for the Fuzzy
Controller. Table contents
represent the value of the
fuzzy variable A7 for a given
choice of values for E & CE

Evaluation of the rules is best illustrated by an example. Consider the
rule (1) shown above. Having obtained (crisp) values for E and CE at the
nth iteration, we evaluate their degree of membership in the membership
functions of fuzzy sets defining their “values” (low and low in this case).
The minimum value of these two evaluations is chosen and multiplied by the
membership function of the consequent fuzzy set (positive small in our case),
resulting in a modified membership function which we choose to represent
by ux(z) for rule k. This is repeated for every rule in the rule base, and
the modified membership functions pi(z) are summed together to form a
composite function p(z). The fuzzy centroid of p(z) is then chosen as the
deterministic control action ( value of A7) to be taken:

_ Jap(z) de
A=) & @

3 Results

We present here results of comparisons between the convergence speed of
standard backpropagation, Jacob’s delta-bar-delta rule [2], and fuzzy con-
trolled backpropagation as applied to the 3 bit parity problem. Batch train-
ing of the neural network is used. It is seen that the fuzzy controlled back-
propagation algorithm is much faster than standard backpropagation or the
Delta-bar-delta rule for this example.
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4 Discussion

Although we have not explicitly implemented the heuristics presented in [2]
by a fuzzy control system, nontheless the control rules can be interpreted
as being derived from the general guidelines mentioned in [2]. While our
approach in this implementation differs from that of Jacobs’ delta-bar-delta
rule, it is only natural to assume that whenever Jacobs’ heuristics fail in
a specific problem, the same will happen with the fuzzy backpropagation
technique.

Also, just as backpropagation can not guarantee convergence to a globally
minimum solution, neither can fuzzy controlled backpropagation. This is
a problem inherent to a localized optimization technique such as steepest
descent, of which backpropagation is a special case.

Finally we mention that, although a smaller number of iterations towards
convergence is certainly desirable, this aspect of our solution should be cond-
sidered jointly with the total number of operations required for each iteration.
In this respect however, the total number of operations of the two techniques
(plain and fuzzy backpropagation) are not significantly different from each
other due to the inherent simplicity of the computations carried out in the
fuzzy controller.

Acknowledgments

This work was supported in part by Boeing Computer Services and the
Washington Technology Center.

References

(1] D.E. Rumelhart and J.L.McClelland, eds., Parallel Distributed Process-
ing: Fxplorations in the Microstructure of Cognition. Vol. 1: Founda-

tions (MIT Press, 1986).

[2] R.A. Jacobs, “Increased rates of convergence through learning rate adap-

tation,” Neural Networks, 1 (1988) 295-307.

970



Low Medium High

g 0.80T

E

L

|

g 0.407

F

0.00 f + Y + Y + t t t
0.00 0.20 0.40 0.60 0.80 1.00
E
Low Medium High

g 0.801

E

L

L 0.40

£ O

F

0.00 + ¥ + $ t t + t 4
0.00 0.40 0.80 1.20 1.60 2.00
CE
Negative Zero Positive
small (NS) (ZE) small (PS)

g 0.807

E

L L

' .40t

e 0

F s

0.00 t { + + } +
-0.0200 -0.0100 0.0000 0.0100 0.0200

an

Figure 1: (a) Membership functions for the error (E) and change in error
(CE) (b) Membership functions for An, the incremental update to the
learning rate 7
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